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Two-Dimensional Pattern Matching
Using Wild Cards
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Dep. of Electrical Engineering
Kyushu University, Fukuoka 812, JAPAN

The pattern matching problem is to find all occurrences of patterns in a text string. In this
paper, we consider patterns with pictures. For example, let A be a picture for a, b, ..., 2,
and N for 0, 1, ..., 9. Then we consider patterns such as abNN, aTNNNNA, ..., etc. For
multiple string patterns, the Aho-Corasick algorithm, which uses a finite state pattern matching
machine, is widely known to be quite eflicient. As a natural extension of this algorithm, we
present an efficient matching algorithm for multiple patterns with pictures. Moreover, we discuss
an application to the two-dimensional pattern matching.
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1 Introduction

The pattern matching problem is to find all occurrences
of character strings, called” patterns, in another string,
called a text. In this paper, we consider matching problem
for patterns with pictures. For example, let A be a picture
fora,b,...,z,and N for 0,1, ..., 9. Then we deal with
patterns like abNN, aTNNNNA, ..., etc. ‘

For string patterns, three matching algorithms are
widely known: the Knuth-Morris-Pratt (KMP)[11], the
Boyer-Moore (BM){7], and the Aho-Corasick (AC)[1].
While the first two are for a single pattern, the third
can simultaneously deal with multiple patterns. In this
method, from a collection of pattetns a finite state ma-
chine is built which finds all occurrences of the patterns
in a single pass through a text. Such a machine is called
a pattern matching machine, pmm for short. It runsin
linear time proportional to the textlength. Moreover, the
construction of the pmm takes only linear time propor-
tional to the sum of the lengths of the patterns. Fig. 1

Fig. 1: The pmm for {ac, ba, bb, baa, bacd}

shows the pmm for patterns ac, ba, bb, baa, bacd. The
solid arrows represent the goto function, and the broken
arrows represent the failure function, where broken arrows
to the state 0 from all but the states 0, 5 and 6 are omit-
ted. The underlined strings below the states mean the
output {unction.

Consider how to construct a pmm for multiple patterns
with pictures. It is easy when the patterns consist only of
pictures. We can construct a pmm easily if we take each
picture as a character. However, it is difficult for patterns
with both characters and pictures.

In this paper, we present an algorithm that builds an
efficient pmm for multiple patterns with pictures. The
machine can be built easily and quickly. While the num-
ber of states is not always minimum, it is reasonably de-
creased. When all the pattern are strings, the algorithm
produces the same machine as the AC algorithm. More-
over, we can easily transform it into a deterministic finite
state machine in the same manner as Aho-Corasick’s (1].

This paper is based in large part on a report [18].
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2 Matching problem for patterns
with pictures

Let T be a finite alphabet .and let £* be the the free
monoid generated by L. We call an element w of £* 2
string and the length of w is denoted by |w|. Let TV =
L* — {£) where ¢ is the empty stiing. We say that uis a
prefiz and v is a suffiz of uv, where u, v are strings. We
shall denote by PRE(u) the set of prefixes of a string u,
and by SUF(u) the set of suffixes of u. For strings u,
w, we say that u occurs ot position ¢ in w iff there exist
strings z, y such that w = zuy and i = |z + 1.

Let A = {Aj,...,Ap} be a collection of disjoint
nonempty subsets of T, i.e.,, @ # A; C T and 4; N Aj=9
(i # j). An element of A is called a picture. A pattern is
chosen from (ZUA)*, and a test from L*. For a pattern 7
and a string w, we say that T occurs at position i in w iff
there exists-a string u € 7 such that u occurs at position
i in w. Then, we consider the following problem:

Given a collection of patterns I =»'{1r1,. sy MR}
and a text T, to find all positions at which =;
occurs in T fori=1,...,k.

Now, let us consider to solve this problem by using the
AC type pmm. From here on, we assume that

A={a,b,...,z}, N={0,1,...,9},
L=AUN, A ={A,N}.

