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Abstract In this research, we address the problem of 3-D model generation from disparity maps. Given an inaccurate 3-D
model, dense multiview images are generated. Disparity maps between each pair are estimated using stereo matching
algorithm. The disparity maps are projected into space as depth candidates. The kernel classifier is applied to the depth
candidates for each layer of candidates from ground, and the candidates with higher probability values are selected for further
fine-tuning process. In fine-tuning step, the best location of the border of the objects in each layer from ground is determined
using dynamic programming. Finally the 3-D model is generated. Using the generated 3-D model, we regenerate the dense
multiview images and disparity maps. We perform the same process for several iterations until the changes in the generated
3-D model are small. Experimental result shows we can eventually enhance the quality of the 3-D model within a few
iterations in comparison with the starting 3-D model.
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1. Introduction ray-space format, an image can be interpreted as
light rays that are captured at a certain time and
space. According to plenoptic sampling theory [4]
IBR approach requires dense sampling of the scene
for alias-free arbitrary viewpoint synthesis, which is
costly and inefficient. Therefore, a sub-sampled
representation of ray-space is used, in which the
geometry compensation to generate a dense
ray-space is done by using block matching
algorithms [5]. The accuracy of the generated
viewpoints using block-matching depends on the
maximum disparity between viewpoints. Meanwhile,
model based rendering (MBR) techniques can

3-D visual communication, in which a 3-D visual
content is used as a communication component, has
been highly desired for a long time. For this reason,
research on 3-D visual systems is emphasized, and
multiview videos rendered by computer graphic
algorithms have become more attractive and more
efficient, such as FTV [1], and 3D-TV [2].

Image based rendering (IBR) technique allows
generation of arbitrary views using ray-space [3]
representation of multiview image. Using a
multicamera system with known calibration
parameters, ray-space data can be generated. In



synthesis free viewpoint using sparse camera
configuration. In MBR, 3-D model of each object is
extracted [6],[7] and free viewpoint is rendered
using the multicamera images and depth information
of model. The quality of the rendered viewpoints is
sensitive to accuracy of calibration and generated
model.

In this research, we address the problem of 3-D
model generation from disparity maps that satisfies
the following goals. ‘

1. Accuracy of model is independent of number of
camera.

2. The proposed method is independent of object
detection [8] quality.

3. This approach does not need any depth sensor to
obtain precise model.

4. This method is robust to the accuracy of camera

calibration.

In order to achieve the abovementioned goals, we
propose an iterative approach to enhance the
generated 3-D model using the multiview images
generated from the initial model, and depth maps
classification during a fine-tuning step. Evaluation
of the proposed method is done using CG multiview
images. Result shows significant improvement of
3-D model in comparison with initial model.

Fig. 1: Multiple Local ray-space representation.
(a) local ray-spaces, (b) free viewpoint &
walk-through.

2. Proposed Method

2.1. Multiview Generation

Given an inaccurate 3-D model (i.e. initial model),
dense multiview images are generated. In our
developed system, we generate the multiview images
using multiple local ray-space method [9].

In this method, unlike conventional method with one
ray-space [3] (Fig. la), the space is divided into
multiple local ray-spaces, as shown in Fig. 1b for
cameras on a circle, surrounding objects. In addition,

each object is detected and 3-D depth information of
each object is calculated. This helps to specify the
occlusion, and makes the walk-through generation
possible. For each local space, the sparse rays are
recorded. Furthermore, given the depth information
of objects, camera parameters, dense local
ray-spaces are generated by interpolation. Given the
location of required viewpoint in the space, free
viewpoint can be generated. The corresponding local
ray-spaces in the range of requested viewpoint are
read, as shown in Fig. lc.

2.2. Disparity Maps Generation

Disparity maps between each pair can be generated
using any stereo matching algorithm [5], except
occluded parts based on a constraint within matching
algorithm. By discarding the occluded disparity, we
can suppress wrong depth information, and guarantee
the accuracy of the subsequent process.

