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Facial Expression Recognition by Supervised ICA with Selective Prior
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Abstract Feature selection is required when using the Independent Component Analysis (ICA) in feature extrac-
tion for pattern classification. Selection during ICA might provide a better candidate set of features. We propose
a supervised ICA with a selective prior for the de-mixing coefficients so that those features with higher significance
in discrimination could emerge easier during the learning. We formulate the learning rule for the supervised ICA in

a form of the natural gradient approach and develop the algorithm of supervised ICA in facial expression analysis.
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The efficiency of the proposed algorithm has been investigated by numerical experiments.
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1. Introduction

In an appearance-based method for facial expression recog-
nition, features for classification are extracted by projecting
the image into a subspace that is most significant in discrim-
inating samples into a predefined number of clusters. Di-
rect optimization of some specified criteria of separability, as
the linear or nonlinear discrimination analysis does, might
cause heavy overfitting because the dimension of image is
usually much larger than the size of training set. Primary
Component Analysis (PCA) and ICA focus on extracting
some statistical properties of samples, which to some extend
improve the generality of extracted features. In facial ex-
pression recognition, some facts suggest that ICA might be
more effective than PCA in feature extraction. Facial expres-
sion consists of those features standing for minor, non-rigid,
local variations of faces, which are usually less significant
in PCA bases than those for lighting, head pose, and per-
sonal difference. [1] Further, the phase spectrum, related to
higher-order statistics, contains more structural information
in images that drives human perception than the power spec-
trum. [2] The importance of higher-order statistics in natural
images to the response properties of cortical cells has been
explored in Refs. [3] [4] 5], and the extraction of higher-order
statistics by means of ICA was discussed in Ref. [6]. ICA has
been applied to the face recognition in Ref.[2] and to the
facial expression analysis in Ref. (7], where the efficiency of
ICA was verified.

In the classical ICA, the derived independent components

are fully exchangeable in order, i.e., permutation ambiguity,

where the original order provides no information on the sig-
nificance of components in discrimination. A feature selec-
tion is necessary to be performed along with the feature ex-
traction. The selection can be applied before, after or during
ICA. In Ref. [2], Best Individual Feature (BIF) selection was
adopted where features were chosen according to some de-
fined criteria individually. Methods by means of Sequential
Forward Selection (SFS) and Sequential Floating Forward
Selection (SFFS) were also proposed. [8] Since the selection
is performed after ICA, the features are limited to be chosen
from the set of the obtained independent components. To
create a candidate set with enough representative features in
discrimination, a large number of independent components
should be learned, which may be computationally expensive.
It is meaningful to search for a way to affect the selection
of features before or during ICA. The Generalized Eigen-
space Method based on Class-features (GEMC) [9] makes a
selection before ICA by heuristically replacing PCA with a
discriminant analysis as the pre-processing to ICA, which
still lacks a mathematical explanation. ICA in a local facial
residue space is also proposed for face recognition, which
uses the pre-specified residue space to limit the selection of
independent components before applying ICA. [10]

In the present paper, we consider an approach to imple-
ment the feature selection during the search of independent
components. A constraint ICA has been proposed for the
analysis of electroencephalogram (EEG) signals, where all
component should be sparse and close to a supplied refer-
ence signal by including a correlation term. [11] In our case,

we try to design a method to let those components with



higher degree of separation emerge easier than others. Ex-
actly, from the aspect of information maximization, the clas-
sical ICA is computed under the scheme of Maximum Log-
Likelihood(MLL) estimation. (12] Instead of using the uni-
form prior for demixing coefficients in MLL, we take the
Maximum a Posteriori(MAP) estimation. A prior defined
on the degree of separation is introduced on the demixing
coefficients, which in turn increases the probability of the
corresponding component to be significant in classification.
In Section 2, we will formulate the supervised ICA and
give the algorithm for facial expression recognition. In Sec-
tion 3, numerical experiments are made and the performance
of our proposed algorithm is investigated by meking compar-
ison with the classical ICA. We also discuss on the influence
of the introduced selective prior. Finally, we summarize the

present paper and explain our future work.

