

An Approach to Integrate Smartcards Functionalities
into Various Web Applications

Michel FAURE Junko HASHIMOTO Tomohiro KOKOGAWA

Shinichi HIRATA Sei IJUIN

NTT Service Integration Laboratories

E-mail: {michel.faure, hashimoto.junko, kokogawa.tomohiro, hirata.shinichi, ijuin.sei}@lab.ntt.co.jp

Abstract: Services that makes use of Smartcards are spreading. However, because of lack of data interfacing or security

problems, few Web applications use Smartcards to its full potential. We propose in this paper an architecture that permits easy

construction or upgrade of standard Web applications so that it makes use of Smartcard added functionalities. A Smartcard

services support library intended for Web applications developers was constructed and we report the results of prototypes made

based on this architecture.

.

Keywords Smartcards，MVC Model, Security

1. Introduction

In the recent years, smartcards have been

adopted in various fields where high security and

high performance are required [1]. By offering

strong anti-counterfeiting measures and thus

leveraging security found on previous magnetic

stripe technology cards, smartcards have become a

convenient device of choice for different

institutions such as banking, administration [2]

and transportation [3].

In parallel, web applications have also been

wildly implemented at various scales in these same

sectors. Transactions processing systems relying

on web applications and associated network

enabled web browsers terminals can now be

deployed easily and at low-cost.

However, the rising number of internet security

threats put most of these web applications at risk.

Smartcards have been an ideal candidate for that

matter, not only to re-enforce the security level

but also to easily personalize the delivered web

services experience for each cardholder.

The goal of this paper is to propose an

architecture that allows easy mounting and use of

Smartcards functionalities into web applications.

Several components like a server-side middleware

smartcard library and client-side components are

used to facilitate this integration. Using these

components, it is easy to upgrade an existing web

application so that it makes use of whole new

smartcards possibilities.

A web application was built based on this

architecture, the results are discussed. For

commodity and in order to prototype a system, we

used the NICE card management platform and

ELWISE [5] card developed by NTT Laboratories

as an underlying base platform for our

architecture.

2. Smartcard services construction

problem

2.1. Context and target

As fore mentioned, smartcard functionalities are

an asset whenever generic Web applications

handles sensitive information like customer data

must be made.

For our study, we will focus on a concrete

example: a corporate Web portal that manages

employee cards. Services related are expected to

make best use smartcard functionalities and

provide the following online and offline services:

・ Intranet access to the corporate Web portal

・ Single sign on for multiple services use

・ Conference room booking and library

material rental management

・ Private information management (profile,

working hours, phone book, etc…)

・ Offline use: micro-payment, room access

2.2. Smartcard services system

construction

Specific in-house systems are more and more

研究会temp
テキストボックス
－87－

研究会temp
テキストボックス
社団法人　情報処理学会　研究報告
IPSJ SIG Technical Report

研究会temp
テキストボックス
2005－GN－55（15）
 2005／3／18

upgraded in the form of Web applications. The

MVC (Model View Controller) design pattern is

mostly used as it is well adapted to that case. Data

and business logic is often described with EJB, the

view is realized with JSP/HTML pages and the

service transactions are executed with controller

servlets.

On the other hand, considerations are different

for smartcards as specific management concerning

smartcard’s contained data is necessary. Therefore,

when existing Web applications wants to make use

of smartcards functionalities it is necessary to:

・ Provide mapping a scheme between Web

services and on-card applications.

・ Make each smartcard service related data

and Web service data consistent for process.

・ Provide a session oriented scheme that

encompasses all service processes.

It appears that smartcard and Web applications

integration is not a simple task.

3. Approach

We chose to use the well accepted and MVC

compliant technology to build such dynamic Web

services: the JSP/Servlets/JDBC technology.

3.1. Requirements

Our architecture must satisfy the following:

・ A library of functions must be offered for

Smartcard related operations.

・ Processing sequence must be flexible and

benefit from smartcard security to allow

secure service use.

・ Web pages construction and design should

remain easy for web designers.

Our architecture adapts the MVC design pattern

concepts to smartcards concepts.

3.2. Adapting the MVC model

When Smartcards functionalities are mounted on

top of the MVC model, the Model, View and

Controller entities becomes the following:

Model：the data stored into the card and the data

stored into the application server database.

View：Web application’s GUI

Controller：As in traditional MVC based Web

applications, the Controller is a servlet.

