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Error Analysis of Circle Drawing with Logarithmic Arithmetic
Tomio Kurokawa

Aichi Institute of Technology, Department of Industrial Engineering
1247 Yachigusa, Yagusa—cho, Toyota 470-03 Japan

Abstract Logarithmic Arithmetic (LA) provides a very fast computational method. Its exceptional speed has
been demonstrated in signal processing and then in computer graphics. But the precision problem of LA in
computer graphics has not been fully examined. In this paper analysis is made for the problem in picture
generation, in particular for circle drawing. Theoretical and experimental error analysis is made for the circle
drawing. That is, some expressions are developed for the relative error variances, then they are examined by
simulation experiments. Some comparisons are also done with floating point arithmetic with equivalent word
length and dynamic range. The results show that the theory and the experiments agree reasonably well and
that the logarithmic arithmetic is superior to or at least comparable to the comresponding floating point
arithmetic with equivalent word length and dynamic range. Those results are also verified by visual inspections
of actual drawn circles. It also shows that the conversion error from integer to LNS (logarithmic number
system, used in LA), which is inherent in computer graphics with LA, does not make too much influence on
the total computational error for circle drawing. But it shows that thc square—rooting makes the larger
influence.



1. Introduction

LA is a third type of arithmetic which uses a num-
ber system called logarithmic number system (LNS)»®,
So far it has been studied mostly as an alternative means of
computation for signal processing®®, and then for co-
mputer graphics and image processing®®. It has been
verified to be very fast. The quality of LNS computation
applied for picture generation, however, has not been
examined fully except for some experiments®. The effect
of the integer-to—~LNS conversion and the square-rooting
errors is also an important concern in this paper. In the
following, detailed analyses and discussions are given about
the computational quality of LNS applied for circle draw—
ing.

Definition: In LNS, a number is expressed by a binary se—
quence®:

T T 2 1))

where s, d;, and fyare O or 1; s and d, are the sign of the
number and the exponent, respectively; d-part and f-part
combined represents the exponent of the number; the base
is assumed to be a constant a (greater than 1); [.] is the
assumed binary point of the exponent. Then, the sequence
(1) indicates the number,

iad—ym.l-pan. (2)
Method of Computation: Due to the number expression
form, many computations become simple. Let a*and a’ be
two numbers expressed as in the form of (2). In LA,

multiplication/division, squaring/squarc—rooting, addition
and subtraction can be done as in the expressions: (3), (4),
(5) and (6), respectively.

a* * o’ = a™;
@ = o

a*/a =a"v. 3)
(@")? = a*% @

If ot = a* + @, then z = x + log,(1 + @), (x2y); ()
If o = a* - @, then z = X + log,(1 - @), (x2y). (6)

As shown in (3), LA multiplication/division is equivalent to
fixed point number addition/subtraction; squaring/square—
rooting, as Egs.(4) show, becomes equivalent to a one bit
shift operation. As for Addition, if log,(1+a*™) is pre-co—
mputed as a look-up table with the table address y-x, then
z can be obtained quickly as the expression (5) shows.
Subtraction can be done in a similar fashion with
log,(1-2"™), the additional lookup table.

2. Previous Work

One way to use LNS in picture generation is to
make conversions before and after the necessary computa—
tions in LNS. This method is very simple but effective. In
computing fixed point numbers, the numbers are first con—
verted to Jogarithmic numbers (LN); then computations are
done in LNS; and whenever necessary, the results are

converted back to fixed point numbers. Those conversions
of integer-to-LNS and vice versa can be done by look-up
tables (LUT).

Digital pictures are usually defined as a two variable
function f(x,y), where f is the pixel intensity and x and y
are coordinate addresses. In many cases, all of f, x, and y
are fixed point numbers (usually integers). Then f(x,y) can
be generated using the above method. For curve drawing,
the dot generation can be done by computing y=g(x) or
x=h(y), where g and h are curve functions.

