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Distributed Allocation of Resources to Overlapping Process
Groups

Zixue CHENG Yukiko INOUE Yutaka WADA

Department of Computer Software, University of Aizu

The distributed resource allocation problem is a well known fundamental problem in distributed systems. Many
solutions which avoid the deadlock and starvation have been developed. With the progress of computer networks,
however, distributed cooperative group activities in a network environment have been increasing, so that several
groups may compete for some resources in the network environment and deadlock among groups and starvation
of a group may happen. Since previous allocation models are mainly for representation of competition for
resources among processes, they can’t reflect clearly the competition for resources among groups of processes.
Moreover, though the previous solutions to the distributed resource allocation problem can avoid the deadlock
‘and starvation, they can’t deal with the deadlock among groups and starvation of a group.

In this paper, we propose a solution which allocates resources to groups of processes with deadlock among
groups and starvation of a group never happening, by extending an acyclic graph approach to the dining
philosopher problem. In addition, our solution guarantees that more than one group work mutual exclusively,
if a common process belongs to these groups.
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1 Introduction source and models [5][9] which considers types
of resources, are proposed.

A fundamental problem in distributed systems is When we consider the solution the resource al-

the resource allocation problem, which could be
briefly summarized as follows.

In a distributed system, there are a set of pro-
cesses and a set of resources. Every process re-
quires a subset of the resources and has to acquire
all required resources for the process to perform
its task. Every resource can be allocated to at
most one process at a time. That is, the pro-
cesses which require the resource have to access
the resource mutual exclusively [1}{2][3][4][6].

There are many variations of and extensions
to the resource allocation problem. For exam-
ple, the k-out of-M model [9][10] which requires
arbitrary k instances from M instances of a re-
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location problem, the states that no process can
use resources and some process can never use re-
sources have to be avoided. The former is called
deadlock and the latter is called starvation. Both
of them are important problems in development
of distributed systems. Many distributed algo-
rithms for avoiding them have been developed.
Some examples of them are the methods which
employ techniques such as time stamps [9][10][6],
acyclic dericted graph [1}, and coterie [6], etc.

On the other hand, with the progress of com-
puter networks, many cooperative activities of
groups happen in a network environment. If



these groups’ activities are performed around the
same period of time, these groups may compete
for resources of the network. In such a case, the
deadlock among groups and/or starvation of a
group may happen.

For example, there are 4 groups g,, gs, g., and
ga consisting of {Pl,Pz,Ps}’ {P4»P5}: {Ps,PT,PB}a
and {pr,ps,ps}, respectively as shown in Fig. 1.
A process may be an agent, a human, an object,
or a UNIX process depending on different appli-
cations. The members of a group may be resident
at different sites far from each other.

Processes in different groups may be geo-
graphically closed to each other and compete for
resources. In the example, p; and ps compete for
71, p2 and py compete for 73, p3 and ps compete
for 73, ps and pr compete for r4, and ps and py
compete for rs.

To make the story more realistic, suppose ev-
ery group wants to hold a group meeting around
the same time, they compete for meeting rooms
equipped with high quality presentation tools
such as shared white board, screens and cam-
eras for eye contact, and so on. Since the meet-
ing rooms are limited, allocation of rooms to
groups is important. Careless allocation, such
as r; to ps, r3 to pg, T2 to pa, and 14 and 7y
to ps, may lead to deadlock among groups, even
some process may acquire the access privilege to
some room, no group meeting can be held, since
other members of the group can’t acquire meet-
ing rooms.

Legends
o process
O Resourse

A process
1 requires
a resource

Communication link P2

Figure 1:

Notice there is processes p; and py belonging
to both groups g, and‘gy. However, each of pr
and py can participate in only one group ’s meet-
ing at a time. We have to consider such a sit-
uation, to arrange meeting time satisfying the
condlt_mn, while we allocate the meeting rooms
to groups. Careless arrangment may also lead
to a deadlock among groups. For example, if a
room is_ allocated to each of pg, p7, ps, and pg but
arranging py to attend the meeting of g, and p7
to attend the meeting of 94, both the meetings
can’t be held.

