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Abstract

A method is presented for detecting and tracking moving objects in long image sequences. An optical flow field
is computed from each pair of consecutive images by using multiple filters. The former one of the two images
is divided into small patches in such a way that optical flow in each patch is homogeneous. Flow vectors in
each patch are spatially and temporally combined to compute correctly the local image motion of the patch.
Incremental segmentation is performed to group patches into object segments based on the estimated local
image motions. In order to remove inherent ambiguities in motion-based segmentation due to local or global
similarity between apparent motions of different object, temporal coherence between the apparent motion of an

object and the local image motion of each patch in the object segment is investigated over a long sequence.
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I. INTRODUCTION

Apparent motion is an important visual cue for various
vision tasks [6]. It can be exploited to divide a retina
image into regions of homogeneous motion properties.
Such kind of (motion-based) segmentation is helpful for
recognition of moving objects.

A. Issues

The apparent motion cue derived from only a pair of
consecutive images, however, is unreliable because a
flow field computed from the images is usually noisy.
The noise in flow vectors will influence upon the seg-
mentation of images and estimation of object motions.

Furthermore, there are several cases where the
motion-based segmentation becomes inherently am-
biguous. When apparent motions of at least two ob-
jects are locally similar at some locations in an image,
evidences suggesting the one of those objects to which
the locations belong are ambiguous. Fig.1l illustrates
such an example. A circular region in the image center
rotates in clockwise direction around the region center.
The background moves to right direction between con-
secutive image frames. Apparent motions of the two
parts are locally similar near the upper side of the cir-
cular region.

Another case occurs when apparent motions of dif-
ferent objects become globally similar during a time pe-
riod. Fig.2 gives such an example. Upper and lower
parts of man’s left leg can be interpreted as two rigidly
moving objects when the two parts rotate differently.
However, the motions of those two parts between each
pair of the last several frames become globally simi-
lar. Then, if the instantaneous apparent motion cue
obtained from only a pair of consecutive frames is used,
the two parts are interpreted as an individual object.

In human visual system, it is likely that a correct
result of motion-based segmentation is not obtained at
only one time instant. Instead the performance of the
segmentation is accumulative (or say, incremental). By
temporally integrating (smoothing) local velocity sig-
nals, effective signal-to-noise ratio is increased [6]. A
correct segmentation is gradually obtained as the noise
in local signals is reduced by the temporal integration.

A key role exploited to remove the ambiguities is
the fact that a temporal coherence exists between the
apparent motion of an object and those flow vectors at
the locations which truly belong to the object. Flow
vectors at the locations are coherent with the appar-
ent motion over long time. But they are coincidental
with apparent motions of other objects during only a
short period. A decision of grouping each location into
an object segment is made by accumulatively investi-
gating whether the flow vector at the location and the
apparent motion of the object are temporally coher-

(a) (b)

Fig. 1: The 1st (left) and 30th image frame (right) in
a synthetic image sequence. Intensity at every pixel is
corrupted by a random noise drown from a Gaussian
distribution N(0, 15).

ent, rather than whether they are coincidental at only
some instant. When apparent motions of two objects
are globally similar in a short period, and flow vectors
computed at locations belonging to one of the objects
are temporally incoherent with the apparent motion of
the other one, the two objects are interpreted as indi-
vidual ones.

B. Outline of Our Method

The goal of our research is to detect and track multi-
ple moving objects by performing motion-based image
segmentation. Each object rigidly moving in a scene is
approximated by a plane. To deal with the problems
mentioned above, our method accumulatively observes
apparent motion in a long image sequence.

There are five stages in the method: (a) Comput-
ing an optical flow field; (b) Dividing the image at time
t into small patches. In order to reduce noise in the
computed flow vectors, a local image motion vector of
each patch is estimated by averaging flow vectors at
locations in the corresponding patches in several suc-
cessive images; (¢) Obtaining initial segments. In the
first image, segments are initially obtained by grouping
patches of similar local image motion. In each of suc-
ceeding images, segments are initially obtained based
on the segments detected in the previous image; (d)
Updating the obtained initial segments by iterating an
attempt to merge two segments or split a segment. If
the image motions of two segments are not temporally
coherent each other up to time ¢ — 1, the corresponding
segments at time ¢ are not merged; (e) Investigating
the temporal coherence between the local image mo-
tion of a patch and the apparent motion of every plane
up to time ¢. Then each patch is reorganized into that
segment of the plane whose apparent motion is tempo-
rally most coherent with the local image motion of the
patch.
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Fig. 2: Six images in a real image sequence: (from left to right) the 1st, 10th, 25th, 30th, 55th, and 60th image

frame, respectively.

