
A Visual Simulator for Computer Education by Java Programming

Yoshiro Imai*1, Shinji Tomita*2, Hitoshi Inomo*1, Wataru Shiraki*1 and Hiroshi Ishikawa*1

*1 Faculty of Engineering, Kagawa University

*2 Graduate School of Informatics, Kyoto University

Faculty of Engineering, Kagawa University,
2217-20 Hayashi-cho, Takamatsu, 761-0396, JAPAN

Tel: +81-87-864-2244 FAX: +81-87-864-2244 E-mail: imai@eng.kagawa-u.ac.jp

Abstract
We have developed a visual simulator for computer education tool. It is designed to illustrate an internal behavior and

structure of computer and explain graphically how a computer works. It is implemented in Java programming language to be
executed on several computing environments such as Windows PC, Macintosh and many Unix workstations. It works as both
stand alone application (Java appli) and Java applet so that we can distribute it from Web server by means of internet. Its GUI is
not so rich but even beginners operate it very easily, and it employs Java-provided thread programming for interactive
simulation. This report describes design concepts of our visual simulator, implementation detail with Java programming, and
usages as an education tool of classroom lectures.

J a v a アプレットによる計算機ビジュアルシミュレータの実現

今井慈郎*1, 富田眞治*2, 井面仁志*1, 白木 渡*1, 石川 浩 *1

*1 香川大学工学部信頼性情報システム工学科 *2 京都大学大学院情報学研究科
〒761-0396 香川県高松市林町 2217-20 香川大学工学部信頼性情報システム工学科

Tel: 087-864-2244 FAX: 087-864-2244 E-mail: imai@eng.kagawa-u.ac.jp
あらまし

Javaプログラミングによる計算機内部の動作・構造を理解させるためのビジュアルシミュレータについて，そ

の設計方針，実装方式(GUI やスレッドプログラミングなど)そして大学・高専及び企業の新人教育などにおける

教材としての利用状況などについて，具体的に報告する．

1. Introduction

The more frequently many people use computers, the
higher-powered and more complicated actual computers
grow. It is too difficult for beginners to comprehend how
computers work precisely because of their complex
properties like as a black box. Recently, however, several
curricula of advanced educational institution, such as high
school, university and new comers' training center of
company, have information literacy courses and
introductory lectures for computer science. In order to
study computer more precisely, it is necessary to
understand the internal structure and behavior of computer.
Not an abstracted lecture on Computer System can
provide visual and applicable understanding on structure
and behavior of computer.

We have developed a visual simulator called "VisuSim
(/vizim/)" as computer education tool. With this tool, it is
convenient for beginners to understand internal structure
and behavior of computer visually. VisuSim offers

window-based graphical view to explain how computer
works, interprets sample assembly programs stored in
memory and demonstrates data transfer mechanism
between registers of CPU and memory. It is designed to
fulfill its function not only as stand-alone application on
several platforms but also as Java applet on major
browsers.

In this paper, we describe basic design concepts of our
visual simulator, its system configuration implemented
with Java programming language, characteristics of its
GUI for actual manipulation, and its application to
practical lectures of computer system and/or computer
literacy.

2. Basic Concepts of Visual Simulator Design

 Our visual simulator: VisuSim has been designed and
developed for the following major objectives:
1) A demonstration tool for assistance to complete oral
explanation how computer works in ordinary classroom

研究会Temp
グラフィクスとＣＡＤ

研究会Temp
106－13

研究会Temp
（２００２． ２． ２１）

研究会Temp
－73－

lectures,
2) Self-learning software, which can be obtained from
web server, to review and confirm already-lectured
contents after school.

These design objectives may be suitable for almost
education tools or self-learning software as well as our
visual simulator. It is important that education tools will be
available as widely as possible and can be manipulated
easily. If such a tool is designed only for a handful of
specific users, it cannot enjoy periodic improvement for
lack of feedback and request from other users.