2. Supervised Independent Component
Analysis

We first formulate the supervised ICA. Let Y = [y*?|k €
{1,---,K},% € {1,---, Ni}] be the matrix of N observed
samples from K classes with Nk samples in the k-th class
and satisfy N = 3K  Ni. The i-th sample of class k,
Y = [, g
vided Y as the training data set, the classical ICA assumes

, is a D-dimensional vector. Pro-
that these samples are generated from Q statistically inde-
pendent sources. S = [s*9|k € {1,---, K}, i {1,---, Ni}]
represents the signals generated by those sources, where
sk = [s(lki), e ,s(;i)]T corresponds to y*9. Those signals
from different sources are linearly mixed, i.e., ¥ = V'S, where
the D-row Q-column matrix V is for the mixing coefficients.
The purpose of ICA is to search for the coefficients V' that
makes the sources as statistically independent as possible. If
we let W = V! be the inverse (or pseudo-inverse) of V,
W is the demixing matrix and satisfies § = WY. For any
sample y, the extracted feature in ICA will be s = Wy. Note
that we consider the noiseless case in the present paper.
Bell and Sejnowski have proposed an algorithm from the
viewpoint of information maximization, where V' is learned
from samples by maximizing the log-likelihood criterion [12],

ie.,
Vica = arg max log P(Y|V). (1)
v

Motivated by the reasons described in the introduction, we
search for a way to make a selection of features during ICA
so that those independent components with higher degree of
separation are easier to emerge than others, which is achieved
by introducing a prior distribution for the coefficients. We
derive the learning rules by means of the MAP estimation,

where V is obtained by maximizing the following criterion,

ie.,

il

Viica = arg maxlog P(V]Y)
v
= arg max[log P(Y|V) + log P(V)]. (2)
v
As in the classical ICA, log P(Y'|V) is derived as [12]

log P(Y|V)

log / P(Y|V,S)P(S)dS
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with 6{z} being the Dirac delta function. Without special

explanations, k varies from 1 to K while i varies from 1 to N
for the suffixes of summation here and hereafter. We define

the prior as follows:

P(V) = PW) = [] Pu(wd), @
q
Puu) = o= exp{(MulMc(Y) = Muc(V0"}, ()
where wq = [wa, -, wep), W = [w], -, wd]T. Zu is

the partition function while Mec(Y) and Mu(Y) are the
between-class scatter matrix and within-class scatter matrix,
defined by Egs.(6) and (7).

1 - —
Moe(Y) = =Y Nellg® - 711, (6)
N k

M) = 23318 = 50" ()
k i

We define M,(Y) = Myc(Y) — Mu(Y) for short. 7*) repre-
sents the mean vector for samples in class k and 7 is the mean
value for all samples. ) is a hyper-parameter introduced to
control the influence of the prior. For A > 0, an independent
component whose demixing coefficients are of larger degree
of separation will have a higher prior probability. Exactly,
there are several choices for the prior, which should also coiu-
cide with the following process of classification. In out case,
we take the form of subtraction between the between-class
scatter matrix and within-class scatter matrix so that the
prior could be controlled to avoid possible singularity. We
maximize the MAP criterion

log P(V|Y) = log P(W|Y)
= NiogIW|+ 3303 log P} waat™)
k i q d

+AwM(Y)wT + Const (8)



under the constraints of ||wq]| = 1 for all ¢ € {1,---,Q}, by
differentiating the criterion with respect to wga according to

the following rule, i.e.,

N = (W g = Vi, 9
6wquOg|w| (W™ g = Vg 9

The differential reads

! (ki)
Py (D wayy )
DI POW) _ vy, L 53 Wyt o)
5 = q 5 (ki) d
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d

+2/\qu¢ [M(Y))ia- (10)
]

We take Py(z) o cosh(z) and rewrite these differential equa-

tions for all wqq into a compact form as one matrix differen-

tial which is defined as component-wise differentiation, i.e.,

dlog P(Y,W)
ow

where tanh[S] means the calculation of tanh over all ele-

2X

N WM,(Y)},(11)

—N{VT- % tanh[S]Y” +

ments in matrix S. Due to the existence of inverse matrix
V which is computationally expensive in the iterative learn-
ing, we adopt the natural gradient approach, proposed by
Amari[13], to derive the learning rule:

AW =nq {MgéVM} wTw
2\

—Nn{l - %tanh[S}ST + DWM(WTIW, (12)

where 7 is the learning rate. Comparing with the classical
ICA, our supervised ICA holds a prior term for demixing
coefficients.