Using the above LNS computation method, almost
any kind of picture generation is possible®®, as long as
the picture is expressed in the computational form: f, g or
h. Circle drawing is a typical example. Figure 1 is the
circles generated by the method. They are generated by
just computing the expression,

y=VRE - ¥. @)

3. Error Analysis of Circle Drawing

Error analysis in LNS: Since the word size to represent a
number is limited, the conversion or computation error
cannot be avoided. LNS is no exception. As Eq.(7)
indicates, there are three kinds of error sources for the
computation, which are:

(1) the conversion error from integers (x and R) to LNS,
(2) the subtraction of R? - X%,

(3) the square-rooting of V R - X

In this connection, multiplication/division does not have
errors in LNS, neither does the square-rooting. Including
the above sources of errors, the computational model for y
becomes as

1= VR +e P -{x(1+e 11 +e)(Lten), ®

where €,g, € € and €, are

(1) e,z : the relative error of the conversion of R,
from an integer to LNS.

(2) ey : that of x.

(3) ¢, : the relative error of the subtraction in LNS,

(4) e, : that of the square-rooting.

y, is the value just before the final conversion to integers.
Then the relative error () of y is expressed by

e= ——. (O}

By expanding Eq.(9) and discarding the terms of the second
order of ¢, (i=IcR, lcx, or Ir) and the higher, we obtain

R? x>
€ = (RZ__X2) SR ~ (RZ_XZ)

€x —21 e, +e. (10

Since R can be considered a constant for a single
circle, the variance of e, should be zero. If the relative



errors (e) are independent of the variable x and also
independent each other (naturally expected) and the sample
number of x is large enough, the variance of e can be
expressed as (see also Appendix A)

VAR[e]-E[ @"f—xﬁaﬁ[eﬁﬂh — VAR[e,] + VAR[e,], (1)

where the distributions of e, and e, are expected to be near
uniform ; and e, is with a special distribution (see Appen-
dix B) and the expected values and variances of €, €, and
¢, are supposed to be® as follows:

~n-1 -n-1

£ +a? -2

Ele] = 3 . (12
(az—n—l_ s 2
VAR[clcx] = VAR[els] = 12 » (13)
=n-1

@ -1
VAR[e] = ———F—"—, (14)
VAR[e;] = E[e?], where i=lcx, Is or Ir. @15

If the square—rooting is built in the conversion table (LUT)
from LNS to integer, VAR[e,] can be deleted from Eq.(11).

Error Analysis in Floating Point Number System: One
way to evaluate the above LNS analysis is to make com-
parison with floating point number systems. Let us define
the specific floating number systems (FPn) for the compari—
son with LNS®. The word length is defined to be m+n+2
(same as LNS), where n is the bit length of the fraction part
and m+1 is that of the exponent part. Thus it represents the
value:

fx a5, (16)

where a is 2, the fraction part is normalized so as to be
between 1/2 and 1 and both parts of the fraction and the
exponent have two's complement form for negative num-
bers. Then the floating point number system has almost
equal dynamic range as LNS if m and n are assigned equal
numbers, respectively.

Considering the Eq.(7), the computational model
with errors becomes as

yi = V[R(I+epp)-x(1+em)l(1+e)(1+ey), 17

where €gp, €q.0 €5 and e; are
(1) egg : the round off (rounding) error (relative) of
the square-rooting of R,
(2) egy - that of x,
(3) e, : the relative error of the subtraction in LNS,
(4) e : that of the square—rooting.
If m and n (especially n) are large enough, there will be no
conversion errors. y; is the computational results just
before the final conversion to integers.

The relative error of y for FPn is

o= 2T @8)
y
Thus, by expanding Eq.(18), and discarding the terms of
second order of e; (i=fmx, fs and fr) and the higher (same
procedure applied to LNS), we obtain

R’ % b1
2R 2)eﬁnR 2R Chmx =

e = e + €5 (19)

With Eq.(19) and the same procedure applied to
LNS, the variance for FPn: VAR[e;] becomes (see also
Appendix C)

VARle] ~ Bl e — VAR[e,J¥VAR[e,), (20)

where the distributions of e, €, and e; are not actually
uniform (see Appendix B). If the above errors (egy,, €, €5)
are uniformly distributed, the variance is said to be

~2n
2
3 1)

VAR[es,] = VAR[e;] = VAR[ey] =

As reported®, Eq.(21) is about 8.35 times larger than
Eq.(13). Actually, however, the distribution of e, €, and
¢, are not uniform (see Appendix B). They are considered
to be nearly trapezoidal or of no errors especially depending
on the size and the number R. For large n the errors ey,
and e, are always zero.