Previous resource allocation model and its
variations and extensions couldn’t reflect the re-

lations among groups explicitly, and didn’t give
the definition of deadlock among groups and star-
vation of a group. Moreover, previous algorithms
could only deal with the deadlock among pro-
cesses and starvation of a process, but not dead-
lock among groups and starvation of a group.
Our previois works [13][14] didn’t consider the
case where a processes may belong to more than
one groups and participate in only one group’s
activity at a time.

The problem presented in the paper can be
described as an extension of dining philosophers
problem, called dining philosophers party prob-
lem. Suppose in a dining room, there are some
tables, each of which is surrounded by some
chairs. For each table, when each of the chairs
surronding the table is taken by a philosopher
and each philosopher holds a glass of wine, all
philosophers surrounding the table toast (drink)
to the health of each other using the glass of
wine, and then begin to eat. If there is a philoso-
pher who has not acquired a glass of wine, other
philosophers surrounding the table will wait un-
til the philosopher acquires that. A glass is put
on a shelf between two neighboring tables. So a
philosopher may compete for the glass with an-
other philosopher sitting by a neighboring table.

In order to solve the new problem, we firstly
represent clearly the relation among groups of
processes, and then define the deadlock among
groups and starvation of a group explicitly. In
addition, we propose a solution which guaran-
tees that deadlock among groups and starvation
of a group never happen, based on extension of
acyclic graph approach.

Recently, mutual exclusion method consider-
ing the relations of inter-groups and intra-group
attracts some researchers’ attention, and an al-
gonthm for resolvmg the resource competition
by using K logical ring was proposed {11]. How-
ever, in the model, for every group, a resource is
competed for by all processes in the group, which
can’t be applied to the situation where every pro-
cess in a group has to be ensured to acquire its
required resources in the:same time; and do:their
cooperative group work together. So far, there is
no such model as ours, which deals with that a
set of processes in. a group compete for resources
with other groups, and- acquire all Tequired re-

- sources for them to do thelr cooperative group

work.

The rest of the paper is organized as follows.
In Section 2, our resource allocation model and
the deﬁmtlon of DARG are given. In Section 3,

' We Propose our new solutmn to DARG Section

4 concludes the paper.

2 Model and Problem

Definition 1 Resource allocation model
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The resource allocation model is represented
by a tuple (B,F). B = (V,E) is a bipartite
graph, ‘where V = P UR is a set of nodes
consisting of a set of processes demoted with
P = {p1,p2,"*+,Pi,"+*Pn} and a set of resources
denoted with R = {ry,ry, +-,7j,-++,7m}. Eis
a set of edges e = (p;,7;) between p; and r;. F
is a family of subsets of processes which belong
to P. Thatis F = {g1,92," -, 9k, - *,9n}, Where
gx € P. gi is called “process group” or “group”.

If a process may require a resource, there is
an edge between them in B.. We also say the
process is adjacent to the resource. Each process
is adjacent to one or more resources. The set of
resources, to which a process p; is adjacent, is de-
noted with R; C R. The set of processes, which
requires a resource 7;, is denoted with P; C P.
If Riy N Ry # {}, two processes p;; and p;; are
said to be in competition. In other words, there
is a resource r;, such that p;; € P; and p; € P;.
The set of processes, the set of resources, the a.d-
jacent relation between processes and resources,
and the set of groups don’t change dyna.mlca.lly
during an execution of our algorithm. -

The following properties have to be guaran-
teed when allocating resources to processes of
groups.

(1) Each process has to a:cqmre all resources
adjacent to it.

(2) A resource can be allocated to only one
process at a time.

(3) In order for a group to perform their group
cooperative work, the group has to acquire all re-
sources adjacent to the group (all resources ad-
jacent to any process in the group).

(4) Two or more groups can't work in the same
time, if they share a common process, (i.e. the
process belongs to these groups).