Now we will mention the basic concepts to design our
visual simulator. At first, basic design concepts of our
simulator are enumerated, and secondly commentated for
some items of concept as follows:
l Education-aid demonstration tool
l Self-learning assistant software
l Enhancement of visual facility
l Graphical user interface
l Easy improvement and quick distribution
l Employment of Java programming language
l Browser-based execution environment
Distribution of software may utilize computer network
connectivity. Web sites provide downloadable data and
binaries on their home pages, accept access from anyone
through network, and transfer data or binaries according to
request. So it is quite natural that we choose a design
policy to utilize software distribution style based on
network and web data transfer service. A famous
methodology of software design, "Stepwise Refinement/
Enhancement" advocated by Niklaus Wirth[2], teach us
that it may be effective for many types of software to be
designed and implemented from a simple prototype into
more complicated products through several versions. So
we have employed the following design procedure of
visual simulator: designing lower version of product,
opening the implemented version to the public on our web
site, obtaining some reports on using and evaluating it by
students and designing higher version with error decrease
and enhancement based on usage reports.

We must choose another design policy to build
software based on windows-based operability with simple
manipulation such as button pushing and so on, because
all the PC's already adopt multi-windows system.
Selecting programming language is one of the most
serious problems whether system and/or software will be
successful or not. In the general, C/C++, Visual BASIC or
Java may be powerful and practical candidate of software
description languages. With most regard to cumulative
results till now, C/C++ must be chosen. Selection based
on popularity will persuade us that Visual BASIC has
obtained maximal numbers of users in the PC world. We

decide to choose Java as description language, however,
because Java can provide both of environment-
independent executable binaries and window-based
operability for multiple platforms[1].

3. System Configuration of Visual Simulator

This section describes detail on system configuration of
our visual simulator, namely, implementation with Java,
simulation capability, operability with GUI and more
effective features for enhancing educational
demonstration. From now, we denote VisuSim as the
abbreviation for our visual simulator. The pronunciation
of VisuSim is /vizim/.

3.1 Implementation of VisuSim with Java

VisuSim is written in Java language, whose software
codes has included about 2,000 line statements. And the
current version of it has been organized with the following
subsystems:
(1) GUI Components + Display Layout,
(2) Routines working for Standalone Applications,
(3) Routines working for Java Applet,
(4) Several Threads for Concurrent Operation,
(5) Event Handlers for Man-Machine Interaction, and
(6) Simulator for Interpreting Pseudo-Assembly Codes.
Figure 1 System Configuration of VisuSim

Subsystem (1) plays a role of user interface, whose
components consists of bottoms, labels, and text fields for
information interchanging between Java applet and user

Instruction fetch
Instruction decode
Execution

InitHandler
LoadProgHandler
StepGoHandler
AutomaticGoHandler

Thread:
Runnable(Simulating+Drawing)

GUI components + Layout

Variables + Constants

VisuSim written by Java

Simulator:

Routines for Standalone Apps

Routines for Applet

Event
Handler:

研究会Temp
－74－

who operates the corresponding browser. Display Layout
may be one of the most important factors to define
practice of GUI and to determine whether that system is
convenient to use or not. With Java programming style, it
is easy to select suitable GUI components and put them in
the very effective position.

Subsystem (2) is going to work whenever VisuSim is
invoked as stand-alone application program with java
interpreter, while subsystem (3) begins to operate after
VisuSim is downloaded as Java applet into web browser.
The both subsystems play almost same role of presetting
variables and states of the whole system, making event
handlers be ready to serve, and preparing for major
functions of VisuSim, for example, system initialization,
program loading, pseudo-assembly codes interpretation
and so on. VisuSim includes both of the above two
subsystems in its single source code, so that it can
facilitate the two different activities. Namely, even one
type of VisuSim can work correctly as either standalone
application or Java applet. In addition, a single source
code approach may give us another advantage, that is
convenient to update and easy to maintain source code of
VisuSim.

Subsystem (4) has some routines for thread, which are
introduced for VisuSim to operate concurrently. This
subsystem is designed and implemented according to
formal thread description methodology of Java, because it
is difficult for us to write entirely corrective program
realizing concurrent operations with Java language. Both
simulating and drawing are multitasking, therefore, they
can work concurrently. Event-handling routines play
essential roles of interaction, namely, they relate
manipulation of GUI components by user to the
corresponding inner routines of VisuSim, so subsystem
(5) must be very much principal in VisuSim. This
subsystem can be initialized by subsystem (2) as well as
subsystem (3), may be invoked by user's operation for
GUI components, and will be carried out to start some
event handling services. Moreover a part of them are
triggered to be changed into a multitasking thread to
computing suitable processes, and then return the results
in accordance with events.