4. Experimental Evaluation of the Theoretical Analysis

First, the theoretical results of LNS were evaluated.
That is, Eq.(11) was numerically computed for a number of
m and n. The results are shown on column A (without
square-rooting) and E (with square-rooting) of Table 1.
That is, A is without VAR[e,] in Eq.(11); and E is with it.
In order to examine the results, some experiments were
done to compute

VAR[e] = VAR[(y-y)/y], @2

where y is supposed to be the true output of Eq.(7), which
is computed by 64-bit FP (considered to be error free).
Eq.(22) is considered to be the relative error variance of the
actual computational result of Eq.(7). The results are
shown on Column B (R=180 without square-rooting), F
(R=180 with square-rooting) and G (R=1500 with square—
rooting) of Table 1, all of which agree fairly well with the
theoretical errors on Columns A and E, correspondingly.
For more analysis of LNS, see Appendix B.

As for FPn, the theoretical variance, Eq.(20) with
Eq.(21) was numerically evaluated as before. The results
are on Column C of Table 1. This theory is based on the
assumption that the relative error is distributed uniformly.
For FPn, the square-rooting error always exists. Like
Eq.(22) of LNS, the experimental version of the variance
for FPn can be expressed as

C—19—



VAR[e] = VAR[(yy)/y], (23)

where y is supposed to be the true result. With Eq.(23), the
experimental relative error variances are computed and
shown on Columns D (R=180) and H (for larger R=1500)
of Table 1. The results on Column C (theoretical) and the
results on Column D or H (experimental) do not agree
very well. Those on C are about twice bigger than those on
D or H. It is probably due to the fact that the error
distributions (€gy, €5 ©z) Of FPn computation is not
uniform.  As a matter of fact, it is reported so, although
conditions are different. It is said that they have trapezoidal
distributions or the distributions which are concentrated
near zero (see also Appendix B). It is also true that the
shape of the distribution varies depending on R.  The
.experimental variances, Eq.(23) on Column D and H, are
smaller, about 50% smaller than the theoretical variances
of the uniform model, Eq.(20) with Eq.(21), which are on
Column C. The data with n=10 on Column H is omitted
because it includes the conversion error. Further investiga—
tions for the analysis of FPn error distribution were made.
See Appendix B, C and D.

The more important comparisons should be between
Columns of B and D (without square-rooting); or G and H
(with square-rooting). They are the comparisons between
experimental LNS and FPn. Those on D (FPn) are ten or
more times larger than those on B (LNS); and those on H
(FPn) arc about 5 to 6 times larger than those on G (LNS).
This means that the relative error variances of FPn are
larger, to that extent, than those of LNS with the equivalent
word length and the dynamic range for both cases with or
without square—rooting.

Looking at n, we can find that those on B (LNS
without square-rooting) with n=i are very close to those on
D (FPn) with n=i+2 and that those on G (LNS with square—
rooting) with n=i are between those with n=i+1 and n=i+2
on H (FPn). This means that LNS without square-rooting
is about 2 bits more accurate than FPn; and that LNS with
square-tooting is 1 to 2 bits more accurate.

Figures 2, 3 and 4 are the circles by FPn with 12,
11, and 10 bits word, that is, a=2, m=4 and n=6, 5, and 4,
respectively. While Fig.5, 6, and 7 are with square-rooting
and LNS of 12, 11, and 10 bits word, that is, a=2, m=4,
and n=6, 5, and 4, respectively. For a look, those by LNS
are more smooth than FPn with equal bit assignments.
Those of Fig.4 (FPn with n=4) have serious errors. For
closer comparisons, look at Fig.2 (FPn with n=6) and Fig.6
(LNS with n=5). Both have a lot of zigzags. But those on
Fig 6 may be a little smoother. Counting the number of
bars for 1/8 circle of R=180, we see 14 bars for FPn and 17
bars for LNS. Therefore, those on Fig.6 are considered to
be smoother than those in Fig.2 The count of the bars of
Fig.7 (LNS with n=4, R=180) is 8. The above means that
FPn with n=6 is between those of LNS with n=5 and n=4
but closer to LNS with n=5. This analysis agrees very well
with the discussion made on the relative error variances of
Column G and H of Table 1. The same discussion holds
for the comparison with FPn and LNS without square~
rooting. One drawback of LNS may be the gap observed
at the angle of 45°. It is probably caused by the fact that

the mean of Eq.(12) is not zero.