Controller

(Web)

View

Web Browser

Web

Database

Controller

(card)

Controller

Model

Model

(Web)

Model

(card)

Smartcard

service

Web service / Smartcard

data mapping

Web service / smartcard

common data access I/F

Figure 1. MVC model applied to smartcards

3.3. Smartcard data management

Web applications generally accesses data

located in remote databases through SQL queries

or Java Beans. On the other hand, the data

contained in smartcards applications,

JICSAP-based[6] in our case, is accessed via

APDU commands (Application Protocol Data

Units). The way to access these smartcard data is

dependent on the type of smartcard considered and

the specifications of applications loaded onto it.

Thus, a change in smartcard specifications leads to

incompatibility problems: the APDU that get

on-card data needs to be modified.

We propose a method to make a one-to-one

mapping of the data located on the card with the

data located in the service server database. It is

thus possible to reduce and localize the code

changes in a Web application based on our

architecture.

Smartcard management server

Smartcard ID=FFFF

Points application

（AID: 1111）

Data name value

Video points 100

Canteen points 200

User PIN 1234

CardID=FFFF Data

Mapping table
type

Record

Record

PIN

FID

0001

0002

0001

AID

1111

1111

2222

Data Name

Video points

Canteen points

User PIN

100

FID:0001

200

FID:0002

1234

FID:0001

PIN application

（AID: 2222）

Database

update(SQL)

Command generation

(APDU)
SELECT FILE

00A4040A0A1111

SELECT FILE

00A4020C020002

UPDATE RECORD

00DC01040164

Service logic

Point value

update

Web application

databases

Figure 2. Service mapping with smartcard

We also propose an XML based scheme to

collect or update via APDU commands any data

located on the card in a flexible way.

研究会temp
テキストボックス
－88－

3.4. Session management for smartcards

services

Smartcards are well-known for being tamper

resistant devices; sensitive information like secret

keys data is securely confined into the card’s

memory. A web application that needs secure

session management makes the best use of this

feature.

A service needs to create and maintain a secure

and persistent connection over several contents,

from login to logout. Although the smartcard

holder authentication credentials can be checked at

login time, a mechanism is needed to maintain the

authentication state: most often the HTTP session

ID is used. However, there is no direct link

between the card authentication credentials and

the session id. A bridge between the card

management system and the Web services security

mechanisms is thus necessary. We propose to

implement such bridge with a session oriented

management table.

Session Management Table

Card ID Session ID Auth Status Point value
1001 NULL NULL 100
1002 12345 TRUE 200
1003 67890 FALSE 100

1001

1002

1003 Error

Error

Service Logic

Gotten from Web

application access

Gotten from

smartcard access

Service Use

Web

Page

1

Web

Page

2

Session ID

Wrong Session

ID

Smartcard

Management

System

Authenticate

 Figure 3. Session management

4. Implementation

4.1. Overview

In order to confirm the utility of our research,

we built a prototype system based on our

architecture. We tried to identify the smartcard

functionalities that could be of use for Web

designers and defined accordingly smartcard

service mapping databases. We also chose the card

applications internals to be compatible and defined

card data access and update mechanisms. Then, we

developed individual functions in form of a JSP

custom tag library to support Smartcard services

from within JSP pages. To interface smartcards

from the local terminal browser, an ActiveX

control was chosen. This library’s aims to become

a tool to build Web applications that, although

very different in shapes and contents, use this very

same library to deliver smartcard enabled services.

Our developing environment was the following:

・ JRUN4 and IIS servers

・ NICE card management system/ELWISE card

Figure 4. Prototype system overview

The different elements depicted in the above

figure fall into one category of the MVC model

described in figure 1.

Table 1: MVC model correspondence

Web Custom tags Controller Custom

tags Card Middleware/AML

Web Web database Model Smartcard
service

database
Card On card data

View JSP

4.1.1. Integration with the NICE

Smartcard platform

Although our system can probably cohabit with

any kind of smartcard management system, for

commodity and in order to develop a prototype, we

used the NICE card management platform and

ELWISE card developed by NTT Laboratories.

Client Terminal

Web browser

JSP pages

JavaScript I/F

JSP Custom Tags

ActiveX

Control ICC R/W

PC/SC I /F

Smartcard

AML

Web Server

JSP Custom

TagLibrary

JSP Pages

Smart card service

ICC Management

Card Management Server Web services Server

Web Server

HTTP

JDBC

JDBC

XML PARSER

J
IC
S
A
P
 A
P

Components developed

Servlet engine
Middleware Servlet engine

NICE smartcard platform components

Web dat abase

研究会temp
テキストボックス
－89－

4.1.2. Smartcard application architecture

Among the variety of smartcard specifications,

we chose to use the JICSAP specifications, which

are the Japanese Smartcard specifications

counterpart of the well-known ISO 7816 smartcard

specifications. It allows definition of file structure

within an application and defines data access

security mechanisms.