Subsystem (6) is the main part of VisuSim. It consists
of the following three major routines: instruction fetch
routine, instruction decode one and execution one. All
three routines and the following data area and text fields
are combined to organize virtual computer hardware in a
close relation of corresponding real hardware structure. At
first, instruction fetch routine reads an instruction located
by program counter (PC) out of memory array, and
transfers it into instruction register (IR) built in control unit.
Secondly, instruction decode routine investigates the

content of IR, deciphers it into specification of operation
code and operands, and throws those specified signals to
the suitable units, which recognize what they must do.

Finally, execution routine indicates that every unit
should operate correctly along the received order. The
three addressing modes such as direct addressing, indirect
one and immediate one, also interpreted by execution
routine. Almost routines described above have own inner
variables and states, and compute their proper processes
with little dependence on other routines. Such routines can
be tuned and updated by themselves without influence of
others because of benefits from object-oriented
programming. As a matter of fact, we wanted to write
pure modular programming code, brush up every routine
of VisuSim, and decrease a whole number of global
variables in the source code of VisuSim. Frequently, each
routine can hardly realize smooth co-relation with other
parts of routines only by message passing mechanism, at
the result of global variable decrement. Therefore, we
must stop to decrease number of global variables and
employ fairly conventional programming style with the
suitable global variables for corresponding each other

3.2 GUI of VisuSim and its Operability

First of all, we show the overview of VisuSim in Figure
2. This figure demonstrates that VisuSim is working on
the browsing window of Internet Explorer, which is a
Japanese Edition bundled in Microsoft Windows 98 for
almost Japanese Windows PC's. Needless to say, another
major browser such as Netscape Composer can also
provide an execution environment for VisuSim. In such a
case, VisuSim is invoked as Java applet so that it has
hidden some GUI components for file access service
facilities in order to inhibit security violation.

Figure 2 Overview of VisuSim’s GUI

The GUI window of VisuSim consists of major three
parts for computer hardware and some GUI components

研究会Temp
－75－

for interaction between user and VisuSim. As shown in
figure2, the major three parts for computer hardware are
represented with control unit, processor unit and memory
unit. Control unit has some objects constructed with text
fields which play roles of PC, IR and other registers
respectively. Processor unit as well as control unit has
some objects constructed with text fields which play roles
of General-purpose registers (GR[0]-GR[7]), two types of
memory registers (MRBR, MWBR), Condition-code
register (CCR) and so on. Memory unit is nearly the same.
It has been entirely implemented on slide-movable panel
object so that it can partly show location of
array-structured memory cells. And view of contents in
memory unit can be slid as the occasion demands.

VisuSim has four bottom objects such as Initialization
bottom, Program Load one, Step-wise Execution one, and
Automatic Execution one. These are prepared to control
VisuSim from user and accept external requests. For
example, pushing Initialization bottom, the major three
units of VisuSim are reset so that IR, eight General-
purpose registers, all the memory cells has been clear and
PC is set into zero. Program Load bottom is used for
transferring an assembly program written in Program text
field into memory unit. If VisuSim is invoked as
standalone Java application, pushing of Program Load
bottom can perform direct access to the file system, read a
program stored in file, and transfer it into memory unit.

The two execution bottoms are used for start and stop
simulator subsystem of VisuSim directly. One is for
step-wise execution instruction by instruction, and another
is for automatically executing a series of assembly codes
until halt instruction in the codes is fetched and decoded.
A message field below four bottoms is placed to display
current internal state of VisuSim. After pushing bottom, a
request from user is accepted through event handler and
processed by the according routines of VisuSim. The
internal state of VisuSim is updated and the corresponding
message is output at text field for monitoring. Such a
message is related to its current internal state like
“LoadProgFromTextArea: finished.”

3.3 Simulation Capability of VisuSim

This section describes detail of simulation capability
concerning VisuSim. Its capability may be partly
evaluated by means of instruction repertory which an
objective simulator can interpret. Namely, the instruction
set of target virtual computer system will be one of
measurements for simulation capability. Table 1 shows the
repertory of instruction set for VisuSim. Classification of
instruction set can be formally divided into following four
groups: 1) Control instructions including ''halt'' and ''noop''
(noop means 'No Operation'), 2) Jump instructions

including subroutine-related, conditional-jump and
unconditional-jump operations such as ''call'', ''ret'', ''jpgt'',
''jpge'', ''jplt'', ''jple'', ''jpeq'', ''jpne'', and ''jump'', 3) Unary
operation instructions including arithmetic and
stack-related operations such as ''neg'', ''push'' and ''pop'',
and 4) Binary operation instructions including arithmetic
operations such as ''add'', ''sub'', ''move'' and logical
operations such as ''and'', ''or'', ''xor''.