As suggested in the discussion of IEEE format
(implied leading 1 of fraction) of floating point number
system (IEEE-FP) in Appendix B, there is a one-bit
precision gain for IEEE-FP. Therefore, for an equal word
length and dynamic range, there should be no significant
precision difference for circle drawing between LNS and
IEEE-FP.

Error to signal ratio is a more common measurement
for precision. The experimental comparison data between
LNS and FPn for the circle drawing by error to signal ratio
are given by the previous work®, which gives the same
kind of results. The reason to have used the relative error
variance instead of error to signal ratio is that it was easier
to use and that each error should equally contribute to the
final evaluation value according to its relative size. In the
error to signal ratio analysis, the larger data contribute more
to the resulting value. Since the relative variance method
have been examined numerically and visually, it should be
considered justified.

5. Concluding Comments

The logarithmic number systems has been known
effective in computer graphics. However, the extent of the
accuracy of LNS applied in computer graphics has not been
examined much except for the experimental study®.

This paper has presented the theoretical and experi-
mental analysis for circle drawing using logarithmic number
systems. It has developed the theoretical expressions for
the relative error variance for LNS and for floating point
number systems. Comparisons have been made between
the theoretical evaluation and the simulation experiments
and between LNS and floating point number systems. The
results of the theoretical analysis have been verified by a
number of methods, the experimental total relative error
variances, the individual variances and visual inspections of
actually drawn circles. It has showed that LNS is more
accurate than or comparable with floating point numbers
systems with equivalent word length and dynamic range for
circle drawing. It also has showed that the conversion did
not make too much influence to the total precision but the
square-rooting.

In this paper, the analysis is made only about the
circle drawing. But the method is expected to be applicable
to other types of lines and pictures. In future, analysis
should be made for those other problems, hopefully in more
general fashion.
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Appendix A: Development of VAR[e]

Since ¢; (i=lex, Is or Ir) is considered to be indepen—
dent each other and also independent of x, and (E[e;])* is
very small in comparison with other terms, we have

X 1
VAR[e] = VAR[WCICX] + TVAR[C,S] + VAR[e, ]

x* 2 5 1
~E[(grmtie - El il ] + — VAR[e,J+ VARJe,]

4 2

~E| gy ]E[czlcx]—(EEﬁfrxa)—]E[em])Z+ Rle,J+VAR[q,]

x*

=E[ (Rz—zjz JE[e%] + — 4 VAR[e,] + VAR[e,], (11)
where

4
E[ @z’_‘??] ~ 0.130, and

E[¢’] = VAR[e]] + (E[e])’ ~ VAR[e;].

Appendix B: Individual Relative Error Distributions of
LNS and FPn

According to the reference®, the relative error
distribution of LNS addition is near uniform. In the circle
drawing, there are more types of computations with error.
They are integer—to-LNS conversion, subtraction (equiva—
lently addition), and square-rooting. Although the variable
x in Eq.(7) is not random, but its distribution is uniform
over one to RAV" 2. Therefore, those distributions of €, and
e, should be like that of the addition®, which is near
uniform. The distribution of e, is different. Since the error
is caused by the one~bit shift operation, there are only two
cases of errors, no error or the error caused by the one-bit
loss.

(@), (b) and (c) of Fig. 8 are the experimentally

obtained histograms of e,, e, and e,, respectively, for
R=1500, m=5 and n=10. The distributions of e, and ¢, are
considered to be near uniform in the range:

-n—1 -n~1
a? -1 — a2 1, 4

which becomes ~3.38E-4 ~_ 3.39E—4 for a=2 and n=10, and
e, falls on at the two points, zero (no error) or the minus
end of the range (24). If the probability is 1/2 each, which
is naturally expected, the error variance becomes as Eq.(14).
(@), (e), (f) and (g) are those of e, (the relative
error of integer to FPn conversion), e, € and ¢ of FPn,
respectively. The distributions are in the range:

-2 2'-, @5)

which becomes ~9.77E-4 —~ 9.77E-4 for n=10. Compared
with LNS, the range of FPn is about .89 times larger as
the reference® shows. e, is crucentrated at zero as
expected; if n>10 all fall on zero. e, looks peculiar. It is
probably because of the limited number of bit patterns of
square of x. Many fell on near zero (because some of x are
very small compared with R); e, falls on mostly on zero as
reported by the reference®.

