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Abstract — The Subspace Network, a type of homogeneous neural network, does not converge
to the dominant eigenvectors, which provide the principal component axes, due to its complete
symmetric criterion. A new criterion called the Weighted Subspace Criterion whose solutions are
the true eigenvectors is derived by making a small symmetry—breaking change to the Subspace
Criterion. A modified learning rule, which can still be implemented on a homogeneous network
and gives the dominant eigenvectors, is given by making the corresponding change to the learning

rule of the Subspace Network.

1 Introduction

Typically, a picture or speech signal contains
much redundant information which can be con-
siderably removed. In feature extraction and
data compression, the Principal Component
Analysis, or PCA, is a well-known standard and
general purpose technique of dimensionality re-
duction [8], [17].

The technique reduces the number of dimen-
sions by discarding the linear combinations which
have small variances, or by finding a linear trans-
formation which transforms a random data vec-
tor x to a lower dimensional vector y where the
sum of variances of each element of y is max-
In other words, the lower dimensional
vector y contains as much information as pos-
sible about the data vector x where the mean

imum.

squared error is used as the criterion. The op-
timal solution to the PCA problem is given in
terms of the eigenvectors of the data covariance
matrix [1], [3].

Since computing the eigenvectors is very com-
plicated, it is usually not possible to solve the
PCA problem in on-line data compression ap-
plications like real-time image or speech cod-
ing, so some approximation techniques like the
Discrete Cosine Transform (DCT) are used in-

stead [25], [2]. A large number of algorithms im-
proving the speed of computing the PCA prob-
lem have been suggested.

Recently, parallel on-line computations and
neural networks have offered advantages in com-
puting speed and hardware modeling. To solve
the PCA problem, many algorithms for parallel
computations and for neural networks have been
researched.

Firstly, the Constrained Hebbian Learning rule
was introduced as a PCA Neuron [16], a ba-
sic building block for feature extraction under a
simple Hebbian rule with a nonlinear feedback
term. It is shown that this neuron is able to
find the first principal component of the input
vector stream using a simple learning rule. Af-
ter that, various learning algorithms and related
networks have been suggested for principal com-
ponents computation [6], [9], [11], [12], [14], [17],
(18], [19], [20], [23], [24], [26], [27]. Especially
in [17] and [19], the learning rules were asso-
ciated with constrained optimization of a PCA
Criterion in a rigorous way. Because of their par-
allelism and adaptivity to input data, this type
of learning algorithms and their implementations
in neural networks are potentially useful in real-
time feature detection and on—line data compres-
sion tasks.



To model biological neural networks and to im-
plement artificial neural networks in parallel, the
following properties are required:

e the value of any parameter in the network is
bounded.

e all processing elements in the network use the
same computational algorithm, called homo-
geneity.

In all the PCA learning suggested here, the
growths of values of all parameters are controlled
by a feedback term, and the change of any weight
of any neuron uses only local variables: a value of
that weight, an output of that neuron, an input
to that weight, and a feedback term from other
neurons.

The networks, suggested in [19] and [24], which
learn the true principal component vectors, are
not homogeneous as different neurons use differ-
ent algorithms.

However, for [6], [11], [18], and [20], the ho-
mogeneity property is valid, since every neuron
learns with exactly the same learning algorithm.
In these homogeneous learning networks, unfor-
tunately, the true principal component vectors
are not obtained, but any basis of this principal
components subspace is possible. It is because of
the fully symmetrical criterion which underlies
the learning algorithm. In many applications of
data compression, the principal component sub-
space seems to be insufficient [24].

A new learning algorithm, which can learn the
true principal component vectors and also has
the homogeneity property, has been studied here.
It is shown that the homogeneous network can
be used to produce the true principal compo-
nent vectors when a small change is made in the
learning algorithm. If each neuron has a scalar
parameter of its own which is a little different
from that of the other neurons, then the learn-
ing algorithm of the network breaks the complete
symmetry but still can be implemented in a ho-
mogeneous network. Note that in the biological
neural networks, the gain or parameter of each
neuron would not be exactly the same as that
of other neurons, but it is true that each neuron
uses the same algorithm as the others.

