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This paper proposes a new representation method of a tertiary protein structure, in
which each structure is represented by a sequence of line segments. A sequerice of line
segments can be computed from a sequence of n points (a sequence of Ca atoms) in

O(n3) time by means of a combination of the least-squares fitting technique and the
dynamic programming technique. Moreover, this paper describes an apphcatlon of the
representation method to the comparison of teltlaly structures.



1 Introduction

Comparing tertiary (or 3D) structures of proteins is very important in bio-informatics
[2, 3, 4, 5, 6]. In most of previous studies, a tertiary structure has been represented by
a sequence of points or a list of types of fragments (for example, (a-helix, turn, a-helix,
B-strand, --- )). However, either is not adequate in some cases since the former repre-
sentation is too detailed while the latter representation is too rough. Thus, interinediate
representation is sometimes required. In this paper, we propose a new method for such
representation, in which a 3D structurc is represented by a sequence of line segments
(see Fig. 1). Moreover we apply the proposed representation method to the comparison
of two 3D protein structures.

Figure 1: An example of a sequence of segments computed from PDB data of pdb4hhb.

2 Representation Method

In this section, we describe algorithms for a new representation method of a 3D protein
structure. First a basic algorithin is described, and then an improved one is briefly
described.

2.1 A Basic Algorithm

We assume that each 3D protein structure is stored as a sequence of points (i.e., a
sequence of Ca atoms). Thus, we let P = (p,,---,p,) be a 3D structure, where each
p; denotes a point in the 3D Euclidean space. Then, we compute a sequence of line
segments in the following way.

(i) Compute a sequence of lines approximating an outline of a protein structure P.

(ii) Compute a sequence of line segments from the sequence of lines obtained in step

(i).



First we consider step (i). Let LS = (Ly,La,- -+, L) be a sequence of lines, and
I = (i1, -,ix4+1) be a sequence of integer numbers such that i, = 1, igy; = n and
ik < tgs1. We define the score FIT(P, LS, I) by
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where d(p]-,Lk) denotes the distance between a point p; and a line Ly. In step (i), we
compute the pair (LS, I) that minimizes ' under the condition that FI T(P,LS,I) <é,
where § > 0 is a fixed constant. In order to compute such pair (LS, I), we con-
sider the following problem: given P and K, compute the pair (LS, I) that minimizes
FIT(P,LS,I). This problem can be computed in O(IKn®) time, using the least-squares
fitting technique and the dynamic programming technique. Here, we briefly describe
the algorithm.

Let LSF(i,5) (¢ < j) denotes the sum of squares of distances that is computed
from an application of the least-squares fitting technique to p;, iy, -+, P;- That is,

j

LSF(i,j) denotes mLin Z d(py, L)%, where the minimum is taken from all lines in three-
k=i

dimensions. From P and K, we construct a directed graph G(V, E) such that

V = {(p,,k)|p; € P,1 <k < K}U{START,GOAL},
E = {(START,(p, 1))} U{{(p;, K —1),GOAL)} U {{(p;, k). (p;, k + )i < J},

where the costs of edges are given by

cost((START, (p;,1)}) = LSF(1,1), >cost(((p,~,K —1),GOAL)) = LSF(i,n),
cost({(p;, k), (p;, k +1))) = LSF (i, ]).

Then, a minimum cost path (i.e., a shortest path) from START to GOAL corresponds ‘
to a pair (LS,I) that minimizes FIT(P,LS,I). Thus, such a pair can be computed
by solving a shortest path problem for G(V, E). Since G(V,E) has a special form,
this shortest path problem can be solved in O(|E|) = O(Kn?) time using the dynamic
programming technique. However, O(n) time is required to compute a cost of cach edge.
Therefore, the pair (LS, ]) that minimizes FIT(P, LS, I) can be computed in O(Kn?)
time. Note that the above problem is a variant of the I{-link path problem [1], which is
well-known in computational geometry.

Using the above algorithm, the following procedure computes the pair (LS, ) that
minimizes K under the condition that FIT(P,LS,I) <.

Procedure ComputeSequenceQ f Lines(P, )
begin
K =1
repeat
Compute (LS, I) that minimizes FIT(P, LS, I) where |LS| = K;
K=K+1
until FIT(P,LS,I) < é;
Output (LS, I)
end



If this procedure is implemented as it is, it takes O(n®) time. However, constructing
graphs incrementally, this procedure can be implemented so that it works in O(n?3)
time. Therefore, we can obtain a sequence of lines LS such that K is-the minimum and
FIT(P,LS,I) £ § in O(n®) time. The choice of § is important because & affects the
quality of the obtained sequence. Currently, we use § = 2.35A.

