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Abstract  Vector quantization is the process of encoding vector data as an index to a dictionary or 
codebook of representative vectors. One of the most serious problems for vector quantization is the 
high computational complexity involved in searching for the closest codeword through the codebook. 
In this paper, we describe a new method allowing significant acceleration of codebook design and 
encoding processes for vector quantization. This method has feature of using a suitable hyperplane to 
partition codebook and image data. Experimental results are presented on image block data. These 
results show that our method performs better than the previously known methods. 
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1.    Introduction 
 

A standard vector quantization (VQ) [1] is 
an efficient compression technique for which 
many variant [2] are known. It is defined as a 
mapping  from a k-dimensional Euclidean 
space 

Q
kR  to a finite set Y { } of 

vectors in 
= N21 y...,,y,y

kR  called the codebook. Each 
representative vector  in the codebook is 
called a codeword. A complete description of 
vector quantization process includes three 
phases: codebook design, encoding and 
decoding. The objective of codebook design is 
to construct a codebook 

iy

Y  from a set of 
training vectors using clustering algorithms like 
the generalized Lloyd algorithm (GLA) [1]. 
This codebook is used in both the encoder and 
the decoder. The encoding phase is equivalent 
to finding the vector minimizing 
the distortion  defined as 
the squared Euclidean distance, where  
is the Euclidean distance between the vector x 
and . The decoding phase is simply a table 
look-up procedure that uses the received index 

 to deduce the reproduction codeword , and 
then uses  to represent the input vector x. 
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The computational cost of finding the 
closest codeword in the codebook design and 
encoding of VQ imposes practical limits on the 
codebook size N. When N becomes larger, the 
computational complexity problem for full 
codebook search occurs. To avoid such an 
exhaustive search through the codebook, many 
fast algorithms [3-7] have been proposed. 
These algorithms reduce the computational 
complexity by performing some simple tests 
before computing the distortion between the 
training vector and each codeword, and then 
rejecting those codewords that fail in the tests.   

This article introduces a new algorithm to 
reduce the time complexity of the codebook 
search using a hyperplane decision rule. The 
algorithm separates the codebook into two parts 
and searches in one part according to the input 

vector feature. The efficiency of the algorithm 
is compared with Lee & Chen method [4]. 

The following section reviews one of the 
most interesting fast search algorithm [4]. 
Section 3 describes the hyperplane decision 
method in detail. Some experimental results are 
shown in section 4 and concluding remarks are 
given in section 5. 

 
2.    Equal-average hyperplane partitioning 

 
The codeword assignment problem in vector 

quantization is a Nearest Neighbor Search 
(NNS) problem. Guan et al.[3] introduced an 
equal-average nearest neighbor search (ENNS) 
algorithm based on using hyperplanes 
orthogonal to the central line to partition the 
search space. This algorithm uses the mean 
value as a feature to reject unlikely codewords. 
Let l be the central line, which the vector 

)1...,,1,1(u =  lies on. Any point  
 on l will have . The 

hyperplane S normal to l, which intersects l at a 
point 

,a,a(a 21=
k,...,1=)a..., k

m(Ls

j,i,aa ji =

),ms...,,m, ss=  is written as: 
 

      . (1) s
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Each point on S has the same mean value . 
Such a hyperplane is called an equal-average 
hyperplane. For an input vector x with mean 
value  the algorithm finds the codeword 

 that has the minimum mean difference to x 
and calculates the distance  between x and 

. Any codeword that is closer to x than  
has to be located inside the hypersphere 
centered at x with radius . Two boundary 
points 

sm

by

,mx

L

by

by
br

br
,max )m...,m,m( maxmaxmax =  and 

,minm(Lmin = )m...,,m minmin  can be obtained 
by projecting the hypersphere on l, where 
 

 and     










−=

+=

k
r

mm

k
r

mm

b
xmin

b
xmax

.            (2) 