(b) of Fig.8 is of e, but by 32-bit floating point
variable of MS~C program with compile option of /Op
(floating point variable substitution enforced according to
the source program), which is actually computed by 80387.
Since it uses [EEE~FP format its precision is supposed to
be 33 bits (nearly equivalent to FPn with m=7 and n=24
with rounding). It was computed for the purpose of the
validity check of FPn. Its round-off method is some what
different from FPn. The same types of error distributions
are observed on (g) and (h). The data on Column H with
n=24 were obtained by the above method of 32-bit floating
point variable. There are no extraordinariness about this
data for FPn.

Appendix C: Development of VAR[e]:

VAR[e] ~ VARI—5—cq,] + —-VAR[e,] + VAR[e,]

2(R2 x)

~E[( —~VAR[e,+VAR(e,]

x° x*
AR-2) Cime—El ) ) ]"’

%
~E[+ix2)71E[eﬂm1—(E[z(—Rz_—szJE[emlﬂf;VAR[eﬁBVAR[eﬁ]

4R

Bl ey Il + - VAR(e,] + VAR(eg, @0)

where "

4(sz 7 1= 00326, and Efe,,] =

Ef
Appendix D: Ervor factor analysis for LNS and Fpn.

Further experiments were done to check the theoret—
ical relative error variances: Egs.(11) and (20). Table 2 is
the results. It was made by first experimentally computing



individual computational relative error variances: conversion
to LNS, subtraction and square-rooting in LNS, and
squaring, subtraction and square-rooting in FPn; then
obtaining each term of Egs.(11) and (20). Columns I, J, K
and L are for Eq.(11) of LNS and Columns M, N, O, and
P are for Eq.(20) of FPn. L is the sum of I, J and K
corresponding to Eq.(11). P is the sum of M, N and O
corresponding to Eq.(20). Column L is expected to agree
with Column G of Table 1; and Column P with Column H
of Table 1. Indeed, they agree fairly well, respectively.
Raw of n=10 are omitted in Table 2 because the conversion
error occurs for FPn with n=10, which is not included in
Eq.(20).

As for LNS factors (I, J and K), the major error
factor seems to be that of square—rooting (K) despite the
fact that the square—rooting error in LNS is caused by only
one-bit shift loss. Other factors (I and J) are also not small
enough to be ignored. Considering Eq.(11) and the LNS
histograms of Fig.8, those data of Table 2 look reasonable.
In this connection, look at n. Error size ratios between the
factors of LNS do not seem to change for different n. So
individual error distribution are kind of constant for
different n. As a matter of fact, histograms like those of
Fig.8 with different n showed that the distribution were
kind of stable (not shown in this paper). That is, the
distribution is nearly uniform for the conversion and the
subtraction; and the distribution for the square-rooting are
like that of (c) of Fig.8, that is, of two bars.

For FPn factors (M, N and O), the biggest factor is
again the square-rooting. Different from LNS case,
squaring (M) and subtraction (N) variances get small very
rapidly and become zero as n increases. That is, the shape
of those distribution pattern changes with different n. As
the table shows, with n=22 and 23 there were no squaring
and subtraction errors. That is, for n=22 or 23, the only
error source is square-tooting. For those n, the data on
Column P of Table 2 completely agree with those on
Column H of Table 1. Looking at the data for n=11 to 23
of Table 2, the square-rooting is the major or dominant
factor of errors, anyway. That is understood from Eq.(20)
and the histograms of Fig.8.

Considering Eq.(11) and Eq.(20) and the discussions
so far, the ratio (=8.35) between Eq.(13) and Eq.(21) scems
to be the major factor of the error variance difference
between LNS and FPn. That is, the error range of the in-
dividual relative error (conversion, subtraction, squaring or
square-rooting) for LNS is 2.89 times smaller than the
corresponding error of FPn with the equivalent word length
and dynamic range®. That is, if the error distributions are
uniform for both number systems, the variances of LNS is
supposed to be 8.35 times smaller.

Fig.1 Circles generated by LNS (16 bits: a=2, m=4, n=10).
R = 20, 40, 60, ..., 180.

Fig.2 Circles generated by F (12 bits: a=2, m=4, n=6).

R= 20, 40, 60, ..., 180.

Fig.3 Circles generated by FPn (11 bits: a=2, m=4, n=5).
R= 20, 40, 60, ..., 180.



Fig.4 Circles generated by FPn (10 bits: a=2, m=4, n=4). Fig.6 Circles generated byiﬁs (11 bits: a=2, m=4, n=5).