Method 1 The naive solution is to construct the pmm
for all strings in patterns. That is, if the given pattern is
aA, then we construct the pmm for strings aa,ab,...,az as
below.

However, for a pattern A™ the number of states of the
pmm is

26™ — 1

1426426%4...+26™ =
+264+26°+...+ 55

This method thus increases the number of states very
large.

Method 2 Another solution is as follows: We determine
the family of disjoint subdivided pictures from A and the
characters occurring in the patterns, then we construct a
pmm by taking each of these sub-pictures as a characters.
For the pattern a4, we divide 4 into {a} and A — {a} to
obtain:



However, for the pattern Aab, since A is divided into {a},
{b} and A — {a,b}, we obtain:

This pmm is not efficient, because the following pmm suf-
fices for Aab:

A
' A a b i
W (O—) -
reaaananennse® g e’

In this case, on the goto edge labeled A from 0, it is not
necessary to distinguish each character in A, hence there
is no need to make the edge branch off.

These observations tell us, for each goto edge labeled by
a picture, to make it branch off to other states only when
necessary. To do this, during the construction of the fail-
ure function, we shall make such edges branch off accord-
ing to the values of the failure function. Next section de-
scribes our algorithm, based on this idea, for constructing
an efficient pmm.

3 The algorithm

The algorithm for constructing the pmm consists of two
parts, which are summarized in Algorithm 1 and 2. We
illustrate their behaviors by the following examples.

Example 1 Suppose aAbA is the pattern. In the first
part, we treat each picture (denoted by outline letter) as
a character, and obtain the graph:

Z{a}

a A /N ® A
! &) O™

AN

In the second part, we construct the failure function and
make goto paths branch off according to need. We first set
f(1) = 0 since it is the state of depth 1. Then, we would
compute the failure function for all states recursively, in

nearly the same manner as the Aho-Corasick method. We
would set f(2) = 0. However, if the input symbol on which
we have made a goto transition from 1 to 2 is a, the failure
value should be 1; Otherwise, 0. Therefore we shall make
the edge branch off only for a to obtain:

Note that we have copied the subtree whose root is 2 to
the new state 5. Continuing in this fashion, we obtain:

We next give an example for multiple patterns.

Example 2 Suppose that A1, aAc, ab are the patterns.
In the first part, we obtain the graph:




Note that the subtree whose root is 1 has been copied to
the state 3. We then inspect the goto edge from 1 and
get f(2) = 0. Now, we inspect the edges from 3. We first
inspect every edge labeled by a character, and we get:

We next inspect every edges labeled by a picture, and we
set f(4) = 1. Now we determine the next state from 3 for
each character in the picture A. For the character a, the
failure value should be 3, hence we make the edge branch
off as below:

For b, since there already exists an edge labeled by b to
the state 6, we shall copy there the subtree whose root is
4. For the other characters in A, the next states should
be all 4. Thus we obtain:

Continuing in this fashion, we can complete the pmm as
is shown below:
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Thus, our algorithm simply produces an efficient pmm
for multiple patterns with pictures. The text searching
algorithm, which is summarized in Algorithm 3, is exactly
the same as Aho-Corasick’s.

4 Validity of the Algorithm

A pmm M is said to be valid for a set of patterns I’
when with M Algorithm 3 indicates that pattern 7 ends
at position ¢ of text T iff there exists y € 7 with 7 = uyv
and |uy| = i. This section shows the pmm produced by
Algorithm 1 and 2 is valid.

Remark 1 Let by,b2,...,bn € . Then, the following
are equivalent.

(1) There exists a pattern 7 such that for
some y € L*, biba...bpy € 7.

(2) There exists a sequence of non-zero states
71,72y..., m such that

9(0,b1) =11, g(ri,bip1) =riqa 1 < i< m).

Then we define sets and a mapping as follows: For a given
set of patterns ' = {m,..., 7}, weput K = myU...Um.
K is the set of all strings to be searched for. We shall
denote by PRE(u) the set of prefixes of a string u, and
by SUF(u) the set of suffixes of u. Put

W= U PRE(z).
€K
Define a mapping state from W into the set of nom-
negative integers by

{

Note that state is well-defined because of Remark 1. We
also put @ = {state(u)lu € W}, which is the set of all
states reachable from the initial state 0. For all s € Q,
we put PATH(s) = {u € W|state(u) = s}. It should be
noted that for any s,t € Q, s # t implies PATH(s) n
PATH(t) = 0.

