HEAEA BROAEZ2S HaHs
IPSJ SIG Technical Reports

2008—AVM—63 (3)

2008/12/11

Parallel Forward Projection of Large Voxel-Volumes on the GPU

Sven FORSTMANN

Jun OHYA!

T, 1 Waseda University, GITS Faculty, 1011 Okuboyama Nishi-Tomida Honjo-shi Saitama 367-0035 Japan

E-mail:

T svenforstmann@yahoo.co.jp,

1 ohya@waseda.jp

Abstract We present an efficient SIMD optimized implementation of the parallel voxel-based forward projection algorithm. The
algorithm rasterizes RLE encoded volume data in a front to back manner by utilizing a specialized view transform. In addition to the original
method, our implementation achieves a significant speedup by utilizing a multi-segment culling mechanism in combination with a binary

visibility map. We show that it is possible to uncompress and visualize large volume data directly from GPU memory without streaming data

from slower CPU memory. .

Keywords Volume data, Ray-casting, View-Transform, Run-Length-Encoding

1. Introduction
Recent SIMD

architectures has made big steps and allows almost

development of graphic card
arbitrary complex algorithms to be executed on the GPU.
This means that polygons as the most efficient surface
representation and rendering method might be
supplemented by further technologies. In this paper, we
want to investigate in particular the usage and efficiency
of voxels as surface rendering method. In the recent
development, polygonal models are becoming more and
more complex, which automatically leads to more dense
meshes, where every polygon occupies just a couple of
pixels on the screen. This means that voxel or point-based
methods steadily gain importance as they get closer and
closer to polygon based rendering. An advantage of
voxels in particular is the way of modeling. Unlike
polygons that require a skilled artist which knows how to
handle polygon creation functions such as extrusion well,
voxels allow a straightforward and intuitive way to create
3D content by painting in 3D. Especially in case of
organic objects they are superior to polygons.

Challenges for the voxel-based approach are primarily
memory efficiency in case of high-resolution volume data
but also rendering speed as well. As basic algorithm we
decided to utilize the voxel-based, forward projection
algorithm [1]. The method has proven its efficiency in
various software projects [2], [7] and provides advantages
over related methods such as Shear-Warp [3]. It allows
storing reasonably large and complex volume-data in a
run-length-encoded (RLE)
uncompressing it on the fly for rendering. According to

manner in memory by

the survey on lossless volume compression methods [8],

RLE is the second fastest decoding method for

uncompressing volume data. It might further be adapted
to streaming from hard disk or network, but this is out of
the scope of this paper.

The voxel-based forward projection algorithm, which
we focus on in this paper, basically consists of two parts:

® Rasterizing RLE segments to a temporary buffer

® Map the temporary buffer onto the screen

As for the volume data, it is vertically encoded from top
to bottom, leading to vertical line segments in worldspace.
In run-time, these segments are uncompressed and
rasterized from top to bottom and front to back.

In this paper, we want to put our emphasis especially on
a parallel SIMD adaptation for recemt graphics cards,
beside further optimizations targeting the RLE structure.
2. Related Work

The voxel-based forward projection algorithm [1] is
related to the well-known shear-warp algorithm [3]. Both
algorithms render RLE volume data in a front to back
manner to a temporary buffer and use a mapping
technique to display it on the screen.

The major advantage of the forward projection algorithm
[1] is however, that it does not need to have three copies
of the
Furthermore, in case of the shear warp algorithm, it is

volume data simultaneously in memory.
necessary to split the screen up into three viewing-planes
to achieve a perspective first-person view.

Another related field are volume raytracing methods.
They are different from our used forward projection
algorithm since they work in the opposite way. The
forward projection algorithm rasterizes all RLE voxel
segments from front to back (similar to a polygon
rasterizer), while a raytracer seeks the voxel that projects
onto a particular pixel. Besides simple raytracing, where

-11-

Fig.1: We raycast the scene in planes perpendicular to the
y-axis of the world-coordinate-system.

Start Hi-Byte Start Lo-Byte Color-Array

RLE Structure

Fig.2: The hierarchic RLE structure. The first layer stores
the hi-bytes of each start-address while the second layer
stores the low-bytes. Total: Start = StartHi * 256+StartLo

each volume element is visited, several acceleration
structures have been developed to improve performance
and memory consumption.