II. EsSTIMATING LocAL IMAGE MOTIONS

Several sophisticated methods have been proposed to
estimate local image motion [7, 4]. Our method groups
edge locations in each image into small patches, and
estimate a local image motion vector of each patch by
spatially and temporally combining flow vectors.

Let an edge location in the image frame at time
t and a flow vector at the location be denoted by =
(= (2,9)7) and w(z) (= (u,v)T, where superscript T
denotes vector or matrix transpose). By using more
than two filters, the flow vector u(=x) and a covariance
matrix C(z) of the vector are computed [1].

At each location near a corner point, a flow vec-
tor is uniquely determined, and is named a “unique
vector”. At each location near a straight edge, only a
velocity component normal to the edge orientation is
determined, and is named a “normal vector”.

Then edge locations in the image at time ¢ are
grouped into two kinds of patches. One kind is the
patch which contains locations with similar unique flow
vectors. Another kind contains only locations of normal
vectors. Each patch contains only a certain number of
spatially connected locations (Fig.3(a)). Let a patch in
the image at time ¢ be denoted by U(*).

In the first image, patches are obtained by group-
ing locations with similar flow vectors [1]. In each
of succeeding images, patches are obtained based on
corresponding patches in the previous image. Estab-
lishing a correspondence between a patch U() and a
patch U= will be described in Section IV. Coordi-
nates of the center of a patch U(*) are calculated as
T = nf‘1 > zeum €, where ny denotes the number of
locations in U(*). The local image motion at U® is
represented by a vector @(&) (Fig.3(b)).

Let {U(t=<) .. UG¢-1 U®} denote correspond-
ing patches in several successive images at time {t —
¢,...,t — 1,1}, respectively, where ¢ is a positive con-
stant. The local image motion vector @ of U is
calculated by averaging flow vectors in the patches
{Ut=9, .., Uu¢=D U®}, The covariance matrix C of
residual errors between @ and flow vectors u in U7 is
also estimated (see [2] for details).

Let the larger one of two eigenvalues of the matrix
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Fig. 3: IHlustration of a patch. (a) The locations of
similar flow vectors which are grouped into a patch.
(b) Boundary, center, and local image motion vector of
the patch. (c) Local image motion vector % of a patch
U® and an ellipse defined by the covariance matrix of
the vector.

() (b)

Fig. 4: A patch in the 5th image. (a) Its boundary; (b
Local image motion estimated at the patch. :

C be denoted by o2, and the other one by 2. Two

unit eigenvectors corresponding to o7 and o2 are de-
noted by e; and ey (Fig.3(c)). Usually the vector @
of a patch near a straight edge has its eigenvector e;
parallel to the edge direction, and has e; normal to the
direction. Uncertainties of @ along the directions of e;
and e; are measured by the two eigenvalues 62 and 0%,
respectively.

Fig.4(a) shows a patch located at the upper side
of the circular region in the image. Fig.4(b) shows the
local image motion vector of the patch and an ellipse
determined by the covariance matrix C.

III. MoTION-BASED SEGMENTATION
Segmentation of each image is performed by grouping

patches into segments. A segment is defined as a group
of patches belong to the same plane.
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A. Estimating a Description of Apparent Motion

A kind of apparent motion representation is used to
describe the apparent image motion of a moving plane.

At the center & (= (%,7)7) of a patch belonging
to the plane, the image flow @(&) is represented by
i(z) = J(&) &, where & = (ar...a)7, and

1 0 0O

0z g 1 ) ()
(see literatures [5, 8] for details). The parameter vector
a is used as a model to describe the apparent motion
of a plane.

Suppose that there exist a certain number of planes
detected at time t. In the image at time ¢, let the
segment and the motion model of the i-th detected
plane be denoted by Rﬁt) and &::t), respectively. In or-
der to make the estimation of a motion model as in-
sensitive to the noise as possible, égt) is estimated by
spatially and temporally combining local image motion
vectors of patches in corresponding segments R‘i” for
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r=1t,t—1,..., where RET) denotes the segment of the
i-th plane at time 7. Establishing a correspondence be-
tween two segments RET_I) and R,‘-” will be described
in Section IV.