When applied to facial expression recognition, the super-
vised ICA is performed on the PCA coefficients instead of
directly on the image data X, ie., Y = WpcaX. Wpca
is the matrix of PCA eigenvectors. Since all eigen-vectors
that correspond to nonzero eigen-values in PCA are adopted,
there is no information lost during this preprocessing. The

updating rule is finally derived as follows:

WO = WO 4 Na{I - 1 tanhls©)[sO]"
+§V—)‘W(‘)M5(Y)[W(‘)]T}W(‘). (13)

The algorithm for the supervised ICA is summarized in Ta-
ble 1 and the final bases for extracting features are computed
as Wg = WWhpca. Instead of using a Langrange multiplier,
we simply implement the constraint ||wg|| = 1 in Step (b) of
Table 1. Exactly, the scale of wq should not affect the sparse-
ness of derived components in the classical ICA, i.e., scale
ambiguity. As a fix-point learning algorithm, the behavior
of convergence is still not fully predictable. The introduction
of Step (b) requires a different learning rate and a different
convergence threshold. Therefore, it is difficult to make a

Table 1 The learning algorithm of the supervised ICA

a) Initialize W and calculate My (Y) — Mw-(Y);

b) Normalize W by rows so that ||wg|| = 1;
Calculate S from S = WY}
Calculate AW

e) Update W by W — W + AW:

f) Calculate log P(Y,W). If the difference be-
tween two iterations is less than a threshold, exit.
If not, repeat (b) to (f).

c
d

- =

Training
Phase

Running
Phase

74

Testing Image

Training Image Matrix

l Ty
12
0
> .
Projected Data |
Y =WpeaX] -
. e
8 | 2
> .
Indcpendent Components |
A=WY .
n |
Final Bases , | Projected Data
Wp = WWpea || = Wi
Average Vector Set | i "
7%} :

%:
AisseD

Estimated Label Value )
* o oront X —(k) 12
2z, = argmin||s, — Wg"||
k

Fig.1 A block diagram for the processing flows in both the learn-
ing phase and the running phase of facial expression recog-
nition. All input image data will be normalized in face

position and histogram-equalized as preprocessings.
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precise analysis on the influence of Step (b). From numer-
ical experiments, whose data are not given in the present
paper, we have found no significant differences in the recog-
nition rate caused by applying Step (b) to the classical ICA.
For the supervised ICA, the constraint ||wg|| == 1 is required
to stabilize the influence of the prior term, which also helps
improve the convergence behavior of the algorithm.

Let X = [ga|n € {1,---,N}] be the matrix by putting
all testing images into different columns and N be the num-
We define Z = {zn €
N }} to represent the true classified

ber of samples in the testing set.
{1,---,K}n€e {1, -,
labels for observed data, and define a recognition rate as

8(zn, 2), (14)

re =

2)| =
M=

n=1

where 6(z, y) is the Kronecker delta. z;, is the estimated label

value which is estimated according to the following criterion

2, = argmin||s, - W3™||? ' (15)
k

and s, = Wrzn. A block diagram for the whole process is
given in Fig. 1.

3. Experiments and Discussions

Different from the compact coding in PCA, ICA performs
sparse coding, i.e., each pattern could be represented only
by a small set of the bases. The maximum number of bases
is unbounded and no information of discrimination from the
training dataset is explicitly included. As a result, there is
no guarantee on whether the features we have extracted are
really significant in discrimination or not, because we could
never obtain the whole set of indepedent components. With

a worse candidate set, even the post selectior: might fail to

provide satisfiable results. A considerable way to make im--

provements is to apply the selection during the search of inde-
pendent components so that a better candidate set could be
found, which is the major idea of our proposed algorithm. In
the following numerical experiments, we therefore will focus
on the comparison between the supervised ICA and the clas-
sical ICA under the same conditions to investigate the effect
by introducing the prior term and by changing the hyper-
parameter A\. The database we are using is the Japanese
Female Facial Expression (JAFFE) Database [14], which in-
cludes 213 images in total. We normé.lize these images and
pick up 76 images to form the training set. The obtained
bases are tested both on the training set and a testing set
consisting of the remaining 137 images. Some normalized
samples are given in Fig. 2. All images are resized to 32 x 40
pixels. Thus the dimension of z, is 1280 and the dimen-

sion of Y is D = 76, which is the number of all nonzero

eigen-values in PCA on the training set.
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Fig. 3 Recognition rate r. is plotted as a function of the number
of independent components Nic under different A for (a)
the training set of samples and (b) the testing set. The
supervised ICA (sICA) outperforms the classical ICA, es-
pecially for a median Nyc.