Remark 1

The conditions (1) and (3) could be relaxed to
a more general model, since in some applications,
that a part of processes acquire a part of required
resources is enough for a group to perform its
group work.

Definition 2 Deadlock Starvatlon, Group
Deadlock, and Group Starvatmn

Deadlock means that no process can acquire
all resources adjacent to it.

Group deadlock (deadlock among groups)
means that there is no group such that every pro-
cess of the group can acquire all resources adja.—
cent to it. S

Starvation means that there is some process
that never acquire all resources ad_]acent to 1t in
the same time.

Group starvation (starvatton of a group)
means that there is some group such that some
process of the group never acquire all resources
adjacent to it in the same time.

e

‘Assumption 1 We assume that processes be-

longing to the same group do not compete for
any resource. That is because if they compete
for a resource, not all processes in the group can
acquire their required resources at the same time.
That means it is impossible to solve the problem
with group starvation free.

' However, the assumption could be removed
under the relaxed condition mentioned in re-
mark 1.

Definition 3 Distributed problem DARG:

The problem DARG (Distributed Allocation
of Resources to process Groups) is how to de-
vise an algorithm which allocates the resources to
the processes in the above model without group
deadlock, group starvation, deadlock, and star-
vation under the above assumption.

Initially, each process knows its own identi-
fier, the identifiers of groups to which the pro-
cess belongs, identifiers of all processes in these
groups, identifiers of the processes which com-
pete for some resource(s) with it.. We assume
that a total order among group identifiers de-
noted with integers is predefined. Similarly, an-
other total order among process identifiers is pre-
defined also.

As output, each process in a group acquires
all required resources and begins to work by us-
ing these resources, with Deadlock, Starvation.
Group Deadlock and Group Starvation never
happening.

Assumption 2 Underlying network

In this paper, we consider that the resource
allocation mddel will be implemented in a net-
work environment. A process is mapped to a site
of the network. - Each pair of processes in the
same group are connected with a communication
channel. In addition to these channels, there is
a communication channel between.each pair of
processes which are in competition, .

Each process executes the same algorithm,
which consists of sending massages on incident
edges, waiting for incoming messages, and pro-
cessing them: Messages are transmitted inde-
pendently in both directions in a communica-
tion channel, and arrive after a finite but unpre-
dictable delay, without errors and in FIFO order.

Each process has 3 state: thinking, hungry,
and acquired similar to the 3 states of a philoso-
pher in dining philosophers problem. In thinking
state, the process does not require any resource.
A process spontaneously makes transition from
thinking to hungry state in finite time. “Spon-
taneously” means that the transition is not de-
pendent on other processes, but the process itself.
Generally, seme input from a user or an applica-
tion of the process initiates the transition. In
hurgry state, the process requires all resources
adjacent to it. When all resources required by
a process are acquired, its state is changed to



acquired. Though a process in acquired state
can access the resources, in order to use these re-
sources for group work, the process may have to
wait for other processes in the group, due to the
properties (3) and (4) in definition 1.

3 An Outline of Our Solu-
tion

The traditional distributed resource allocation
without considering competition among groups
can be described as the distributed dining
philosophers problem, illustrated by a connected
undirected graph, in which a vertex (a process)
represents a philosopher, and an edge represents
a fork between the pair of processes that compete
for a set of resources.

A famous solution for distributed dining
philosophers problem is based on an acyclic di-
rected graph technique [1][2]. The technique
points of the approach are summarized below.
‘We assume that readers are familiar with the tra-
ditional dining philosopher problem. We use the
terms such, thinking, hungry, eating, fork, etc.
as in the problem without explanation.

(1) An arc (p;, p;) oriented away from p; to p;
means that p; has the privilege to use the fork
competed by the two processes.

(2) Initially, the direction of every arc is ar-
ranged such that the directed gra.ph formed by
the arcs are acyclic, so that there is at least a
sink vertex (philosopher), which holds all privi-
leges of forks incident to it and is able to acquire
all required forks in order to eat.