The estimation of &E” is represented as

>ooGwn), (@

Utrer”

A(t) _ . ()
a;’ = arg 12(1‘1)1 XT: wy

where 2(U) = (a - J(&)a")"C™'(a - I(@)al"),
and Z, u, and C denote the center, local image motion
vector, and the vector’s covariance matrix of U{™), re-
spectively. wg,T) denotes a relative weight assigned to
the local image motion vectors of all patches in R;”.
Although the model varies between different images, it
can be approximately regarded as being constant if the
image motion is not too large.

B. Obtaining Initial Segments in an Image

After the computation of the flow field at time ¢, initial
segments in the image at time ¢ are obtained.

In the first image, patches are grouped into initial
segments in such a way that local image motions of
patches in each segment are uniform. The next steps
are repeated. (i) Find a patch which has not been
grouped. If such a patch can not be found then stop;
else increase ¢ by one, where i is used to indicate the
number of a group. Let the found patch be the first
member of the i-th group. A motion vector @; is ini-
tialized as @; = #, where u is the local image motion
vector of the found patch. (ii)Find a patch which has
not been grouped and is spatially connected to a patch
in the i-th group. Inorder to identify whether the found

patch can be grouped into the i-th group, a condition
is defined as

(@ —;)7C 7 (@ —a;) < u, (3)

where @ denotes the local image motion vector of the
found patch, C denotes the covariance matrix, and the
1 is a threshold (which is predefined to be 0.2 in our
experiments). If Eq.(3) is satisfied, the found patch is
grouped into the é-th group, and @; is modified by aver-
aging local motion vectors of all patches in the group.
This step is repeated until no patch can be grouped.
Go to (i).

When the grouping stopped, the first image is di-
vided into groups of patches. Let the i-th group of
patches be the i-th initial segment in the first image.

Segments in the image at time ¢ for £ > 1 are firstly
determined from their corresponding segments obtained
in the image at time ¢ — 1 (Section IV).

C. Updating Segments in an Image

1) Merging Segments

While as the apparent motion of a plane is not spa-
tially constant, over-segmentation will be derived from
the first image by the way described above. Further-
more, patches belonging to the same plane may not
be grouped up to the previous image because of the
noise in local image motion vectors. When local image
motions of patches are correctly estimated by tempo-
rally combining flow vectors at locations in correspond-
ing patches, it becomes possible to group the patches.
Therefore, it is necessary to try to merge segments in
each image.

Segmentation (an attempt to merge two segments
or split a segment) is performed iteratively. In the k-
th iteration, an attempt to merge a segment Rz(t) into
another segment R}t) is performed. A segmentation cri-
terion is needed to identify whether the two segments
can be merged (i.e., whether they belong to the same
plane). In our method, the segmentation criterion is
achieved by a hypothesis testing scheme. The null hy-
pothesis Hy is defined as: the two segments belong to
the same plane. The alternative one H; is: they belong
to different ones. The null hypothesis is tested by the
log-likelihood ratio defined as

lij = —2log(L(Ho)/L(H1)), 4)

where L(Hy) and L(H,) denote the likelihood functions
of Hy and Hy, respectively.

Let the segment obtained by merging R?) and Ry)
be denoted by RE,’,). If all patchesin R%) truly belong to
the same plane, a residual error between @(Z) of each
patch U®) ¢ Rf,i) and the apparent motion of the plane,
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ity (= 3(2)alD), should be close to zero. As described
above, @ has uncertainties ¢? and ¢ along directions
of the two unit eigenvectors e; and es (see Fig.3(c)).
Therefore, the residual error @ — 1, is decomposed to
two components along e; and eg, i.e.,

Atmi = el (it — @), Aupms = el (i, — @),

and the obtained components are normalized based on
the uncertainties

1
6m = (iAuml) e + (-—Aum2> €. (5)
01 (2]

It is assumed that the distribution of §,, is Gaussian of
mean §,, and covariance matrix X,,, where

- 1
6m E Z ‘Sm )
U®eRyY
- 1
Y J—
mo= )

™ Uher®

il

(6m - 3771) (6111 - 8m)T 3

and ny, is the number of patches in R(,,t,').
Let 8,, denote a distribution parameter which con-
tains 8,, and 3,,. The likelihood function of 6,, is

Lom)= ]

UeRr)

P(6m | Om) (6)

where p(6pm, | On) denotes the distribution density fune-
tion of §,,. The likelihood functions of 8; of RE” and
8; of Rgn are obtained in the same way.