4.2. Smartcard services support library

JSP custom tags encapsulate complex

transactions logic into simple and accessible

components. Once defined in a tag library, it is

possible to use them in JSP pages like standard

HTML tags. Customs tags can manipulate

dynamically the page contents. Custom tags

encourage division of labor between Web

designers and developers and factors recurring

processes for reuse across projects. This smartcard

services library aims to let Web designers use

smartcards mechanisms as described in figure 5.

4.2.1. JSP custom tag library

The library custom tags are partitioned

according to different purposes:

・ Authentication

・ Smartcard applications management

・ Server and on-card data management

The tags defined here below are customized via

attributes, passed from calling page, that can be

hard-coded or resulting of JSP code execution

(session variables, HTML form data, etc…).

Table 2. Custom tags definition
Type Tag Name Descript ion

Login(*) Reg ist er browser sess io n ID

with t he log in t ime. PIN

ver if icat ion and PK

authent icat ion is poss ib le.

Logout Reset t he authent icat ion

st atus and dat e.

SecureContents Disp lay t he t ag’s body

content s if and only if t h is

user has logged. Ver ify fo r

sess io n t imeout .

PIN Change(*) Change card’s PIN loca lly.

A
u
th
e
n
tic

a
tio

n

PIN Init (*) Init card’s PIN d irect ly from

the server.

AP download (*) Remote ly download a new

card applicat ion. This card

app licat ion is assoc iat ed to a

service, and the card

app licat ion dat a are mapped

to t he service dat a.

S
m
a
r
tc
a
r
d

a
p
p
lic

a
tio

n

m
a
n
a
g
e
m
e
n
t

AP Delet ion (*) Remote ly de let e a card

app licat ion

D
a
ta

M
a
n

a
g
e
m

e
n
t

S
m
a

r
tc
a
r

d

Persona li ze

(*)

Persona l ize on-card dat a

us ing with t he dat a

conta ined in service re lat ed

dat abases.

Backup (*) Get on-card dat a and save

t he resu lt s in t he service

dat abases.

Update(*) Re-persona l ize t he on-card

dat a with t he dat a conta ined

in t he service re lat ed

dat abases.

GetDBData Ret r ieve dat a from the

service re lat ed dat abases.

S
e
r
v
e
r

d
a
ta

m
a
n
a
g
e
m

UpdateDBd

ata

Update dat a in t he service

re lat ed dat abases.

<HTML>

<Head>Login success</Head>

<NICETAG:SecureBody>

Welcome

Mr/Mrs<NICETAG:getServerData

name=“userName”/>.

</NICETAG:SecureBody>

</HTML>

<HTML>

<Head>Hello Login</Head>

Please login.

<NICETAG:Login

ErrorPage=“error.html”

NextPage=“next.jsp”/>

</HTML>

index.jsp

next.jsp

<HTML>

<Head>Login error</Head>

Login failed.
</HTML>

error.html

Figure 5. Custom tag use in JSP pages

The tags signaled with (*) indicates that

actually two tags are used: a body tag to place in

the page’s body and a header tag to place in the

header. The header generates JavaScript code to

interface the local ActiveX control that

communicates with the card applications.

Figure 6. LOGIN tag execution flow

Get Service Name

Find app l icat ion AID

Act iveX cont ro l

LOGIN body

Midd leware servlet

Smart card Services dat abase

Smart card Management DB

Get Sess io nID, Log in t ime

Load Act iveX Contro l

Card Inser t ed ?

Call midd leware servlet

Ver ify PIN (opt ion)

Select Card app licat ion

Card authent ified?

Log sess io nID, log in t ime inDB

Return resu lt to Javascr ipt

LOGIN Header

Execut ion on SP server

Execut ion on c lient t ermina l

Execut ion on Smart card

JSP Page

AML scr ipt s

fo r t his service

and JSP assoc iat ed pages

LOGIN TAG

(BODY)

LOGIN TAG

(HEADER)

JavaScr ipt generat ion
(Act iveX I/F)

Int erna l Auth/Get Cha l lenge/Ext Auth

Transmit Sess io nID,
ServiceName, PINver ify

研究会temp
テキストボックス
－90－

4.2.2. Custom tag execution flow

On figure 6, we detail the behavior of the

LOGIN custom tags.