(3) After eating, the philosopher reverses all
incident arcs simultaneously. So that the di-
rected graphis still acyclic and some other vertex
becomes sink.

For example, ‘3 processes compete for 3 forks
as shown in Figure 2 (a,) Initially, p, is a sink,
and eventually can acquire all required forks a,nd
use them. Then it reverses the arcs, see Figure
2-(b), so-that p; can acquire -all reqmred forks
The same will happen to ps.

Figure 2:

We extended the traditional resource.alloca-
tion problem to the distributed resource alloca-
tion among process groups, in which all processes
of a group have to acquire all required resources
in order to perform their cooperative works by

using the resources, assuming there is no more
than one group shares a common process [13][14].

A solution for (DRAG) was also based on
the acyclic graph approach. However, the above
points is not enough to solve the DRAG. For
example, in Figure 3 (a), the graph is acyclic,
but still a déadlock among groups happens, since
there is no such a group that all processes in the
group can acquire all required resources.

One reason of the group deadlock is be-
cause the arcs between g, and g, is inconsistent.
Namely, arc from p3 to p; is oriented away from
gy to gq, but arc from p, to py is in the oppo-
site direction. Therefore, g, and g, may never
acquire all resources required. Even though the
direction of the arc from p3 to p; is reversed to re-
move the inconsistency, as shown in Figure 3 (b),
still group deadlock exists, since no group of g,,
gs, and g, can acquire all resources adjacent to
the group. This is because for every group, some
arc of a process belonging to the group is directed
to a process of another group, which means the
group doesn’t hold all privileges, If reversing the
arc from p, to py in Figure 3 (a), the deadlock is
avoided, because all processes p; and p; can ac-
quired all required resources, (see Figure 3 (c).)

“Figure 3:

Therefore in additional to above pomts, the
following are required.

(4) All arcs between a pmr of groups have to
direct to the same direction, i.e. from one group
to another group.

- Taking all arcs between a pair of groups as an
meta-arc and a group as a meta-vertex, we obtain
another meta-graph. (See Figure 3 (d).)

(5) The meta-graph should be kept to be
acyclic to guarantee group deadlock and. group
starvation.. ‘

Comparing with our previous papers{13][14],
we consider DARG in a more general model, in
which a process may belong to more than one
group, in this paper. The above (4) and (5) don’t
work in such a case. For example, in Figure 4,




all arcs are directed from group g4 to Ja, how-
ever, it is not true for g, and g.. Whatever, you
change the initial direction of the arcs, the above
(4) can’t be satisfied by all groups. The above

Figure 4:

example tells us that we need more tricky and
elegant contro]l method for the problem.

Our basic ideas for solving the new problem
are as follows.

(1) Let G; C F be a set of groups, to each of
which p; belongs, and |G;| = q.

Every process p; belonging to ¢ > 1 groups
holds a g x q array A,. An element zig (9% # a1)
of A, is a boolean variable, where Ik, 91, € Gy

:c::ﬁ =1 means that p; would like to partici-
pate in the group work of g; but not g;. In other

words, z0* = ~z . For the case of g = g,
g

zo = null.
‘Remark 2 Tt seems to be redundant that i
is used in both the subscript and superscript of
z}g:‘. However, it is for specifying variables in an
uniform manner, which is convenient to specify
the initial conditions of the solution. (See the
latter part of the section.) ‘

If p; participates in activity of group gi, then
Vg € G, 5 must be equal to 1. After p; fin-
g

ishes g’s activity, T

to 1.

(2) In the solution for the dining philosophers
problem [1][2], an arc between a pair of pro-
cesses (p;,p;) could be implemented by a pair
of boolean variables =] and z} held by p; and p;,

respectively, under the condition 2! = ~zt.

3

In this paper, if p; and p; belongs to ¢ and r
groups respectively, p; holds a g x 7 array Agr
and p; holds a r X ¢ array A,y of variables, for
the edge (fork) between p; and p;. Element zio

is set to 0 and 5" is set

in A, is equal to 2% in Ag.