The most common acceleration structures include
octrees [13], KD-trees, nested regular grids and bounding
volume hierarchies. Especially pointer-less-octrees are

- suitable for storing voxels very memory efficient.
However, they do not allow a fast access, which is the
reason why they are not used for voxel-based raytracing.
More popular are pointer-based octrees. They allow fast
accesses but consume significantly more memory than
pointer-less octrees. The Interactive Gigavoxels algorithm
[11] also is related to our method since it focuses on
visualizing large voxelized surfaces on the GPU as well.

Em—
Raycast
Direction

View-point
Y
%

z

Fig.3: Per plane raycasting: In each plane we render the
RLE elements from front to back and top to bottom.

Pointer-MAP

Their algorithm uses nested regular grids for raycasting
and achieves a performance comparable to ours.

A different group of related algorithms are point-based
rendering algorithms. One of the most popular in this
context is called Qsplat[9], which inspired many other
researchers to come up with similar point based surface
rendering approaches. An
FarVoxels [10], as they
point-based-rendering idea by

evolution of Qsplat is
improve on the basic
combining it with
polygonal rendering.
3. The proposed Algorithm

The voxel forward projection algorithm raycasts the
scene in planes, as shown in Fig.1. Each plane starts in
the view-point and progresses perpendicular to the
world-space’s y-axis. We define the world-space’s x- and
z-axis as the base of the horizontal plane, while the y-axis
points upward. Each of the planes intersects the view
frustum and is visible on the screen as one line. The
amount of planes has to be adjusted dynamically to
achieve an optimal coverage of the pixels on the screen.

The raycasting is done in a front to back manner. For
each of the planes, one ray is casted starting from the
view-point and ending at the maximum view distance. In
each position of the ray, all RLE elements are rendered as
line-segments from top to bottom.
3.1. Structure of the RLE volume data

For the RLE structure, multiple types are available to
solve our task. The most simple is to stores two bytes for
each element, where the first byte defines the number of
skipped voxels and the second byte the number of
following opaque voxels. This allows encoding arbitrary
sized structures since the numbers are relative to the
previous offset. However, accessing a single element
requires uncompressing all previous elements, which is
not very efficient. We therefore decided to use a two-level
structure that allows binary searches for identifying one
element in O(log n). Such queries are very important in

-12-

wdaN J

Fig. 4: Plane distribution: Looking downwards leads to
the upper plane distribution on the screen. We readjust
the planes (left to right) to reduce the overdraw and the
raycasting cost significantly.

case of collision detection e.g.

The detailed structure that we use can be seen in Fig.2.
We utilize two levels to encode columns with up to 2!'¢ in
size. The first level stores the Hi-bytes of the start
address while the second level stores the low bytes of the
16 bit start address. The run-length of each RLE element
can be computed as the difference between the actual RLE
element’s color offset and the previous element’s color
offset. The color offset is split in two parts: The 16-bit
“Word” offset in the left column and the 8 bit offset in the
right column which is added to the 16 bit offset for the
final address.

3.2. Computing the Planes

Our algorithm raycasts in planes perpendicular to the
world coordinate system’s y-axis as in Fig.3. All planes
are originated at the viewpoint. As a first step, we need to
compute the number of planes and their parameters, which
is very different from a conventional ray-tracer. There,
simply one ray is casted for each pixel on the screen. In
case of our method, the number of planes depends on the
camera’s view-angle. In case of looking straight forward,
we need to have as many planes as there are columns on
the screen - the number increases however if we tilt the
camera downwards to about four times, see Fig.4. We
therefore readjust the planes according to a fixed pattern,
which leads to a much better performance without
significant changes in quality.

For each of the planes, we need to compute certain
parameters, such as the 2D-intersection-coordinates with
the screen and the x-z-angle.