4.2.3. Smartcard interface control

To access smartcard locally (ChangePIN) or

remotely from the middleware servlet

(BackupAPData, etc…) we need a mechanism to

access locally or remotely on-card data. We choose

to use an ActiveX control that aims to

communicate with card applications and offer

functions entry points accessible with JavaScript

to perform:

・ Multipurpose APDU Transmission

・ PIN Verification/Update

・ Connection to the smartcard server servlet

The results returned from this control are handled

with Javascript event callback functions:

・ Card APDU Response event

・ Smartcard Server servlet response event

The Javascript code to interface the control is

generated by [Header] custom tags (ex: Login).

On the server side, the Middleware servlet

located on the Smartcard Management server

performs remote card access using AML files.

AML scripts are resource files written according

to the XML syntax [7]. For each card application,

and thus each Web service, two AML files are

used:

・ An APDU dictionary file

・ A service-oriented file that refers to the

APDU dictionary file and defines execution

processes for smartcard service (data

personalization /backup).

This mechanism is transparent for Web

designers.

4.3. Smartcard services databases

4.3.1. Definition

The smartcard service database described in the

figure 4 is actually made of the following tables:

Figure 7. Smartcard service oriented tables

The AP Management performs a one-to-one

mapping between a Web service and a smartcard

application.

The service authentication table describes the

smartcard featured security options to use for each

service.

The Data management table defines the data

referenced by a service and maps these data’s

location with on-card embedded application’s data.

4.3.2. Service mapping

The AP management database assigns each

on-card JICSAP application, represented by its

AID identifier, to one Web service.

4.3.3. Service authentication

The service authentication database defines

security mechanisms for service login or data

access during a session. Smartcard provided

security mechanisms include PIN verification, PK

authentication and Secure Messaging.

4.3.4. Service data management

The data mapping in each on-card application’s

file record is defined in the service Web server

databases. Access to this data is protected by

Mutual Authentication and Secure Messaging.

Only the middleware servlet has the right to access

these card applications’ data. The way to access is

described with AML scripts.

4.4. Session management

The session ID returned by the middleware

servlet is used as it is. The service authentication

Data management

Service ID

Service Name

Card AP ID

Service ID

Service PIN/Keys

Sess ion t imeout

Service DB dat a locat ions

Card dat a locat ions

Data backup / updat e opt ions

Service authentication

AP management

研究会temp
テキストボックス
－91－

table 4.3 is used for authentication. Security level

for each service can be parameterized:

・ Authentication necessity

・ Secure messaging necessity

Authorization level check is performed

automatically by the tag library and spares the

Web designers from these session management

hurdles.

5. Evaluation

5.1. Web application prototype ：：：： A

corporate employee portal

This prototype is a corporate Web portal.

Employees can connect to the in-house system

with their smartcards, access to different services

like room reservation, material lending. Offline

use support is also provided (canteen application).

For prototyping and tests, we used

Dreamweaver MX.

Figure 8. Corporate Web portal

5.2. Discussion

We dress the results of our prototype in the

table here below.

Table 3. Prototype evaluation results
 Corporat e

Web port a l

Number o f add it iona l service t ables 3

Number o f JSP pages 12

Number o f custom t ags used 30

Average number o f custom t ags per page 2.5

According to these results, we believe it is

possible to deploy smartcard enabled Web

applications with little JSP code overhead. Other

prototypes development is on-going at the time we

write this document and will be presented later.

The future results will determine if further

smartcard service tags have to be deployed for

better functionality.

6. Summary

The architecture we developed in our research

try to make use of all smartcard functionalities

when using Web applications. The prototypes

based on our smartcard service library show that

with little effort Web applications and smartcards

synergy in various contexts is possible.

References
[1] “IC Card Souran 2003-2004”, Seamedia，

2004 (In Japanese).

[2] http://www.soumu.go.jp/c-gyousei/daityo/ (In
Japanese)

[3] “Suica”,
http://www.jreast.co.jp/e/development/activiti
es/satisfaction/ticketless.html

[4] R. Toji, Y. Wada, S. Hirata and K. Suzuki, “A
Network-based Platform for
Multi-application Smart Cards”, Proc. 5 t h
International Enterprise Distributed Object
Computing Conference (EDOC 2001), IEEE
Computer Society Press, 2001.

[5] M. Yoshizawa, H. Unno, T. Fukuzawa, and H.
Ban, “ELWISE – A super multi-purpose smart
card”, NTT Review, Vol. 16, No. 1, pp.23-27,
2002.

[6] “JICSAP”, http://www.jicsap.com/

[7] Junko HASHIMOTO, Katsuhiko SUZUKI,
Shinichi HIRATA, “Definition on smart card
service process sequence using XML”, IEICE
KBSE2002-21, pp 1-6, 12/2002.

研究会temp
テキストボックス
－92－