The following three initial conditions have to
be satisfied. ‘ :

Vi, j € Pgi,gt € F 5. t. g # gy,

ol A~V gl Aot 1 1)

The condition is for the mutual exclusion
property. That is, it gnarantees no two processes
use the same fork in the same time and no two
groups sharing a common process perform their

group works in the same time.

gk, o1 X €
G’ (AViEgh JEm@, s.t. zf:"' ‘ez'ist.s zzyg::) v

(AVing, J€gq1, s.t. z?:,“ exists ﬂ:‘:Z.yq:.) =1 (2)

The condition is for the mutual exclusion
between two groups. All privileges should be
held by one group to guarantee group deadlock-
freedom.

If processes p; € g and P;j € g1 compete for
a resource, respectively, we say group g and g,
are adjacent. A path among groups is defined as
a sequence of distinct groups gy, gs,-- -, gs, such
that gn4y is adjacent to gn, where 1 < h < 5. A
cycle of groups is defined as a closed path such
that all groups are distinct except g, = g,.

For any cycle of groups, g1,92,- -+, g,,

Jils
(Aviy ot Tig
Jala

V(A\ﬁ: Jaola Tizga
V AN

VAvir st Zie ) =1 (3)

The condition is for group deadlock-free also.
Intuitively, it means for any cycle of groups at
least there exists one group, all variables of which
are equal to 1, i.e. the group can acquire all
resources it required.

Such a group will use the resources. After
that, it does not' release the resources at once,
but only on request of other processes as in the
solution for the distributed dining philosophers
problem [2]. If other adjacent groups don’t re-
quire the resources, i.e. the processes of these
groups. are in thinking state, the former group
may use again the resources if it makes transi-
tion from thinking to hangry again. However,
to guarantee group starvation-free, the privileges
of using the resources should be sent to adjacent
processes.

To this end, variable z;?:; is set to 0, and a
turn(gx) message is sent to p; € g1. On receiving
the message, p; sets its variable z% = 1. During

the transmission of the message, variables zlo

and 7% may be both equal to 0, but they will
never be 1 in the same time, which guarantees
the mutual exclusive access to resources.

‘A group of processes will begin to yse the re-
sources, when all ], = 1 and all its processes
acquire all their required resources. To check if
the condition is satisfied, communication among
processes in a group is needed. Message inform
is employed for the purpose.

Assume that- every group has an unique iden-
tifier represented by an integer, a simple method
could be used to set the initial values of the vari-
ables such' that all the above 3 conditions are
satisfied. -

For the pair of variables :c::g:‘ and z:f,:‘ , both

of which are held by process p;, p; sets zHh =1



and zi2 =0, if id(gx) < id(q1)-

" For the pair of variables z19'

1o and z3g} held by
different processes p; and p; belonging to differ-
ent groups, p; and p;-send their group identifiers
to each other, and then the one holds smaller
group identifier sets its corresponding variables
to 1, another one sets its corresponding variables
to 0. i

A fork competed for by p; and p; can be ini-
tially held by any one of p; and p;. We use a
variable y] = 1 to represent p; holds the fork.

Obviously, ¥} = —¢].

4 Conclusion

In this paper, we have presented a generalization
of the resource allocation problem and a solution
to the generalized problem. )

Recently, opportunities for groups of people or
agents to work together on a computer network
are increasing. The demand for applications that
support such works are growing now- and in the
near future. The problem of distributed resource
allocation among process groups can be consid-
ered as a building block for such applications.

Comparing with our previous work, we re-
moved the restriction that no more than one
group may share a common process, so that the
new solution will have more possible applica-
tioms. e .

Some future works are summarized as follows:

1. For a given set of processes, how to partition
the processes into groups is an interesting
problem and needs to be further studied.

2. The time complexity of our solution needs
to be analyzed. ' ‘
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