3.3. Accurate Grid traversal

We apply an accurate grid traversal as described in [4]
that takes care of each cube intersection and hence leads
to a correct rendering where each voxel is rasterized as
cube. The accurate traversal is slightly slower than the

Fig.5: The depth-buffer can successfully be utilized to
compute normal vectors on the fly.

equidistant, but leads to much better visual results.
3.4. Rasterizing the RLE Elements

The main part of the method is the raycasting process
that visualizes the RLE elements. To achieve this, we start
with the first plane at the viewpoints position and traverse
all RLE columns from front to back and top to bottom.
Each rendered plane maps to a line on the screen. As the
lines are in arbitrary direction, we render each line into
an array that is mapped to the screen as a post-process.

Computation wise, we need multiple operations per
RLE element: First the translation to the camera position,
then the rotation according the camera tilt and finally the
perspective divide.

The rotation around the y-axis (panning) is
automatically achieved based on the plane’s orientation.
Last missing is the basic 2D rotation around the screen
center to create a full 6 DOF camera.

Visibility Culling

We include multiple culling mechanisms in order to
speed up the rendering. The first culling mechanism is the
floating horizon algorithm [5], which already speeds up
the rendering significantly. This algorithm has the
advantage in combination with RLE that we can skip most
of the elements for certain scenes. Especially landscape
scenes suit very well. There, it is often sufficient to only
test the most upper RLE element to know if all other
elements of the column can be skipped.

In addition to floating horizon, we further utilize the
largest drawn line segment that does not touch any
boundary for culling. In case another drawn line segment
partially covers the previously largest, both are merged
together, increasing the cull-able area.

-13-

Fig.6: The sample scene consists of a repeatedly
rendered 1024° dataset and contains numerous complex
shapes in order to provide an accurate measurement.

This approach is different from the Shear-Warp
algorithm [3], which uses a forwarding buffer to cull
invisible segments. However, it is possible to combine
both of these methods efficiently.
3.5. Optimizations
In order to speed up the rendering, we add two further

modifications. The first is to utilize the GPU’s shared
memory to perform a quick visibility check. The shared
memory size of our graphics card has been 16KB, which
is sufficient to store one bit for each pixel on the screen
to prevent overdraw and save memory bandwidth. In case
of 128 parallel threads and a maximum screen resolution
of 1024, we need exactly 128*%1024/8 = 16KB of memory.

The second optimization is to switch from an accurate
grid traversal to an equidistant traversal for distant
geometry. This leads to a better performance as it reduces
the amount of divergent branches. For SIMD architectures,

divergent branches are one of the most serious problems.

Dataset Optim.

Full F.C 43 45| 44| GPU

512x512
Full S,.C 43 42 425] GPU| 512x512
Full F.C 175 21.2] 19.35] GPU[1024x768|
Full S.C 19.2 18] 19.1] GPU| 1024x768|
Surface [S 18.8 18.5] 18.65| GPU| 1024x768|
Surface [S,C 18.2 17.8] 18] GPU| 1024x768]
Full s 16.3 14.7] 15.5] GPU| 1024x768|
Surface [C 15.3 156.6] 15.45] GPU| 1024x768|
Surface [F,C 15 15.8] 15.4] GPU| 1024x768|
Surface [F 14.9 15.8] 15.35] GPU| 1024x768|
Full c 15.4 156.3] 15.35] GPU| 1024x768|
Surface 14.7 15.1] 14.9] GPU[1024x768|
Full F 13.9 15.6] 14.75] GPU[1024x768|
Full 10.8 10.2[10.5] GPU[1024x768|
Full 9 1.7 241 1.9[cPu| 1024x768|
Full 1.5 2| 1.75] cPU| 1024x768|
Surface [C 1.2 1.6] 14| CPU[1024x768|
Surface 1.2 1.4

Optimizations: {S)haremam, (Cie 1ent. (Florward

Table 1.Performance: The speed results are in frames
per second (fps) for the near and far view of Fig.6. We
compared different optimizations and two different
encodings of the same dataset (Full=solid, Surface=only
surface voxels). Avg represents the average fps of near
and far, version indicates whether we used GPU or CPU
and screen states the used screen resolution.

3.6. Mapping the Temporary Buffer

We can draw the temporary buffer efficiently onto the
screen in parallel as textured lines. Keeping in mind the
different
directions are utilized based on the ray-cast direction.

previous rendering process, four texture

3.7. Closing Gaps

The gaps that still exist on the screen are closed by
pixel repetition, which leads to a result comparable to
texture mapping. Texture mapping cannot easily be used
directly, as the temporary buffer contains columns of
variable size. This efficiently reduces overdraw but
complicates the mapping to the screen.