   -2-

研究会Temp 
－2－



As shown in Fig. 1 for 2-dimensional case the 
hypersphere can be bounded by two 
hyperplanes  and  with mean values 

 and , respectively. Hence, just the 
codewords those have mean values between 

 and  will be searched. Lee and 
Chen [4] extended this work by introducing a 
new algorithm, which uses the variance of the 
vector as well as the mean value. The first part 
of this algorithm is the same as the ENNS 
algorithm, followed by calculating the squared 
root of variance,  of the input vector x. 
From the geometrical interpretation in Fig. 1, 

 corresponds to the Euclidean distance 
 between x and its projection point 

 on l. If the mean value of each codeword 
,  is not between  and , then 
 is rejected without calculating the 

. Next, following the next 
relations using triangle inequality, 
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if  for a codeword  of 
which the mean value  is between  
and ,  is rejected, otherwise 

min
2

yx D)vv(
i

≥−

maxm iy

iy
m

iym min
D  is 

calculated, where  is the current 
minimum distortion. If , the current 
minimum distortion  is replaced by 

min
D <

min

D

D
minD

D  
and  and  are updated. Finally, the 
search area bounded by two hyperplanes  
and  has been reduced to two dotted squares 
in Fig. 1.         

minm maxm

2s
1s

As mentioned above, the search area is 
reduced to the two dotted squares. However, if 

the two search areas are separated, the search 
area will be reduced to one dotted square only 
and the computation complexity may be 
reduced to around half. To accomplish this 
target, we introduce a new algorithm that uses a 
hyperplane decision technique for separating 
the codebook and searches in one side area 
according to the input vector feature.  
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Fig. 1  Geometrical interpretation of the  
Lee & Chen method for  2-dimensional case. 

 
 
 

3.    Hyperplane decision method 
 
The nearest codeword for an input vector 

belongs to one of two search areas shown in 
Fig. 1. If this relation is known before the 
codeword searching, the search area can be 
reduced. Although a perfect identification of 
the search area for all input vectors is difficult, 
a probable and reasonable separation of the 
codebook for image data may be possible when 
the codebook size is relatively large and its 
distribution in the signal space is smooth. In the 
following, one of such methods using the 
hyperplane decision rule is proposed. 
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3.1    Hyperplane equation 
 
Considering the more reduction of search 

areas by Lee and Chen [4], the codebook is 
separated into two sub-groups by a hyperplane 
including the central line on it. Another 
condition for this hyperplane is that the 
centroid of input vectors is also on it, because 
the input vectors and their corresponding 
nearest codewords are likely in the same half-
space separated by the hyperplane. This 
condition cannot satisfy the desired property 
strictly. However, there may be a small failure 
possibility in the case of large codebook size 
and smooth codebook distribution. As a result, 
a hyperplane including the origin ,ο  the 
centroid of the input vectors  

 and the projection point of the centroid 
on the central line , 
where 

,xx(x 2cc =

),x, pk2p1p

,1c
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)x..., ck

x(x p =

∑ ===== k
1i ck

1
pk2p1p i

xx...xx  

is chosen. There are many candidates for this 
hyperplane in k-dimensional space ( ) and 
a unique hyperplane cannot be defined. Among 
these hyperplanes, the simplest hyperplane for 
the inner product computation with input 
vectors, of which the only first three 
components are defined and the rest 
components are all zeros, is used. This 
hyperplane H is expressed as follows, 

3k >

                                                            
  (6) ,0xh:)x(H T =

where 
 

is the normal vector to the hyperplane H. 
)0...,,0,0,xx,xx,xx(h 1c2c3c1c2c3c −−−=

 
3.2    Codebook division by the hyperplane 

 
The hyperplane H is used as a decision 

function that discriminates to which half-space 
a given vector x belongs using the following 
conditions: 

• If  ,   (7) 0xh T <

      then x belongs to the lower half-space 
separated by H. 

• If  ,   (8) 0xh T ≥
      then x belongs to the upper half-space. 
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Fig. 2  Geometrical interpretation of the 
proposed method for  3-dimensional case. 
 