Each operation works simultaneously together with
condition-code register(CCR), which consists of Negative
flag and Zero flag. CCR of VisuSim is represented as
anyone of (N, Z)=(- , -), (- , Z) or (N, -). All the
instructions listed in table 1 may take maximum two
operands, which can be specified as the following four
ways of operand specification: direct address, register
identification, indirect address with register modification
and immediate value.

Direct address is the most normal addressing, which
uses only operand field and specifies target location of
memory. Register identification is another addressing
which means using register as either source or destination
of operation. “RegId” or “Reg” is defined to represent the
specific register from GR0 to GR7 in our case. Indirect
address with register modification is more powerful
addressing so that it is indispensable to utilization of
indexed addressing, for example. Immediate value is a
very convenient addressing and let us describe brief
assembly programs. Without this mode, we must secure
location of memory for all the data to be manipulated in
programs.

In general, iteration processing structure can be realized
with combination of conditional jump, indirect addressing
and so on. Therefore, relatively complicated iteration
processing can be realized with such an addressing and
interpreted by VisuSim. Program including iteration is one
of the difficult subject matters of computer system.
Beginners sometimes suffer from lack of suitable
education tools which assist illustrating how computer
works. With VisuSim as visual education tool, it is
available for beginners to understand visually a
mechanism that program with iteration is processed by
computer.

3.4 More Effective Features of VisuSim

This section describes actual features which make
VisuSim more effective to be used as an education tool for
computer system. With simulator, an overview for
processing sequence of program can be obtained through
iteration of instruction fetching, instruction decoding, and
executing. It is very useful to specify the flow of data
transferring, namely, to indicate when and where data is
read out or written in. Therefore, VisuSim has two types

研究会Temp
－76－

of indicating function for memory access to make easy
understanding of computer's behavior. Color of the
memory location turns to ''blue'' when the content of
memory is fetched by CPU, that includes both of
instruction fetching and data fetching. On the other hand,
color of memory cell has been changed into “yellow” on
storing data at that location.

In the same manner, when data is transferred into a
general-purpose register, color of that register is changed
into “yellow”. The above indication can make VisuSim a
more effective education tool for computer's behavior and
assist user to comprehend how data is transferred in the
computer's inner space. There is another idea which
simulator has multiple execution modes for processing
program. One is ''non-stop'' execution, which is suitable to
explain what the target program does, while other is
''step-by-step'' execution which is convenient to examine
every part of the target program closely. From these
viewpoints, we consider that simulator must prepare two
different types of execution modes. Actually, execution
modes of VisuSim are twofold: automatic type for
“non-stop” execution and stepwise one for “step-by-step”
are summarized as follows;

 Figure 3. Automatic Execution Mode Using

“Automatic Go” bottom

1) Automatic Execution (shown in Figure 3):
When the bottom for ''Automatic Go'' is clicked, the

internal simulator of VisuSim starts on continuous
repetition of machine cycle execution until decoding
“halt” instruction or occurrence of interruption. This mode
is much convenient for relatively long-term demonstration
where VisuSim must interpret a program including several
iterations, recursive procedure calls or other kind of
complicated processes, for example. Because this mode of
execution looks like playing slide show, it is useful to trace
a whole target program sequentially and verify whether
program is computed accurately or not. While simulator

repeats its machine cycles in the automatic execution
mode, pushing twice the bottom for “Automatic Go”
triggers off occurrence of interruption.

 Figure 4. Step-wise Execution Mode Using

“Step Go” bottom

2) Stepwise Execution (shown in Figure 4):
When the bottom for “Step Go” is clicked, the internal

simulator of VisuSim activates only one machine cycle
execution. A machine cycle of this mode strictly consists
of instruction fetch, instruction decoding and execution. so
sequential execution of the specific part of program needs
consecutive operations of clicking the bottom for “Step
Go”. This execution mode is also convenient for
interactive modification of registers and/or memory. It is
easy to stop execution of program at any point, change
contents of memory and/or CPU (including several
registers), and restart from such a broken point.