2.3. Classification

2.3.1. Disparity maps to depth candidates

The disparity maps are projected into space as depth
candidates, as shown in Fig. 2 for a pair of cameras
and disparity map in between.

Candidate depth

Fig. 2: Depth candidate in 3-D space from disparity
map.

We formulate the depth candidates as a set of
locations in 3-D space as follows.

P (x’)'az)={(x0sJ’o’zo)’(xl’J’pzl)’--w Gen>ywzy )} (O

2.3.2. Nonparametric modeling

In this step, we build a statistical representation of
sub-sampled depth candidates of set “P” in the y
direction as

Pyl =P(x,y,- Sy<yj,z) (2)
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The probability density functions (pdfs) are likely to
vary for the depth candidates in set “P” for different
locations and sub-sampled sets. Furthermore, they
will not, in general, have a known parametric form.
Thus, a general nonparametric kernel density
estimation technique is accordingly used to build
these statistical representations of set “P.” Without
any assumption about underlying distributions, this
technique estimates the pdfs directly from the data.
We can use a variety of kernel functions with
different properties. However, typically, for
continuity, differentiability, and locality properties,
Gaussian kernel is used. Note that fitting the
distribution to a Gaussian model (normal
distribution) differs from choosing Gaussian as a
kernel function. Furthermore, kernel density
estimation is a more general approach that does not
assume any specific shape for density; unlike
parametric fitting of a mixture of Gaussian. A
discussion on kernel estimation techniques can be
found in [10].

Given Py; a 2-D kernel density function can be
generated by the product of 1-D kernels [10].

N
Therefore, we can estimate p(x ) density at
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point (x,, .S y<y;, z,) using
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where the same kernel function (Gaussian) is used

with a suitable bandwidth ¢ for each dimension.

Hence, we can represent the depth candidates by a

2-D Gaussian kernel density function.

2.3.3. Tuning

The generated probability model using kernel
density function is later divided into two regions
based on the probability value of the model. Areas in
which are detected with probability more than a
threshold are assigned as unknown as shown in Fig.

3a. The object border is located in the detected areas.

Note that the thresholds are automatically calculated
for each model using the distribution of the model,
where normally has the ring shape. It is done by the
fact that the probability values have lower value in
the middle of the object.

2.4. Model Generation — Fine Tuning
In order to detect the border, as shown in Fig. 3a, the

fine-tuning step is performed. In this process, the
best location of the border (i.e. contour C) in each
sub-sampled “P” is determined using a dynamic
programming.

C = arg min (E(M)+ 4E()+ LE(A)) @
The el:ergy functions for minimization are defined as
BM)= 3 pler 21) ®)
E(d)= Zn|dl -af (6)
E(a)=Y # M

where E(M) the energy function corresponds to the
generated nonparametric model. As shown in Fig. 3b
and Fig. 3c, E(d) and E(A) are regulation energy
functions, which are enforcing the contour C (i.e.
edge of the object) aligns in the middle of the
unknown area and does not deviate from previously
calculated contour, respectively. The minimization
can be also done using dynamic programming.
Finally the 3-D model is generated. Values for 4; and
A are experimentally set.
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Fig. 3: Fine-tuning; (a) Unknown region and contour C,
(b) Calculation of E(d), (c) Calculation of E(A) .

2.5. Iteration

Using the generated 3-D model, we regenerate the
dense multiview images. This increases the quality
of multiview images. We perform the same process
for several iterations until the change in the
generated 3-D model is small.

3. Experiment

In order to evaluate the proposed method, we used
CG generated multiview images.

Fig. 4a shows a view of the CG generated free
viewpoint and its ground truth model. For this
experiment, 30 multiview images on the circle are
generated around the CG object. Object mask. are



manually detected for each viewpoint and 3-D model
is generated [7]. Multiview images are generated
using multiple local ray-space method [9]. Further,
we generated one disparity map between each pair
[11]. In the following, we applied our proposed
iterative method to generate the 3-D model from
disparity maps as it explained in section 2. Fig. 4b
shows the rendered arbitrary viewpoint and the
initial model. Fig. 4c and Fig. 4d show the same
viewpoint and the generated 3-D model in two
iterations using our proposed method. As it can be
seen the quality of the synthesized viewpoint is
significantly improves that verifies the accuracy of
the generated 3-D model using our approach. In
addition, Table 1 shows the accuracy of the
generated model in different steps, where the error
decreases during iterations.