Chapter 2 gives various criteria for the PCA
optimization problem. The basic PCA Criterion
is shown. The Asymmetrical Criterion giving
the true principal component vectors, and the
Subspace Criterion giving only the subspace of
the principal component vectors are described.
The Weighted Subspace Criterion, whose solu-
tions are the principal component vectors, is in-
troduced.

Based on the optimization criteria, the learn-
ing algorithms are derived in Chapter 3 by us-
ing a gradient ascent technique. Chapter 4 gives
a simulation of these learning algorithms. The
conclusions are given in Chapter 5.

2 Optimization Problems

2.1 Asymmetrical Criterion

Assume that z is a random zero—mean vector in
RE and w; is a weight vector in R¥. Then
y, = wiz is the first principal component of z
if the variance of y; is maximally large under the
constraint that the norm of wy, |Jwy|| = (wlw;)Y2,
is constant. Usually this constant is taken as one.
The PCA Criterion (see e.g., [1]) is

Criterion 1 PCA Criterion

maximize: JFCA (wl) = Ez{y%}
= Ez{(w{w)z}
= w! Cwy,
constraint:  |Jwy]] = 1,

where F,{-} is the expectation over z, and the
matrix C is the K x K covariance matrix defined
by C=E,{z2T}.

Tt is well-known that the solution is given in
terms of the eigenvectors ¢i,...,cx of matrix
C [1]. Assume that the corresponding eigenval-

ues, A1,..., Ak, is in decreasing order,

A>A> > A >0

(1)

Since A is larger than the others, then there are
only two solutions,

wy, = :l:cl.

It simplifies the consequent analysis if we as-
sume from now on that the condition in (1)



holds for the eigenvalues of covariance matrix C.
All the consequent analysis could be carried out
without this assumption but in some cases the re-
sults would become more complicated. Usually
in a real-world situation, e.g., in speech or image
processing, the eigenvalues of covariance matri-
ces will be all different and strictly positive.

Criterion 1 can be generalized to N princi-
pal components, with 1< N<K. Denoting the
nt principal component vector by w, and the
nt principal component of z by y, =w!z where
1<n <N, a possible extension is

Criterion 2 Asymmetrical Criterion

o PCA _ 2
maximize:  J; " (wy,) = E,{y;}
= wg: Cwy,
constraint: w;";wn = bpmn, m < n.

With this criterion, the first principal compo-
nent vector w; is defined independently of the
others, the second vector w, is orthogonal to
wi but independent of the others, and so on.
The criterion is not symmetrical with respect to
Therefore, this is called
the Asymmetrical Criterion. There are only two

Wy, and w,, m # n.
unique solutions
w, = tc,

for each n < N under the assumption in (1).
Note that the terms y, = wlz become uncorre-
lated.

2.2 Subspace Criterion

The fully symmetrical criterion was considered
in [8], [15], as an extension of Criterion 1:

Criterion 3 Subspace Criterion

maximize:  JyO*(wy, ..., wy)

N 2

n=1

Y T

=3 w, Cw,,
n=1
P T —

constraint: W, Wn = Opyp.

This criterion can be written in terms of a
matrix W = (w; - - wy) whose columns are the

weight vectors wy:

maximize: JJ}:]CA(’wl, ce, W)
= trace(WTCW), (2)
constraint:  WIW = I. 3)

Eq. (3) implies that the matrix P = WWT,
is an orthogonal projection matrix satisfying
P?2=PpP, PT=P. Due to these properties, (2) can
be written as

JEA (wy,. .., wy) = trace(WTCW)
= trace(CWWT) = trace(CP)
= trace(PCP) = trace(E,{Pza” PT})

= E,{||Pz|"}. (4)

Thus the problem is completely equivalent to the
problem of finding the N-—dimensional subspace
of R¥ such that the squared norm of the projec-
tion of x onto the subspace is maximally large on
the average. Therefore, Criterion 3 will be called
the Subspace Criterion.