We are now ready to characterize the goto, failure and
output functions produced by Algoiithm 1 and 2. k

state(e) =0,
state(ua) = g(state(u),a) (u € W,a € Z,ua € W).



Lemma 1 Let 7 = X; ... X, be a pattern. Then, for any
j with 1 < j < m, there uniquely exists a nonempty subset
Iof @such that Xi...X; = | J PATH(s) and depth(s) =

s€l
j for any s € I, where depth(s) denotes the depth of s,
i.e., the length of the shortest goto path from 0 to s.

Proof. By induction on j. u}

This lemma claims that the goto function g is valid in a
simple sense. But we have to show that Algorithm 2 pro-
duces sufficient branchings of the goto paths to compute
the valid failure function.

Lemma 2 Let s € Q with s # 0. Let u be a string in
PAT H(s), and let v be the longest string in (SUF(u) —
{u})NW. Then, v € PATH(f(s)).

Proof. By induction on the depth of s.
Concerning with the output function out, the following

lemma holds.

Lemma 3 For all s € Q@ with s # 0,

out(s) = {reT|PATH(s)CZ*r}
= {reT|PATH(s)NZ r #0}.
Proof. It suffices to prove the following:

(1) out(s) C {m € T|PATH(s) C L*r}.
(2) {7 €T|PATH(s)n E*x # 0} C out(s).

We shall first prove (1) by induction on the depth of 5. It
follows from the construction of out and Lemma 1 that

out(s) = {x € N|PATH(s) C 7} U out(f(s)),

so it clearly suffices to show that out(f(s)) C {r €
T|PATH(s) C £*x}. By the induction hypothesis,

out(f(s)) € {x € T|PATH(f(s)) C Z*x}.

Since PATH(s) C E*PATH(f(s)) by Lemma 2, if
PATH(f(s)) € E°r then PATH(s) C E*x. Thus we
complete the proof of (1).

We shall then prove (2) by induction on the depth of s.
Since

out(s) = {r € T|PATH(s)N = # 0} U out(f(s))

and by the induction hypothesis, it suffices to see that, for
any 7 € T, if PATH(s)NZ*n # 0 then PATH(s)Nr # 0
or PATH(f(s))n £*x # 0. Suppose that PATH(s)n
T*r #0. Let u € PATH(s) N Z*x, and let u = u'a with
a€ern. I =¢,u=a€ PATH(s)Nr; Otherwise, take v
for u asin Lemma 2. Then, since o € (SUF(u)—{u})nW,
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o must be a suffix of v, hence v € PATH(f(s)) N Z*x.
Thus we complete the proof of (2). ]

The following lemma characterizes the behavior of Al-
gorithm 3 on a text T = aya3...a,.

Lemma 4 After jth pass through the for-loop, Algo-
rithm 3 will be in state s iff PAT H(s) contains the longest
string in SUF(aja;...a;)NW.

Proof. By induction on j.

We now have the following theorem.

Theorem 1 The pmm M produced by Algorithm 1 and
2 is valid.

Proof. By Lemma 3 and 4.

5 Time complexity

It is obvious that the text searching algorithm runs in
linear time proportional to the text length. We then dis-
cuss the time complexity of the algorithm for constructing
the pmm. Clearly, its first part takes only linear time pro-
portional to the sum of the lengths of the patterns. The
second part does so if the patterns consist only of char-
acters, or only of pictures. However, it is not so simple
when the patterns contain both characters and pictures.
Our algorithm is designed to do branchings of the goto
paths according to need during the construction of the
failure function so as to decrease the number of states.
The cost varies depending on how the paths will branch
off. However, even in the worst case, it is bounded by
those of Method 1 and 2 described in Section 2.