Fig. 4: Evaluation of our proposed method (a) CG

generated free viewpoint and model (b) generated free
viewpoint using the initial model, (c) and (d) generated
free viewpoint and model in the first and the second

iterations.

Table 1: Error in different stages in comparison with the
ground-truth 3-D model

Data Original  Start Itr. 1 Itr. 2
Error (%) 0 20.94 4.88 0.61

4, Conclusion

In this paper, we proposed a novel method to
generate a precise 3-D model using an iterative
approach. Using the proposed method the accuracy
of the generated model is significantly improves in
comparison with initial model. Experimental results
verify the effectiveness of the proposed method.
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In our future research, we focus on improvement of a
coarse 3-D model, as an initial model.

References

[1] P. Na Bangchang, M. Panahpour Tehrani, T. Fujii, M.
Tanimoto, “Realtime System of Free Viewpoint
Television,” Journal of the Institute of Image
Information and Television Engineers (ITE), 59 (8):
63—-70, Aug. 2005I.

[2] W. Matusik, H. Pfister, "3-D TV: A Scalable System
for Realtime Acquisition, Transmission, and
Autostereoscopic Display of Dynamic Scenes," Proc.
SIGGRAPH, ACM, Los Angeles, 2004, 23(3):
814-824.

[3] T. Fujii, T. Kimoto, and M. Tanimoto: “Ray Space
Coding for 3D Visual Communication”, Proc.
PCS’96, Picture Coding Symposium, pp. 447-451,
March 1996.

[4] J.X. Chai, X. Tong, S.C. Chan and H.Y. Shum:
“Plenoptic Sampling”, Computer Graphics
(SIGGRAPH’00), pp. 307-318, July 2000.

[5] D. Scharstein and R. Szeliski, “Ataxnomy and
Evaluation of dense two-frame stereo
correspondence algorithm”, International Journal of
Computer Vision, 47(1/2/3):7-42, April-June 2002.

[6] W.Niem and R. Buschmann, “Automatic Modelling
of 3D Natural Objects from Multiple Images”, Proc.
European Workshop on Combined Real and Synthetic
Image Processing for Broadcast and Video
Production, 1994.

[7] T.Matsuyama, X. Wu,T. Takai, and T. Wada,
“Real-Time Dynamic 3D Object Shape
Reconstruction and High-FidelityTexture Mapping
for 3D Video,” IEEE Trans. on Circuits and Systems
for Video  Technology, Vol.CSVT-14, No.3,
pp.357-369, 2004.

[8] Y. Satoh, and K. Sakaue: “Robust Background
Subtraction based on Bi-polar Radial Reach
Correlation,” TENCON 2005, pp. 1-6, IEEE Region
10, Nov. 2005.

[9] A. Ishikawa, M. Panahpour Tehrani, S. Naito, S.
Sakazawa, and A. Koike, “Free viewpoint video
generation for walk-through experience using
image-based rendering”, Proc. ACM Multimedia
2008, Vancouver, Canada, Oct.-Nov.2008.

[10]D. W. Scott, Multivariate Density Estimation. New
York: Wiley-Interscience, 1992.

[11]M. Droese, T. Fujii, M. Tanimoto: *“Ray-Space
Interpolation based on Filtering in Disparity
Domain”, Proc. of 3D Image Conference 2004,
Tokyo, Japan, pp. 29-30, 2004.

[12]M. P. Tehrani, A. Ishikawa, S. Sakazawa, A. Koike,
“Enhanced Multiple Local Ray-spaces Method for
Walk-through View Synthesis”, To be appeared in
Proc. of IEEE Computer Society, International
Symposium Universal Communication, ISUC 2008,
Osaka, Japan, Dec. 2008.