This mode could make VisuSim compute only the
limited part of long size program code, if program counter
is reset to the specific location and the bottom for “Step
Go” is being clicked during the suitable times. Such a
process can point out the illegal description of programs,
offer a better modification for improving, and finally
prove code consistency of those examined programs. A
detail testing of program can be realized in this mode.

Consequently, combination of two execution modes
may provide a powerful debugging facility. In the class of
assembly programming exercise described below, for
example, these debugging facility has been employed to
verify whether programs written by students work
correctly or not. With both of stepwise and automatic
execution mechanism, it is not only effective to debug
program through some exhaustive method of
investigating every check point, but also educational to
demonstrate the relation between numbers of repetition
and the corresponding content of loop control variable in
the specific general-purpose register (GR[i]).

研究会Temp
－77－

4. Evaluation for VisuSim as Education Tool

This section describes some applications of VisuSim
into educational field, and brief evaluation of VisuSim as
Web-based education tool by means of its actual usage.

4.1 Education Tool for Lecture

With VisuSim, it is efficient for teachers to explain the
internal mechanism of computer and illustrate how
computer works at their classroom lectures. For Example,
a practical example of program such as addressing
mechanism can provide useful images to students who
have begun to study computer science. They will think of
the reason why computer has some kinds of addressing
through actual programs with direct addressing, indirect
addressing and immediate value addressing, and find that
program status of CPU is very much important to utilize
several conditional branch operations.

Two kinds of execution mode provide a visual tracing
function to investigate how program is processed in
computer. Changing the value of loop counter makes
control of iteration, which is realized with the following
operation such as stopping execution, modifying and
restoring data, and restarting from the location of
interruption. Dynamic demonstration tool enables
interactive communication between teacher and students
concerning their common theme, realtime check and
verification of anyone's question, quick application to the
related problems, and then practical decision based on
visual examination. Figure 4 illustrates image of lecture
with VisuSim as education tool.

Figure 5 Image of Lecture with VisuSim

4.2 Self-Learning with Web-based Education Tool

VisuSim can be downloaded from our Web server at
any time so that it is easy for students to obtain it at any
place wherever it is available to connect with internet,
even if they didn't attend lecture or couldn't understand
that content at their class.

With usage of VisuSim as self-learning software tool,

students have benefits to utilize VisuSim to review the
content of lecture, investigate whether their programs
work correctly or not, and verify their reports for
homework by themselves. Figure 5 shows schematic
diagram to explain that VisuSim can be downloaded from
Web server at any place with connectivity to internet.
Mobile computing facility enhances some students to
utilize VisuSim outside of school and/or home, so they
can study and demonstrate the contents of computer
system, information literacy and/or assembly
programming at any time and any place if they want.

Moreover, from the viewpoint of software developers ,
Web-based software distribution has some following
benefits; namely, quick and low-cost release of the latest
version for products, direct response of positive / negative
estimation form users, brief improvement and
modification of products into update version, and
acquisition of kind and powerful cooperation from
excellent users through the internet.

5. Conclusion

We can conclude our study as follows:
(1) It is recognized that our visual simulator, VisuSim is
one of effective education tools for computer-related
education and training by means of its practical usage.
(2) With use of VisuSim, graphical demonstration can be
available in classroom lecture on computer system and
information literacy, so that it is efficient for even
beginners of computer to understand precisely the internal
structure and behavior of computer.
(3) VisuSim can be easily obtained from the web-site,
sufficiently executed platform-independently, and simply
operated through its GUI and interactive facilities.
(4) VisuSim may be a good example for Web-based
education tool. Execution environment is limited to Web
browser such as MS-IE and Netscape Communicator so
that no other software will be required in order to utilize
VisuSim on any computing environment.

Acknowledgments

The authors would like to express special thanks to Prof.
Haruo Niimi, Kyoto Sangyo Univ., and Prof. Kazunori
Yamaguchi, Univ. of Tokyo for their constructive advices.
This study is partly supported by grand 12040107 in aid
for scientific research from the Ministry of Education,
Culture, Sports, Science and Technology.
References

[1] David Flanagan, ''JAVA EXAMPLES IN A
NUTSHELL, A Tutorial Companion to Java in a
Nutshell'', O'Reilly & Associates, 1997
[2] Niklaus Wirth, ''Algorithms + Data Structures =
Programs'', Prentice-Hall, 1976

研究会Temp
－78－