Consider the cost of Method 1. We denote by §(X)
the number of elements in a set X. Then, for a pattern
7 = X1 X3... X, the number of strings belonging to = is
given by

I(m) =1X1) - UX3) - ... - W XKem).

Note that §(7) = 1if = is a string pattern. We also de-
note by |r| the length of a pattern . Suppose that I' =
{71, m2,...,m} is the set of patterns. Then, Method 1
takes to constract the pmm linear time proportional to

k
P (CAREAR
=1
We then consider Method 2. Let ¢; be the number
of different characters which appear in the patterns at
least once and which belong to the picture A;, for each
t=1,...,p. Letd(X)=1,f X € &; ¢; +1,if X = A4,.
Put d(r) = d(X;) - d(X2) - ...  d(X,), for a pattern



7 = X1X2...X,n. Then, the cost of Method 2 is linearly
proportional to

k

Ed(r;) BEAR

i=1
Unless a large number of different characters appear in
the patterns, d(7;) is much smaller than §(7;). Moreover,
if many characters appear in the patterns, accordingly the

number of occurrences of pictures in the patterns is small,
hence d(r;) will be 1 frequently.

6 An
two-dimensional pattern matching

application to the

In the two-dimensional pattern matching problem, both
pattern and text are two-dimensional arrays of characters.
Bird [6] described an algorithm to solve this problem by
using the AC method. Suppose that T = {g&,(J}, and let
the pattern be

The method by Bird [6], regarding each row as a string
pattern, builds a pmm as shown in Fig. 2 (a). Then, the
pmm runs on the text row by row searching for the rows of
the pattern array (row-matching). On the other hand, the
machine shown in Fig. 2 (b) is used to determine whether
or not the entire pattern array occurs in the text (column-
matching). The algorithm takes O(nj-ny) time to find all
occurrences of the pattern in a text of size ny x nj.

However, this method has the following defect: Suppose
that we would detect

in the text

T

If we search for the rectangular pattern

(a) row-matching

-{1}
2 )
O—O—0—0-0"—0
(b) column-matching

Fig. 2: The Bird method

by using the above method, we can not find it in the text.
Contrary to this, our method is able to deal with the
pattern containing wild cards, i.e., pictures ‘?’, such as

772 2717
7717 77

? 77
g5z

7172 7177

77 7177

777 I 71717

hence we can find the cross in the text.

7 Concluding remarks

We have presented an efficient matching algorithm for
patterns with pictures. Since it is a natural extension of
the AC algorithm, it has many possible applications.

Japanese texts consist of both 1-byte and 2-byte charac-
ters with shift codes. Shirohara and Arikawa (3] developed
an algorithm to build a pmm for Japanese texts, based on
the AC algorithm. It runs on a Japanese text without
loosing the efficiency, taking each byte as an input sym-
bol. If we combine our algorithm with this, we can deal
with not only 1-byte pictures but also some 2-byte pic-
tures, such as kanji, hiragana, etc., by treating them as
concatenations of two 1-byte pictures.

(6)



When editing texts we often need replace some words
by other words. Arikawa and Shiraishi [4] devised a mul-
tiple key replacement algorithm, which uses a generalized
sequential machine produced in nearly the same manner
as the AC machine. Our algorithm may improve the space
efficiency of this method in some cases [17].

The pattern matching problem is simple, but very im-
portant for both theoretical and practical purposes. Var-
jous many studies on it have been done, some of which
should be mentioned in the rest of the paper. We denote
further by m,n the lengths of the pattern and the text,
respectively.

The average case running time of the BM algorithm
is said to be sublinear. Rivest [14] proved that no algo-
rithm could solve the pattern matching problem in sublin-
ear time even in the worst case. Yao [20] showed that the
run time efficiency on the average of any matching algo-
rithm could not be better than O(n(logm)/m), and this
lower bound is achieved by Bailey and Dromey’s algorithm
[5] o

The BM algorithm in the worst case takes O(mn) time
to lacate all occurrences of the pattern in the text. It can
be modified so that the worst case running time is O(n),
not depending on m [9, 2, 15]. Guibas and Odlyzko {10]
proved that the BM algorithm performs only at most 4n
character comparisons when the pattern does not occur in
the text .