Then the functions L(Hy) and L(H;) defined in
Eq.(4) are substituted by L(8,,) and L(8;)L(6;), re-
spectively. If l;; is less than a threshold o which is
related to a significance level of the test, the null hy-
pothesis Hyg is accepted (i.e., Rzm is merged into Rg-t)).

2) Splitting a Segment into Different Motion Parts

Patches belonging to different planes may be grouped
into a segment due to the global similarity between ap-
parent motions of the planes up to the previous image.
When apparent motions of the planes at time ¢ become
different, the segment is split to different motion parts.

In order to identify whether a segment RS con-
tains patches belonging to different planes, an attempt
is made to split R to two new segments Hi-t) and RV,
As depicted in Fig.5(a), the normalized residual §,, of
each patch U®) ¢ R defined in Eq.(5) is transformed
to the u/-v’ space whose axes are identical with the
eigenvectors of . Only the «' component of §,, is
investigated because it has larger variance than the v’
component.

In the segment Rﬁ;’, patches are firstly classified
into a class C* if their §,, have non-negative «' com-
ponent, and C'~ otherwise (Fig.5(bh)).

Feasssoess

5% 75%
() (b)

Fig. 5: Transforming residuals to a space u’-v’. (a) Dis-
tribution of the residuals and two eigenvectors u’ and
v’ of the distribution’s covariance matrix. (b) Select-
ing the patches whose residuals’ ' components have
relatively larger absolute values.

Fig. 6: Five images in a synthetic image sequence:
(from left to right) the 1st, 5th, 10th, 15th, and 20th
image frame, respectively. Intensity at each pixel is
corrupted by a random noise N(0, 15).

As described previously, a motion model can be es-
timated more reliably when many local image motion
vectors are used. Therefore, it is desirable to divide
all patches in RS,’,) into several groups. Each group has
to contain patches belonging to the same plane, and
the number of patches in the group is enough for the
model estimation. We found that this can be achieved
by (1) selecting a certain percent of patches in each of
classes CT and '~ respectively, (our method selects
75% of the patches in each class) such that |u’| of the
selected patches are greater than other patches in the
class (other patches are neglected); (2) Collecting spa-
tially connected patches with the same sign of v/ into a
group.

A synthetic image sequence shown in Fig.6 is used
to illustrate the splitting of a segment. In the sequence,
two elliptical regions simulate two planes perpendicu-
lar to the sensor’s optical axis. They have the same
rotation during the Ist to 10th frame, and then rotate
differently. Two planes can not be separated up to the
10th image. Fig.7(a) shows obtained patches in the
10th image. The patches are predicted as belonging
to the same segment, even though their image motions
become different.

Fig.7(b) shows the selected patches in the 10th im-
age. It can be seen that the selected patches which are
spatially connected and have the same sign of v’ con-
stitute a group of patches belonging to the same plane.

Then, each of the neglected patches is regarded as
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(a) (] {c}

Fig. 7: An example of splitting of a segment. (a)
Boundaries of patches in a segment. (b) White and
black lines indicate boundaries of the selected patches
with positive and negative v’ component, respectively.
(c) Boundaries of patches in two segments which are
obtained by splitting the predicted segment shown in

(a).

an individual group, and the next three steps are re-
peated: (i) Obtained groups are sorted into ascending
order of the number of patches in each group; (i) The
group with smallest number of patches, denoted by Go,
is merged into a larger group G such that
.1
min —
Tp
UMeGoUG

where n, denotes the number of patches in Go UG, @
and C denote the local image motion vector and co-
variance matrix of U®), and @ is calculated at U by
a motion model estimated from the local image motion
vectors of all patches in Gy U G; (iii) Go to (i) if the
number of groups is larger than two, otherwise stop.
Final two groups of patches are regarded as RE”
and RJ@), respectively. Fig.7(c) shows two segments ob-
tained by splitting the segment shown in Fig.7(b). The
null hypothesis that RE” and Ry)-belong to the same

plane is tested. The attempt to split R4 is accepted if
the null hypothesis is rejected.

A segment may not be perfectly split after only one
iteration. Instead a correct splitting can be obtained
after several iterations of attempts to split and merge
segments.

IV. TRACKING

At first, each patch in the image at time ¢ is obtained
according to a patch in the image at time ¢ — 1.