 
Now we depict the proposed algorithm that 

uses this hyperplane H to separate the 
codebook. The algorithm divides the codebook 
Y into two sub-codebooks,  and Y  (which 
contain the codewords that satisfy the equations 
(7) and (8), respectively). For a training vector 
x, the proposed algorithm determines the 
location of x from the equations (7) and (8) and 
then, decides which codebook (Y  or Y ) 
will be searched for finding the closest 
codeword. Hence, the proposed algorithm can 
reduce the search area and speed up the search 
process than the Lee & Chen method [4]. Fig. 2 
depicts the geometric interpretation of the 
proposed algorithm for 3-dimenstional case. It 

lwY up

lw up
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is the extension of 2-dimenstional case in Fig. 1 
and includes the proposed hyperplane H. As we 
see in Fig. 2, the two search areas (which are 
represented by the two dotted cubes) are 
separated by the hyperplane H and reduced to 
one search area.  

A detailed description of how to apply the 
proposed algorithm to design the codebook is 
given below: 

 
Step 0: Initialization: Given N = codebook 
size, n = the number of training vectors, k = the 
vector dimension, Y  = initial codebook, 0 ε  = 
distortion threshold. Set iteration counter e =0, 
initial total distortion . ∞=−1D
Step 1: Compute the centroid point,  of the 
training vectors and the normal vector h. For all 
training vectors, compute their mean values and 
squared root of variances tables followed by 
computing the inner product table from the 
equation 

,xc

n...,,1i,xh T
i = ,    (9) 

Step 2: Separate the codebook Y  into two 
sub-codebooks  and Y  with sizes  and 

  respectively, according to 
the equations (7) and (8). 

e

lwY
N=

up 1N
2N )NN( 21 +

Step 3: Compute the mean value of each 
codeword in the codebooks  and Y . Sort 
each codebook according to increasing order of 
the codeword means, i.e. the sorted codebooks 
become  and Y . Compute the squared 
root of the variance  of each codeword  
in every codebook Y  and Y . 

lwY

sup

up

slwY sup

iyv
slw

iy

Step 4: For each training vector x, check its 
location with respect to H from the inner 
product table that is computed in step 1: If 

 go to step 6, otherwise go to the next 
step. 

,0xh T ≥

Step 5: Find the closest codeword  from the 
codebook  and assign x to class j. The 
procedure includes the following substeps: 

jy
slwY

Step 5.1: For the input vector x, find the closest 
codeword  that has the minimum mean 
difference to x (using binary search), i.e. 

by

        
ib yxyx mmmm −≤− , for all  bi ≠

Set              ,bj),y,x(ddD b
22

minmin ===

k
d

mm,
k

d
mm min

xmin
min

xmax −=+= . 

Step 5.2: Find the closest codeword  in 
 and assign x to class j. The search 

procedure is as follows: 

jy
slwY

Set z  = 1 
while ( minzbmaxzb mmormm >< −+ ) begin 
   if ( maxzb mm <+ ) begin 

      if ( ( ) begin min
2

yx D)vv
zb

<−
+

         if ( d ) begin minzb
2 D)y,x( <+

             )y,x(ddD zb
22

minmin +==

            
k

d
mm min

xmax +=  

            
k

d
mm min

xmin −=  

            zbj +=  
         end 
      end 
   end 
   if ( ) begin minzb mm >−

      if ( ( ) begin min
2

yx D)vv
zb

<−
−

         if ( d ) begin minzb
2 D)y,x( <−

             )y,x(ddD zb
22

minmin −==

            
k

d
mm min

xmax +=  

            
k

d
mm min

xmin −=  

            zbj −=  
         end 
      end 
   end 
   1zz +=  
end {of while} 
go to step 7. 
Step 6: Find the closest codeword  from 

 and assign x to class j as the procedure in 
step 5.    

jy
supY

Step 7: Compute the total distortion for eth 
iteration . eD
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   Lena Baboon  

Codebook design Encoding Codebook design Encoding 
Full search 322  (14.6) 27  (15.9) 215  (4.2) 27  (4.9) 
Lee & Chen method 22  (1) 1.7  (1) 51  (1) 5.5  (1) 
Proposed method 11.7  (0.53) 0.9  (0.53) 28  (0.55) 3  (0.54) 

Table 1 Comparison of execution time (in seconds) for codebook 
                              design and image encoding at codebook size 256. 
 