This problem was solved in [15]. The solu-
tion was shown to be the subspace L(cy,...,cn)
spanned by the N eigenvectors c¢i,...,cy of
the matrix C corresponding to the eigenvalues
Al,...,An. Thus the solution of this criterion is
given by

L(wy,...,wy) = L(c1,...,cN).

This means that a set of wy,...,wy can be any
basis of the subspace L(ci,...,cy). Thus it does
not follow that the terms v, =wlz will be uncor-

related.

2.3 Weighted Subspace Criterion

Usually the numbers y, are coded e.g. by the
Huffman code or arithmetic code before being
stored or transmitted {25, [2]. In this case, com-
pression is optimal if the numbers y, have as un-
equal variances as possible. Also, sometimes the
higher—order principal components are very small
and can be omitted altogether.

Therefore, it is important in practice to find
not only the principal eigenvector subspace but
also the principal components themselves. It is
the purpose to show in the following how a small
change in the Subspace Criterion will reduce the



ambiguous solution to a unique set of eigenvec-
tors.

From Criterion 3, we make a change in the con-
straint to change the problem to:

Criterion 4 Weighted Subspace Criterion
Let w, be any fixed real numbers such that

wyS>wy > >wy >0

(5)

J]IV)CA(wl, e ,wN)

maximize:
N
= Z 11)3; Cwn1 (6)
n=1
constraint: wgwn = Wndmn, (7)

In terms of matrix W = (w; - wy), (7) be-
comes

WTW = Q = diag(w: - - - wn).

Because of the weighting parameters w, in (7),
this will be called the Weighted Subspace Cri-
terion. This criterion is not symmetrical with
respect to wy, and w,, m # n.

It turns out that when these w, are not equal,
even if they are arbitrarily close to one, the prob-
lem has a unique solution (except for the sign).
This is shown in the following.

Theorem 1 Assume that the eigenvalues of C
satisfy the condition in (1). Then the Criterion 4
is satisfied if and only if

Wy, = /Wy Cp, (8)

where ¢, is an eigenvector of C corresponding to
the eigenvalue A,.

One can check easily that when (8) holds, J3™*
has the maximum value,
N
max Jyo* =

n=

N
> wrAn.

wnetCep =
1 n=1

The complete proof is given in [21].

3 Learning Algorithms

Theorem 1 gives the closed—form solutions for the
Criterion 4, which can be used to get numeri-
cal values in an application.
the closed—form solutions directly, the covariance

However, to use

&
&
&3
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The linear neural network.

Figure 1:

matrix C must be known. This is rarely true in
practice. Usually it must be estimated from sam-
ples, and then an infinite number of samples are
needed to get a zero—error estimate.

Another alternative, emphasized earlier in [19],
is to use the constrained optimization problems
suggested above to derive corresponding con-
strained gradient ascent algorithms. Using this
technique for each suggested criteria, the corre-
sponding algorithms can be derived. The algo-
rithms can be implemented on a neural network
shown in Figure 1. The weights of the network
will then converge to the solutions of the prob-
lems.

3.1 Asymmetrical PCA Learning

In [19] and [24], the learning algorithms are ob-
tained from Criterion 2 based on the idea of the
numerical technique for computing several eigen-
vectors of a matrix. The first principal compo-
nent vector, or the first eigenvector of the co-
variance matrix of input data is learned by the
first neuron independently from other neurons,
while the second principal component vector is
learned by the second neuron using a feedback
from the first neuron, etc. According to that, all
the true principal component coefficient vectors
are learned by these learning networks.

Other algorithms based on Criterion 2 have
been proposed in [6], [9], [23], and [24]. Similar
units were employed in the Perceptual Network
of [14], and it was shown that they can learn ef-
ficient features from the input space. It was also
pointed out that the PCA criterion is optimal in
terms of information loss.