Next we consider step (ii). Step (ii) is very simple although it is rather ad hoc. For
each pair of lines (Lg, Ly41) (1 € & < i), we compute a point s = g_r where g € L;,
and r € L;y; are the points such that |g7| is the minimum. I\/Ioreover we compute a
point sp € Ly (resp. sy € L) such that |55p;| (resp. |35P,]) is the minimum. Finally,
we obtain a sequence of line segments SS(P) = (3531,518z, -+, 5_15r)-

2.2 Improvement

Although the above algorithm works well in most cases, there are some cases where good
approximations are not computed. For example, in the casc of Fig. 2, sequence (A) is
computed. However, in this case, sequence (B) should be computed. Thus, we have im-
proved the algorithm so that such sequences as (B) can be computed. Morcover similar
miscellaneous improvements have been done too, where details of the improvements are
omitted in this paper. These improvements are effective not only for obtaining good
approximations but also for reducing the computation time. Since badly fitted lines are
ignored in the improved algorithm, the computation time is reduced. Table 1 shows the
CPU times for the basic algorithm and the improved algorithms, where structure data
in PDB (Protein Data Bank) and SUN SPARC STATION-10 are used. You can see
that the computation time is considerably reduced by these improvements.
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Figure 2: A bad case for the basic algorithm.

3 Application to the Comparison of 3D Structures

The above method can be applied to the comparison of 3D protein structures.

From a sequence of segments SS(P) = (s, - -, $x), we construct a string STR(SS(P))
as follows, where each s; denotes a line segment. Let ¢(s;) be the centroid of s;. For
segments s; and sj, [; ; denotes the length between c(s;) and ¢(s;), oy ; denotes the angle



Table 1: CPU times (sec) for the basic algorithm and the improved algorithm.

| Structure | BASIC [ IMPROVED |

pdbltgn 137.33 2.18
pdb2trm 139.82 1.98
pdb2fvb 125.80 2.19
pdb2fvw 135.99 2.36
pdb4dhhb 24.26 1.01
pdb5mbn 33.48 1.11

between s; and s;, f;; denotes the angle between c(s;)c(s;) and s;, and v, ; denotes the
angle between ¢(s;)c(s;) and s; (see Fig. 3). For each s; such that i < K — D, lot
ST R(s;) be

((liie1> @iints Biirts Yiit1) s (liid2s Qiibas Biivzs Yiie2)s -+ » (liid Dy Qiie 0y Bisit 0y Vii+ D))

where D is an appropriate constant. Then, STR(SS(P)) is obtained by concatenating
STR(sy), STR(s2), -+, STR(sy—p), where concatenation of (t;,---,t,) and (u,- -, g)
is (t17 o 7tp’u1a toe 3uq)'

" Figure 3: Definitions of [; j,«; ;,0:; and ~;; used in STR(SS(P)).

Next, we define a score between (1; j, @i, j, Bij, Vij) and (L jr, o ji, Bir jey Yir jo) BY
Cr — Cofliy —lvy| — Cslaij — aw | = CalBij — Byl = Cslvij = vl

where C;,---,Cs are appropriate constants. Then, for two protein structures I’ and
Q, we compute an optimal alignment between STR(SS(P)) and STR(SS(Q)). by
means of a conventional alignment algorithm for two strings, where each quadruplet
(L j» @i jy Bij, vi,j) corresponds to a character. Finally, we consider the score of an opti-
mal alignment as one indicating the similarity between P and Q. It is expected that the
score is high if P is similar to ). Note that not only local similarities but also global
similarities are taken into account if large D is used.



We have applied this comparison method to several PDB files. Table 2 shows the
results, where a score computed by the above method is shown for cach pair of protein
structures in PDB. You can see that scores for the first three pairs are much higher
than those of the other pairs. Indeed, two structures are similar to cach other in the
first three pairs, and two structures are not similar to each other in the other pairs.
Therefore, we can conclude that the proposed representation method is useful for the
comparison of 3D protein structures.

Table 2: The scores obtained from the comparison of protein structures.

| P Q | Score P Q | Score
pdb2fvb  pdb2fvw | 95.22 || pdb2fvb pdb2trm | 56.93
pdbltgn pdb2trm | 83.01 || pdb2fvb pdb4hhb | 53.87
pdb4hhb pdb5mbn | 83.06 || pdb2fvb pdh5mbn | 51.78
pdbltgn pdb4hhb | 56.23 || pdb2fvw pdb2trm | 53.65
pdbltgn pdb2fvw | 57.72 || pdb2fvw pdb4hhb | 52.74
pdbltgn pdbdmbn | 57.58 || pdb2trin  pdb5mbn | 55.80

4 Concluding Remarks

We have proposed a new method for representing 3D protein structures as well as
its application to the comparison of 3D protein structures. Although the proposed
comparison method works well, a correspondence between two sequences of line segments
can not be obtained. It is inconvenient for practical applications. Thus, we are now
improving the method using the two-level dynamic programming technique introduced
in [5], which enables us to find a correspondence between two sequences of line segments.
Details will be reported elsewhere.

Although we have described one application only, we believe that the proposed rep-
resentation method can be applied to other problems. For example, it might be applied
to clustering of protein structures. Thus, applying the method to other problems is
important future work.

‘The method might be modified for the case where line segments are replaced by
special kinds of curves, and better fitting might be obtained. Thus, it is also important
to study such variants.
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