 

Lena Baboon  
Codebook design Encoding Codebook design Encoding 

Full search 50331648 4194304 33554432 4194304 
Lee & Chen method 3360652 257910 7881386 850562 
Proposed method 1719409 125046 4260634 452592 

Table 2  Comparison of the total number of distortion calculations 
                             for codebook design and image encoding at codebook size 256. 
 
 

Lena Baboon  
Lower half-space Upper half-space Lower half-space Upper half-space 

N = 256 132 124 134 122 
n =16384 8719 7665 8396 7988 

Table 3  The number of codewords(N) and training vectors(n) in each 
                           half-space separated by the hyperplane H at codebook size 256. 
 
 

Step 8: If ε≤−− ee1e D/)DD
e

(  halt with 
the final codebook Y , otherwise go to step 9. 
Step 9: Compute the centroid of each class. Set 
e = e +1 and go to step 2. 
 
4.    Experimental results 

Experiments were carried on vectors taken 
from the USC grayscale image set. We used 
two images, Lena and Baboon with size 512 ×  
512 and 256 gray levels. Each image is divided 
into 4 ×  4 blocks, so that the training set 
contains 16384 blocks, and the codebook size 
is 256. The tested methods are the full search, 
the Lee & Chen method4) and our proposed 
method. Table 1 presents the time execution 
for these methods. The values in the 
parentheses denote the ratio of execution time 
of full search and the proposed method to that 

of Lee & Chen method. The timings were made 
on Pentium II (267.3MHZ). We can see that 
our new method significantly accelerates the 
codebook design and image encoding. 
Compared to the Lee & Chen method, our 
method reduces the time by factor of 1.88 for 
Lena and Baboon. Table 2 displays the total 
number of distortion calculations in codebook 
design and image encoding for Lena and 
Baboon, which is a dominant figure of 
computational complexity. Compared to the 
Lee & Chen method, our proposed method 
reduces the total number of distortion 
calculations by 48.8% (for Lena) and 45.9% 
(for Baboon) in codebook design, while by 
51.5% (for Lena) and 46.8% (for Baboon) in 
image encoding. Table 3 shows that the 
number of codewords(N) and the number of 
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Fig. 3 Comparison between the proposed method 
and lee & Chen method for Lena image. 
 
 
 

ig. 4 Comparison between the proposed method 

aining vectors(n) in each half-space separated 

.    Conclusion  

In this paper, we have presented a new 
me

eferences 

] Y. Linde, A. Buzo and R. M. Gray, “An 

[2]  vector quantization, IEEE 
Trans. Image Processing, 5, 2,  (Feb. 1996). 

F
and lee & Chen method for Baboon image. 
 
 
 
tr
by the hyperplane H are quite close. Fig. 3 and 
Fig. 4 show the PSNR and the execution time 
of the codebook design by the proposed method 
and the Lee & Chen method at different 
codebook sizes for both Lena and Baboon 
images, respectively. The proposed method has 
almost the same performance of the Lee & 
Chen method for codebook sizes from 64 to 

more than this size. There is small degradation 
in the proposed method for smaller codebook 
sizes, for example 32 or below. As mentioned 
before, this is because the proposed method is 
not equivalent to the Lee & Chen method 
completely, and the best codeword happens to 
be in the other search area and is missed to be 
searched out. However there may be a small 
failure possibility in the case of large codebook 
size and smooth codebook distribution. Our 
method has only 0.01 dB less than the Lee & 
Chen method for Lena and Baboon at the 
codebook size 256 and this value decreases by 
increasing the codebook size.  
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thod of accelerating the codebook design 
and image encoding for standard VQ. The 
proposed method uses a hyperplane decision 
technique for separating the codebook into two 
search areas, and then searches in one area 
according to the input vector feature. Compared 
with the Lee & Chen method, the obtained 
results show that the proposed method allowed 
acceleration ratios of at least 1.88 and reduced 
the total number of distortion calculations by 
45.9%. Furthermore, the performance of the 
proposed method was quite closer to the 
performance of the Lee & Chen method in the 
case of the codebook size more than 64. The 
extension of our algorithm to Entropy-
constrained vector quantization is a further 
study. 
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