The AC algorithm is an extension of the KMP algo-
rithm to the multiple pattern problem. Similarly, several
fast algorithms for multiple patterns have been devised as
extensions of the BM algorithm [8, 12, 16].

Approximate pattern matching has also been studied.
Three editing operations for a string are considered: in-
sertion, deletion and substitution of a letter. The distance
between two strings are defined as the minimum total
number of such editing steps needed for converting one
of the strings to the other. The problem is, for a given
integer k > 0, to find all substrings of the text each of
which has a distance of at most k from the pattern. Lan-
dau and Vishkin [13] presented an algorithm to solve the
problem that runs in O(m? + k?nr) time. If only the sub-
stitution operation is allowed, it takes O(k(mlog m + n))
time. Ukkonen [19] proposed another interesting method:
A deterministic finite automaton is built which accepts the
set of all strings having a distance of at most k from the
pattern. Although the construction of such automaton is
not so efficient, this method is useful in some applications
since the text scanning requires only O(n) time.
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Algorithm 1

input: A collection of patterns I' = {ay,..., 04 }.
output:Partially computed functions g and out.
method:

begin
nst := 0;
for i:=1 to k do enter(a;);
for VX € A UZX such that g(0, X) = fail do
9(0,X):=0
end

procedure enter(B,B;...Bp):
begin .
state := 0;
for j :=1 to m do
if g(state, B;) # fail then
state := g(state, B;)
else begin
g(state, B;) := nst;
state := nst;
nst:i=nst+1
end;
out(state) := {B;B;...Bp}
end

Algorithm 2

input: Partially computed functions g and out.
output:Functions g,f and out.

method:

begin
. queue := empty;
for Yc € T such that g(0,c) = s # 0 do begin
queue := gqueue - s;
f(s):=0
end;
for VX € A such that g(0, X) = s # 0 do begin
queue := queue - 8;
f(s):=0;
for Ve € X do
"if g(0,¢) = t # 0 then
copy-subtree(s, t)
else
9(0,¢):= s
end;
while queue # empty do begin
let queue = r - tail
queue := {ail;
for Vc € I such that g(r,c) = s # fail do begin
queue := queue - 3;
fst:= £(r)
while g(fst,c) = fail do fst:= f(fst);
f(s):= g(fst,c);
out(s) := out(s) Uout(f(s))
end;
for VX € A such that g(r, X) = s # fail do begin
queue := queue- s ;
fst:= £(r);
while g(fst, X) = fail do fst:= f(fst);
f(s) = g(fst, X);
for Ve € X do
if g(r,c) = t £ fail then
copy_subtree(s,t)
else begin
fst:= f(r)
while g(fst,c) = fail do fst:= f(fst);
st:=g(fst,c);

if st # f(s) then begin
new := nst;
nst:=nst + 1;
copy subtree(s, new);
g(r, ¢) := new;
queue := gqueue - new;
f(new) := st;
out(new) := out(new) U out(f (new))

end else g(r,c):=s

end;
out(s) := out(s) U out(f(s))
end
end
end

procedure copy_subtree(stl, st2) :
begin
queue? := {(stl,st2)};
while queue2 # empty do begin
let queue? = (r1,72)- tail
queue? := tail;
out(r2) := out(r2) U out(rl);
for VX € AU X such that g(r1, X) = s # fail do begin
if g(r2, X) = fail then begin

st:=nst;
nst:=nst+1;
9(r2,X) := st

end else st := g(r2, X);
queue2 := queue? - (s, st)
end
end
end

Algorithm 3

input: A text string T = aja;...a, and a pattern
matching machine M with functions g, f and out.

output:Locations at which patterns occur in T'.

method:
begin
state := 0;
for g:=1ton do
begin
while g(state,a,) = fail do state := f(state);
state := g(slate, ag);
if out(state) # empty then print ¢, out(state)
end
end
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