R= 20, 40, 60, ..., 180. R= 20, 40, 60, ..., 180.
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Fig.5 Circles generated by LNS (12 bits: a=2, m=4, n=6). Fig.7 Circles generated by LNS (10 bits: a=2, m=4, n=4).

R= 20, 40, 60, ..., 180. R= 20, 40, 60, ..., 180.
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Fig. 8 Histograms of experimental individual relative error distributions
(R=1500, a=2, m=5, n=10).



Table 1 Error comparison between LNS and FPn and between theory and experiment for circle drawing.

A : Theoretical relative error variance for LNS without square-rooting ;

B : Experimental relative error variance for LNS without square-rooting (R=180);

C : Theoretical relative error variance for FPn;

D : Experimental relative error variance for FPn (R=180);

E : Theoretical relative error variance for LNS with square-rooting;

F : Experimental relative error variance for LNS with square-rooting (R=180);

G : Experimental relative error variance for LNS with square-rooting (R=1500);

H : Experimental relative error variance for FPn (R=1500).

LNSR: With square—rooting for LNS; T: Theoretical evaluation; Ex: Experimental evaluation.

A B C D E F G H
R=180 R=180 R=180 R=1500 R=1500
n LNS:T LNS:Ex FPm:T FPn:Ex LNSR:T LNSR:Ex LNSR:Ex FPn:Ex

10 1.46E-8 1.32E-8 4.08E-7 2.05E-7 4.32E-8 4.80E-8 4.50E-8

11 3.65E-9 3.42E-9 1.02E-7 4.89E-8 1.08E-8 1.04E-8 1.08E-8 6.17E-8
12 9.12E-10 9.19E~10 2.55E-8 1.22E-8 2.70E-9 2.82E-9 2.76E-9 1.52E-8
13 2.28E-10 2.09E-10 6.37E-9 3.57E-9 6.76E-10 7.09E-10 6.40E-10 3.86E-9
14 5.70E-11 5.60E-11 1.59E-9 9.94E-10 1.69E-10 1.62E-10 1.70E-10 9.42E-10
15 1.43E-11 1.49E-11 3.98E-10 1.97E-10 4.22E-11 4.04E-11 4.51E~11 2.41E-10
25 8.70E-16 8.90E-16 2.43E-14 1.01E-14 2.58E-15 2.54E-15 2.54E-15 1.11E-14
23 2.18E-16 2.36E-16 6.08E-15 2.91E-15 6.44E-16 6.03E-16 6.48E-16 2.91E-15
24 5.44E-17 1.52E-15 1.61E-16 6.83E-16

Table 2 Experimental error factor evaluation of Eq.(11) and Eq.(20).

I: Experimental evaluation of integer—to-LNS conversion: 0.13*VAR{e,];
J: that of subtraction in LNS: VAR[e,}/4;
K: that of square~rooting in LNS: VAR[e,J;
L: that of Eq.(11): T+ J + L;
M: that of square in FPn: 0.0326*E[e’,,];
N: that of subtraction in FPn: VAR[e,}/4;
. O: that of square~rooting in FPn: VAR[e];
P: that of Eq.(20): M + N + O.

I J K L M N (0] P
LNS LNS LNS LNS FPn FPn FPn FPn
n conv. sub. s-root. Eq.(11) square sub s-root  Eq.(20)

11 1.14E-9 238E-9 7.16E-9 1.07E-8 1.19E-9 133E-8 4.88E-8 6.33E-8
12 3.41E-10 5.80E-10 1.79E-9 2.71E-9 2.90E-10 3.19E-9 1.12E-8 1.47E-8
13 6.65E-11 1.48E—10 4.45E-10 6.63E-10 7.02E~11 8.36E-10 2.96E-9 3.86E-9
14 1.77B-11 3.70E-11 1.12E-10 1.66E-10 1.63E-11 1.95E-10 7.05E-10 9.17E-10
15 4.24F-12 9.77E-12 2.80E-11 4.20E-11 3.73E-11 5.25E-11 1.78E-10 2.34E-10
22 2.80E-16 5.60E~16 1.71E-15 2.55E-15 0 0 1.11E-14 1.11E-14
23 6.96E-17 1.44E-16 4.26E-16 6.40E-16 0 0 2.91E-15 2.91E-15
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