Let a grid location in a patch U1 € R:-t_” be
denoted by . As illustrated in Fig.8(a), a location =’
in the image at time ¢ is determined as @’ = & + 1,

*
K |
+ -1 -4 1

T
x x
l 1

Fig. 8: Establishing the correspondence between a lo-
cation z in the image at time ¢ — 1 (left) and a location
z' in the image at time t (right).

where u; = J(m)dﬁt_l) Because =’ usually does not

lie on a grid location, the grid location which is nearest
to 2’ is grouped into UM, All grid locations in U(*~%)
are used to group locations in the image at time ¢. The
grouped locations constitute U(*) which corresponds to
Ut-n,

Each initial segment Rgt) in the image at time ¢ is
determined by grouping the patches {U()} which cor-
respond to the patches {U~D} in R,f““. In this way,
the correspondence between RY_U and Rgt) is estab-
lished. By establishing the correspondence between a
patch in the image at time t — 1 and a patch in the
image at time ¢, patches and segments are tracked over
a long sequence.

In order to reduce the computational cost, our
method performs a few iterations at each image. Then
initial segments in the succeeding image are obtained,
and the attempt to merge or split segments is also iter-
ated at the image, and so on.

By tracking each patch, flow vectors in the corre-
sponding patches at different times are combined to re-
duce the noise in flow vectors. When the local image
motions are correctly estimated, each image is incre-
mentally segmented.

V. REMOVING AMBIGUITIES IN SEGMENTATION

A. Removing the Ambiguity due to Local Similarity

The ambiguity due to local similarity between apparent
motions of different objects is removed by investigating
temporal coherence between the local image motion of
a patch and the apparent motion of each of the detected
planes.

When the number of detected planes becomes sta-
ble during several successive images up to time o — 1,
the investigation is carried out from time Zo. Let N de-
note the number of the detected planes. At each patch
U® (t > tg), a set of state vectors {w;,i = 1,..., N}
is defined, where w; = (w‘(»"’), . ,w,m)T, wlv) denotes
a state: U(7) very likely belongs to the ¢-th plane at
time 7. A matrix V is defined as V = (@), ..., a®)
where @!™) denotes the local image motion of U in
the image at time 7.

Here we define a set of discriminant functions
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{7 (U®), i=1,...,N} at every patch U") in the im-
age at time t. A function 7,-(U(’)) represents a likeli-
hood of grouping U ®) into Rgt). The functions are de-
termined as {y;(U®) = P(w;{V),i=1,..., N}, where
P(w;|V) represents the a posteriori probability of w;
given V (see [3]).

By applying the compound Bayes decision rule [3],
P(w;|V) is estimated as

P(wilV) = p(VIw:i) P(w:)/P(V), (M

where p(V|w;) is the conditional density function of V
given the total state w;, P(w;) is the a priori probabil-
ity of w;, and P(V) = 1L, p(Vlw;)P(w;). Without
any prior knowledge about the probability of each state
w;, we have {P(w;) =1/N,i=1,...,N}.

The function p(V]w;) in Eq.(7) is estimated as

p(VIw:) = TTray, P77, (8)
where p(@(")|w{™) denotes the conditional probabil-
(r)

ity of @(”) given the state w The probability
g

2
p(ﬁ(’)|w§7)) can be determined by comparing @(™) with
the apparent motion of the i-th detected plane, i.e.,
with @; (= J (:‘c)&,(-r) ). Because the estimated local im-
age motion @(") of U(™) may be uncertain in some direc-
tion, the uncertainty should be considered. Therefore,
we define p(&("|w{™) as

p@)el?) = g e (U (0)
(UMY = (; — a7 C iy — aM)/2,, and € de-
notes the covariance matrix of @(”). Note that the
covariance of 4; is not considered in Eq.(9). We ex-
pect that the model ELET) can be estimated reliably by
spatially and temporally combining local image motion
vectors of many patches.

The discriminant functions of each patch can be
easily evaluated by tracking the patch up to the image
at time . By grouping U®) with v;(U®)) > v;(U®) for
all 7 # 7 into Rgt), astable performance of segmentation
is obtained when the ambiguity absences from several
images. The performance can still be retained even
though the ambiguity appears again.

The ambiguity induced by the local similarity be-
tween apparent motions of different planes is removed
as follows. When the update of segments and evalua-
tions of the discriminant functions of each patch have
been accomplished, reorganization of patches is per-
formed in the image at time . If a patch U¢*) has been
grouped into a segment R](-” and v (U®) > v (UM), it
is removed from R;-t) and is grouped into Rﬁ”.

B.  Removing the Ambiguity due to Glohal Similarity

It is also necessary to address another case of ambiguity
in which apparent motions of different moving objects

become globally similar during a period.