Filling the gaps has to be done in horizontal and
vertical direction separately due to the concentric way we
are mapping the temporary buffer on the screen.

3.8. Implementation Details

The algorithm is written in C++ and uses CUDA for
SIMD rendering on the GPU. Equal to the original method,
also our implementation utilizes volume-data mip-maps to
speed up the rendering of distant RLE elements. The
SIMD parallelization of the method is achieved by
assigning one plane to each GPU core.

The shading of the Richtmyer-Meshkov dataset is done
by screen space normals (SSN). They are calculated from
the depth buffer by the pixel-shader in one pass as
Together with screen-space-

demonstrated in Fig.5.

-14-

Fig.7: It is even possible to render the complete dataset
more than 100 times at interactive rates at a 1024x768
screen resolution. For the shading, we utilized a

combination of screen-space-ambient-occlusion and
screen-space normals.

ambient-occlusions (SSAO) [12], the shading is satisfying
and results in a good depth perception. Since the required
gradient for the normal computation needs a certain area,
the positive effect of SSN is an adjustable region for the
normal smoothing — however, sharp edges cannot be
shaded easily which leads to false results in certain cases.
4. Contributions
Our proposed modifications contribute to the existing
algorithm as follows:
® Our two-level RLE not only allows encoding large
volume-sizes with an average of 1 byte per surface
voxel, but also supports binary searches that are
useful for raytracing or collision queries.
® Our implementation is able to store a binary
version of the Richtmyer-Meshkov instability
iso-surface (20483 in GPU
memory and render multiple instances shaded on a

data-set’s voxel)

consumer level GPU with just 256 MB of video
ram. We achieve interactive frame rates and don’t
requiring any streaming from hard-disk.

® Our
significantly speeds up the initial method

three-way visibility culling algorithm
® Unlike the original method, our algorithm applies a
better distribution of the planes on the screen
which increases the speed up to 50%.
® Our implementation takes advantage of the parallel
SIMD GPU architecture by using CUDA. This
speeds up the method about 5x compared to the
CPU implementation as it is possible to run the
raycasting process in parallel where each plane is
handled by one of the GPU’s processing units.
5. Limitations
Besides the advantages of the presented method, it also
has several limitations.
® Since the number of planes depends on the camera
tilt, the speed is not constant. In case of common
hardly
noticeable, but in case of complex scenes such as

terrain-like out-door scenes this is
the Richtmyer-Meshkov instability dataset we
observed a performance impact.
® Three-dimensional voxel filtering to smooth voxels
close to the camera is not trivial since all
neighboring elements are run-length-encoded.
® Anti-aliasing can be achieved by increasing the
screen resolution and re-sampling the output at a
lower resolution. However, it is difficult to directly
perform anti-aliasing on certain selected edges.
6. Experiments
We conducted results using two different scenes with
different resolutions for rendering as well as different
resolutions for the voxel volume. Our testing hardware
has been a Pentium-D 3.0Ghz Processor with 1 GB of
RAM and a Geforce 8800 GTS (384MB) graphics board.
The first test-scene is shown in Fig 6. It’s an
artificially generated scene with a resolution of 1024 that
contains color information for each RLE element. Our
second scene for testing is the well-known Richtmyer-
Meshkov dataset with a resolution of 2048 at time step
219 and at iso-value 60. Since its surface is very complex,
we were only able to store the geometry data itself in
GPU memory (198MB), but not normal vectors or color
data. In order to still shade the rendered geometry, we
utilize SSAO and SSN in combination, which requires
about 2ms for the post-processing at the used 1024x768
resolution of the screen.

-15-

Volume

S

Pla

.

Fig.8: Landscape: For this terrain we set the
view-distance to 180.000 voxel. It renders well at about
15-30 fps at a 1024x768 resolution.