We first plot the recognition rate r. as a function of the
number of independent components (Nic), which is equal
to Q in Section 2, for the training set and the testing set
) and (b),
The learning rate 7 is set to be 0.00001 for all cases. We

under different A values in Fig. 3 ( ), respectively.
find that higher recognition rates have been achieved by in-
cluding the selective prior for almost all Nic values, which
suggest that a better set of candidate features can be found
by the supervised ICA. Different from those discrimination
analysises which make direct optimizations on some crite-
ria of separability, the supervised ICA includes the selective
prior only to affect the selection of independent components
without deteriorating the sparseness. In Fig. 4 (a) and (b),
we further investigate the transition of recognition rate as a
function of A at different Nic. For both the cases of training
set and testing set, the recognition rates first ascend with
the increase of A\ and then descend when A gets too large

and causes a heavy bias on the sparseness of the obtained
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Fig. 4 Recognition rate rc is plotted as a function of A at dif-
ferent Nic for (a) the training set of samples and (b) the
testing set. The learning rate 7 is set to be 0.00001 for

all the cases. A properly selected A helps improve the
performance.
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Fig. 5 Degree of separation ds(w) is plotted for the case of
Nic = 35. Each vertical bar stands for one independent
component. Starting from the same initial values denoted
by the rectangles, the final values of ds(w) for both the
cases A = 0.0 and A\ = 0.4 are given by the triangles and
the stars, respectively.

independent components. Therefore, a tradeoff between the
sparseness and the discrimination degree should be taken to
achieve the best results.

We define the degree of separation ds(w) as ds(w) =
wM,(Y)wT, which is plotted in Fig.

Nic = 35. Each vertical bar represents one independent

5 for the case of

component. Starting from the same initial values denoted
by the rectangles, the final values of d;(w) for both the cases
A =0.0 and A = 0.4 are given by the triangles and the stars,
respectively. For all components, the ratio of separation in-
creases with a large A, which proves the effect of the prior
term. As a result, those components with higher degree of
separation improve the recognition rate. In Fig. 6, we visu-
alize the base from the 10th, the 11th, and the 27th compo-
nents from ICA, sICA with A = 0.3 and sICA with A = 0.6.
With the increasing of A, the area emphasized by the com-
ponents, such as the eyebrow and nose, gets broader, which
might be the reason for improved discrimination. Due to the
use of natural gradient approach, the local optimal of sICA
is near to those of ICA for a given initialization. A selection
over a wider range requires an estimating method that could
jump between different local optimals, e.g. sampling.

0.6)

10th IC

11th IC

27th IC

Fig. 6 Some basis images for the case of Nj¢c = 35.

Although several methods for the feature selection after
the learning of ICA were proposed in Ref. (8], they are also
applicable to our approach. The supervised ICA intends to
search for a candidate set of features with higher degree of
separation than the classical ICA, by selecting features from
which even better recognition rate can be achieved. In Fig.
7(a) and (b), we make a comparison between four methods,
i.e., the supervised ICA with Best Individual Feature(BIF)
selection, the supervised ICA without BIF, the classical ICA
with BIF, and ICA without BIF. In the BIF selection of the
present paper, all features are sorted in descendant order
of their degree of separation d;(w), and then the first N
features are selected for classification. We note that the su-
pervised ICA with BIF gives the best performance, which
verifies the capacity of the supervised ICA in learning a bet-
ter candidate set of features. We also find that the super-
vised ICA without BIF still outperforms the classical ICA

with BIF, which confirms the robustness of the supervised



ICA in recognition rate by learning those independent com-
ponents with higher degree of separation from samples when
a median Nic is used. On the other hand, although BIF
improves the robustness of the performance over the whole
range of Nr, the best recognition rate does not change much
only by means of BIF selection for the same learning algo-
rithm, as depicted in Figs. 7 (a) and (b). This result suggests
that learning a candidate set of features with higher degree
of separation might be more important than performing a
post selection, which is the point where the supervised ICA

outperforms the classical ICA.
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Fig. 7 Recognition rate 7. is plotted as a function of Nr, which
is the number of features we select, for sICA with BIF,
sICA without BIF, the classical ICA witk BIF and ICA
without BIF. (a) Result for the training set. (b) Result for
the testing set. We can find that since the supervised ICA
provides a better set of candidate features, the supervised
ICA with BIF selection has the best performance.

4. Conclusion and Future Work

Utilization of discrimination information from the given
training dataset is essential to a successful recognition. In
the classical ICA, an unsupervised method of feature extrac-

tion, no classification information of training set is included

explicitly. We have proposed a supervised ICA for facial ex-
pression recognition in the present paper. The major purpose
is to improve the significance of obtained features in discrim-
ination. A selective prior has been introduced to the classical
ICA and the learning rule is derived under the MAP scheme.
‘We made numerical experiments to investigate the influence
of new prior term and make comparison with the classical
ICA. Our method shows better performance than the classi-
cal ICA, especially in increasing the recognition rate under a
median number of independent components. There are still
some problems left for us to study, such as the decision of
optimal A and the design of a better learning algorithm for
faster and more robust convergence. Investigation on various
priors is also a part of our future work.
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