Suppose that two segments Rit) and Ry) belong to
different planes which have identical apparent motions
at time ¢. The apparent motions of the two planes are
not coherent over the entire sequence. In order to avoid
merging the two segments when the apparent motions
become identical, the temporal coherence between the
apparent motions is also investigated.

As described above, the temporal coherence be-
tween the local image motion of a patch U¢=1) ¢ R?_l)
and apparent motion of the j-th detected plane up to
the image at time ¢t — 1 is represented by the discrim-
inant function 7;(U®-1). It is obvious that, if appar-
ent motions of the i-th and j-th planes are not tempo-
rally coherent in the period [to,t — 1], 7;(U¢~D) and
7; (U1 of almost every patch UC-1) ¢ Rﬁt'l) are
different. We have v(U¢-1) > 5 (U¢-V), or say,
(U=D) — (U1 is close to 1.0.

The values of 7;(U(¢=1) of all patches U(=1) in
R,Et_l) are averaged

(-1 1 -
Y = — Y vu-nert-n 1(UEY),
ny, :
where n, is the number of patches in R‘(.t—l). Also
S(1=1 1 -
’Y](' )= — Lyu-nert-» 7 (Ut=).
» i

Clearly ’y}t_l) and "y](-t_l) are also significantly different,
Le., (UC¢-V) > 4(U-1). Thus, merging R?) into
R;:” is avoided if '7§t_1) - '7]0'1) is larger than a thresh-
old T,. Since the apparent motions of the two planes
may be locally similer up to the image at time ¢ — 1,
7%(U%Y) may be approximately equal to ;(U(~1)
at several patches in Rf—’“l)‘ Hence we can expect that
"yl-(t_l) > "y](-'—l), but Wgt-l) — '7]@_1) may not be close to
1.0. From results of various experiments, we found that
predefining the threshold 7., to be 0.5 is significant.

V1. EXPERIMENTAL RESULTS

The first example is the result obtained from the se-
quence shown in Fig.1. Fig.9(a) shows segments of the
foreground and background obtained at the 5th image
in the sequence. The investigation of temporal coher-
ence is still not performed. It can be seen that a part
of the foreground is grouped into the segment of back-
ground because of the local similarity between image
motions of the two segments. Fig.9(b) gives the seg-
ment of the foreground detected in several succeeding
images. Influences of the ambiguity are gradually re-
moved, and the foreground is detected almost correctly
in the 25th image.

Fig.10 shows the segments of the upper and lower
parts of the man’s left leg which are obtained in sev-
eral images in the sequence shown in Fig.2. Each of the
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Fig. 9: Results of segmentation at two images. (a)
Points (left, depicted in gray) indicating locations
where flow vectors are computed in the 5th image, and
the two segments of the foreground and background
obtained in the image. (b) The segment of the fore-
ground in the 10th, 15th, and 25th image, respectively,
obtained by removing the ambiguity.
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Fig. 10: Segments of the upper and lower parts of the
man’s left leg obtained in (from left to right) 5th, 30th,
and 59th image, respectively.

two parts is approximated by a rigid plane. It can be
seen from that the two parts are detected as a single
segment in the 5th image (#1 in Fig.10(a)) due to the
global similarity between their image motions. They
have been separated to two segments in the 30th im-
age (#1 and #2 in Fig.10(b)). In the 59th image, the
segments of the two parts are still interpreted as indi-
vidual planes (#1 and #2 in Fig.10(c)), even though
their image motions become globally similar again.

VII. CONCLUSION

A distinctive feature of the proposed method is to ac-
curmnulatively observe apparent motion in a long image
sequence. By tracking patches between several images,
flow vectors at locations in corresponding patches are
combined to obtain a correct estimate of local image
motion. Furthermore, the estimated local image mo-
tion vectors are spatially and temporally combined to

estimate the model for describing the apparent motion
of each object. When local image motion vectors of
patches are correctly estimated, incremental segmenta-
tion of each image becomes possible.

In order to remove the inherent ambiguities, tempo-
ral coherence between the local image motion of a patch
and the apparent motion of every object is investigated
over long time. Each patch is grouped into a segment
whose image motion is most temporally coherent with
the local image motion observed at the patch. When
apparent motions of two objects are not temporally co-
herent each other up to the previous image, segments
of the two objects are not merged. In this way, seg-
mentation become stable when the ambiguities absence
during a certain number of images.
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