As test-scene, we repeatedly rendered the 1024° dataset
shown in Fig 6 to cover an area of about 40.000 x 1024 x
40.000 voxels. The screen resolution for testing has been
1024x768, the number of planes 1024. The detailed
results for this scene can be seen in Table 1. We combined
various optimizations to figure out which one fits best. It
proposed
(centersegment) in combination with the forward-skipping

turned out, that wusing our culling
(forward), described in the Shear-Warp algorithm, works
best. Using the GPU’s shared memory for visibility
testing also worked very well and achieved results
comparable to the forward skipping. The optimization that
readjusts the planes on the screen as in Fig.4 led to a
speedup of up to 50% when looking straight downwards.

For rendering a single instance of the
Richtmyer-Meshkov dataset, we achieved at average 16
fps within a range of 9 to 40. In case of rendering the
dataset repeatedly to create a virtual 40k x 2k x 40k
resolution, we achieved about 10 fps in average with a
range of 8 to 40 fps. The heaviest of all scenes can be
seen in Fig.7. It contains about 400 copies of the dataset
and hence only rendered with 5-8 fps on average. The
slow performance is mostly due to the algorithm itself. It
is well suited for hilly terrain scenes such as in Fig.8
where the ground is covered with objects. There, the
floating horizon algorithm culls away most geometry. In
arbitrary scenes however, the culling is not as efficient
and hence the performance is not as high.

In total, our SIMD GPU implementation achieved a
speedup of about 5x compared to the CPU based
implementation shown in Table 1.

7. Conclusion

We have presented an efficient adaptation of the voxel
forward projection algorithm to recent SIMD graphics
hardware by further proposing several modifications to
speed up the algorithm and optimize memory accesses.
The proposed algorithm is about 10x faster than the basic
CPU implementation and even able to visualize the full
resolution Richtmyer-Meshkov dataset shaded on a single
NVidia GTS 8800 GPU at interactive frame-rates without
any streaming from CPU memory or hard-drive.

References
[1] John R. Wright and Julia C. L. Hsieh, "A
voxel-based, forward projection algorithm for

rendering surface and volumetric data",
Visualization'92, pp.340--348, 1992
[2] Ken Silverman, Voxlap engine, 1999-2003,

http://advsys.net/ken/voxlap.htm

[3] Philippe Gilbert Lacroute, "Fast volume rendering
using a shear-warp factorization of the viewing
transformation", SIGGRAPH '94, pp.451--458, 1994.

[4] John Amanatides, Andrew Woo : “A fast voxel
traversal algorithm for ray tracing”,
BEurographics *87, pp.3-10, North-Holland, 1987

[5] T.J. Wright, “A Two-Space Solution to the Hidden
Line Problem for Plotting Functions of Two
Variables,” IEEE Trans. Computers, vol. 22, no. 1,
pp. 28-33, Jan. 1973.

[6] NVidia Corp, Compute Unified Device Architecture
(CUDA)
http://developer.nvidia.com/object/cuda.html

[7] Visualization Lab, Center for Visual Computing,
SUNY Stony Brook: Voxel-Based Flight Simulation
http://www.cs.sunysb.edu/~vislab/projects/flight/

[8] Philippe Komma and Jan Fischer and Frank Duffner
and Dirk Bartz: “Lossless Volume Data Compression
Schemes, SimVis 2007, pp. 169-182, 2007

[9] Szymon Rusinkiewicz and Marc Levoy:” QSplat: a
multiresolution point rendering system for large
meshes”, SIGGRAPH '00, pp. 343—352, 2000

[10]Enrico Gobbetti and Fabio Marton:"Far voxels: a
multiresolution framework for interactive rendering
of huge complex 3D models on commodity graphics
platforms",SIGGRAPH '05, pp. 878--885,2005

[11]Crassin, Cyril and Neyret, Fabrice and Lefebvre,
Sylvain:"Interactive GigaVoxels",INRIA Technical
Report,June 2008

[12]Martin Mittring: "Advanced Real-Time Rendering",
3D Graphics and Games Course, Chapter 8,
pp.113-115, SIGGRAPH 2007

[13]Aaron Knoll, Ingo Wald, Steven Parker, Charles
Hansen:"Interactive Isosurface Ray Tracing of Large

Octree Volumes", IEEE Symposium on Interactive
Ray Tracing, pp.115-124, 2006

- 16 -