3.2 Subspace Learning

One of the learning rule for matrix W which is
obtained from Criterion 3, was presented in [18],
based on the mathematical analysis in [19] by
using the following constrained gradient ascent
technique. First, the gradient of ™V_ (wlx)?
with respect to w, is 2(wlz)z, then an uncon-
strained gradient ascent algorithm based on sam-
ples 2® would be

i)T

witD) = w4 5,z Oz®

n wizi ) (9)
where i denotes the discrete time, 1 =0,1,2,...,
and +; is a positive scalar step size or gain which
usually depends on the time step 7. In matrix

form, with W= (w;...wy), (9) is equivalent to
WD) = ) 4 (O ),

Next, in order to have orthonormal column vec-
tors witY for W+ orthonormalization after
each step has to be done:

W(i+1) —
W(i+l) —

w + %x(i)x(i)Tw(i),
W(i+l) (W(i+1)TW(i+1))—%'

(10)
(11)

This clearly implies

W(i+1)Tw(i+l) —

3

) = 6mn'

(+1)T,,

or w,, n

If (10) and (11) are expanded as a power series
of the parameter v;, and second order terms are
omitted, the following Subspace Learning Algo-
rithm (SLA) is obtained:

Algorithm 1 SLA

Wi =l 4y gl ),
W = e,
. N .
£ = 3 g,
n=1
n = 1,...,N.

It has been shown in stochastic approximation
theory (cf. e.g. [13]) that when v; is small, this
algorithm will converge to the solution of the Cri-

terion 3. The algorithm was analyzed in more
detail in [22].

Compared to the conventional way of estimat-
ing the data covariance matrix and computing
its eigenvectors and eigenvalues, this type of al-
gorithm has some advantages: it needs no stor-
age for the covariance matrix because the basis
vectors are computed directly from input data,
and it can also be used in cases when the in-
put is nonstationary, to track slow changes in
statistics. It also has some relevance to models of
feature extraction in biological neural networks.
Especially, this algorithm is suitable for imple-
mentations on massively parallel networks. The
network implementation was considered in [18]
where it was called the Subspace Network. An
analysis of the same learning rule was earlier pre-
sented in [26].

It was shown in [4] and [7] that using the 3—
layer auto—associative MLP net and the standard
Back Propagation algorithm, the hidden layer
will learn the principal component subspace of
inputs, (see also [3], [10]).

3.3 Weighted Subspace Learning

In analogy with the derivation of Algorithm 1,
the following constraint gradient ascent algo-
rithm is firstly obtained from Criterion 4:

W) = w6 + %w(i)x(i)TW(i),
Wi+ — V”V(i+1)(W(Hl)TW(i-&-l))—%Q%,

(12)
(13)

corresponding to (10) and (11), respectively.
These imply

WEHLTw ) — Q = diag(w; - - - wy).

Assume that <y is small, then we obtain (omitting
the step index 7)

W) — w4+ yi(zzT W — WWTa:xTWQ_l).

Denoting
D = diag(6;---0y) = Q7
or .
0n=u-)~n,n=1,...,N, (14)

the following Weighted Subspace Learning Algo-
rithm is then obtained:



Algorithm 2 Weighted SLA

W = w4 s - 0,301,
W) = Tl ‘
. N
O = 3 g,
n=1
n = 1,...,N.

Comparing to Algorithm 1, the difference is the
set of parameters §,. They are scalar parameters
that can be arbitrarily close to one.

This learning rule can be easily implemented
in the Subspace Network in [18]. The only differ-
ence is that the parameter 6, must be available
at each neuron n. Note especially that the effect
of parameter 6, is local only to unit n itself; the
feedback signal f remains the same as in the
original version. Therefore, also this algorithm
fulfills the requirements for homogeneity.

By Theorem 1, if the 6, are positive and all
different, then the true eigenvectors can be ob-
tained. This happens even when the deviation of
6, is arbitrarily small.

4 A Simulation

The convergences of two types of learning algo-
rithms: the SLA (Algorithm 1) [18] and the new
algorithm, the Weighted SLA (Algorithm 2), has
been studied by a small-scale numerical simula-
tion. In Algorithm 2, the 6, =w, ! had values

0,=0.9, §,=1.0, 3=1.1.

The initial values for the weights W were random
numbers, and 7y; was the following decreasing se-

quence:
| ! | = trunc( d )
;= —— ; J=trunc(;=).
Ni=oyy 200
x w y=WTt
&
&2 Y1
& Y2
€a Y3
&

Figure 2: The five-input three—output linear network used
in the simulation
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Figure 3: The distributions of uncorrelated elements of a
five-dimensional input vector T used in the simulation

A sequence of zero-mean random input vec-
tors x=[& - fs]T was applied to the five-input
three-output linear network shown in Figure 2.
The distributions of uncorrelated elements of an
input vector z are shown in Figure 3.

Since the distributions of input elements are
known exactly, the results can be computed the-
oretically. Because all elements of an input vec-
tor x are uncorrelated, E{&¢;} =0, i # J, and
the correlation matrix can be written as

E {zz"}
E{&:&1} - BE{&&s} E{&g} O

E{é:sfl}‘“E{";:sfs} 0 E{&}

Because the distribution of each element of an
input vector z is uniform, this expectation value
can be computed easily:

E{g} = [ _&P(E)dén
Y 2(gn=2 _ 1
= [, 8@ = 5o
Then the correlation matrix can be written as
100 0 O
0L o0 0 0
E{zz"}=|00 5 0 0
1
000 & 0
00 0 0 =5



Table 1:
WEIGHTED VECTORS AND THEIR INNER PRODUCTS AFTER 40,000 TRAINING STEPS

Algorithm W = (wjwaws) wTw
T 0.945 0326 00387 | .
Algorithm 1 0165 0371 0914 1.000 0.000 0.000 |
0.284 —0.870 0.404 0.000 1.000 0.000
(SL4) -0.001  0.001 0.001 0.000 0.000 1.000
| 0000 0000 —0.001||" -
[ 1.054 —0.002 —0.002 1] |
Algorithm 2 0.002 1.000  0.001 1.111 0.000 0.000 |
- 0.003 —0.001 0.954 0.000 1.000 0.000
(Weighted SLA) | | _o.001 0.002 ~0.001 | | | 0,000 0.000 0.909
0.000 —0.001 0.000 | | - :

Thus, the eigenvectors are ¢; = (1 0 0 0 0)7,
c;=(01 00 0)7, and so on, and the eigenvalues
are A\; = %, Ay = %, and so on. These satisfy the
condition of the decreasing order in (1).

Table 1 shows the weight matrix W and the
inner products between the weight vectors wp,
after 40,000 training steps.

In both cases, the weight vectors became or-
thogonal and spanned the subspace of the three
dominant eigenvectors, L(cy,c,c3). However,
only Algorithm 2 produced the directions of the
eigenvectors themselves. The weight vector of
the first neuron, with the smallest 6, tends to the
first eigenvector multiplied by a scalar number,
and so on. The inner products wlw, = |jwy||?,

flwi]? = wi = 67" = 0.97" = 1.1111,
flwal? = wp = 651 = 1.0 = 1.0000,
lwsl|? = w3 = 651 = 1.17! = 0.9091,

are in good agreement with (14) and Theorem 1.

5 Conclusions

A new criterion, called the Weighted Subspace
Criterion (Criterion 4), has been proposed to give
the true eigenvector basis as the unique solu-
tion. A new corresponding algorithm, called the
Weighted Subspace Learning Algorithm, (Algo-
rithm 2), was derived from the criterion by using
the constrained gradient ascent technique. This
new algorithm can still be implemented in the ho-
mogeneous neural network like the Subspace Net-
work. The simulation showed that the conver-
gence of the algorithm is in good agreement with
theory. Table 2 shows that this algorithm has
both of required properties comparing to other
algorithms which derived from previously known
criteria.

Many of the results, like convergence proofs,
the Non-linear Weight Subspace Learning, and
its parallel neural networks implementation, are
included in [21] and [22].

Table 2:
COMPARISON OF THREE DIFFERENT STATISTICAL OPTIMIZATION CRITERIA

Criterion Algorithm Homogeneity | Solutions are principal
holds component vectors
Criterion 2
rierion e.g. [17,[24] No Yes
(Asymmetrical)
Criterion 3
rikenon e.g. Algorithm 1 [18] Yes No
(Subspace)
Criterion 4
-n erion Algorithm 2 Yes Yes
(Weighted Subspace)
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