gb0o0oboooOonD 10e013
gbooobogoboobgoo

A Visual Smulator for Computer Education by Java Programming

Y oshiro Imai*1, Shinji Tomita* 2, Hitoshi Inomo* 1, Wataru Shiraki* 1 and Hiroshi Ishikawa* 1

Td: +81-87-864-2244

Abstract

*1 Faculty of Engineering, Kagawa University
*2 Graduate School of Informatics, Kyoto University

Faculty of Engineering, Kagawa University,
2217-20 Hayashi-cho, Takamatsu, 761-0396, JAPAN
FAX: +81-87-864-2244

E-mail: imai @eng.kagawau.ac.jp

We have developed a visud smulator for computer educetion todl. It is designed to illudrate an internd behavior and
gructure of computer and explain graphicaly how a computer works. It is implemented in Java programming language to be
executed on severd computing environments such as Windows PC, Macintash and many Unix workgtations. It works as both
stand done goplication (Javagopli) and Java applet o that we can didtribute it from Web server by means of internet. ItsGUI is
not so rich but even beginners operate it vary easly, and it employs Java-provided thread programming for interactive
smulaion. This report describes design concepts of our visud smulaor, implementation detail with Java programming, and

usages as an education tool of classroom lectures.

Java

* 11 * 21
*1
761-0396
Tel: 087-864-2244

GUI

1. Introduction

The more frequently many people use computers, the
higher-powered and more complicated actud computers
grow. It istoo difficult for beginners to comprehend how
computers work precisly because of their complex
properties like as a black box. Recently, however, ssverd
curricula of advanced educationd inditution, such as high
school, universty and new comers training center of
compay, have informaion literacy coursss and
introductory lectures for computer science. In order to
sudy computer more precisdy, it is necesay to

understand the internd gructure and behavior of computer.

Not an abdracted lecture on Computer Sysem can
provide visud and gpplicable understanding on dructure
and behavior of computer.

We have devdoped avisud amulator cdled "VisuSm
(izim/)" as computer education tool. With thistodl, it is
convenient for beginners to understand interna structure
and behavior of computer visudly. VisuSm offers

g 730

2217-20
FAX: 087-864-2244 E-mail: ima @eng.kagawau.ac.jp

*1, *1, *1
*2

window-basad grgphicd view to explain how computer
works, interprets sample assembly programs sored in
memory and demondraes data transfer mechanism
between regigters of CPU and memoary. It is designed to
fulfill its function not only as sand-done gpplication on
svad plafooms but dso as Jawva goplet on mgor
browsers.

In this paper, we describe basic design concepts of our
visud dmulator, its sysem configuration implemented
with Java programming language, characteritics of its
GUI for actua manipulation, and its applicaion to
practicd lectures of computer sysem and/or computer

literacy.

2. Basic Concepts of Visual Simulator Design
Our visud dmuletor: VisuSm has been designed and

developed for the following major objectives:

1) A demondration todl for assistance to complete ord

explanation how computer works in ordinary classoom

研究会Temp
グラフィクスとＣＡＤ

研究会Temp
106－13

研究会Temp
（２００２． ２． ２１）

研究会Temp
－73－

lectures,

2) Sdf-learning software, which can be obtained from
web server, to review and confirm dready-lectured
contents after school.

These design objectives may be suitable for dmost
education tools or sdf-learning software as well as our
visud amulator. It isimportant that education toolswill be
available as widdy as possble and can be manipulated
eedly. If such a todl is desgned only for a hendful of
gpecific users, it cannot enjoy periodic improvement for
lack of feedback and request from other users.

Now we will mention the basic concepts to design our
visud amulator. At firgt, basc design concepts of our
dmulator are enumerated, and secondly commentated for
some items of concept as follows:

Education-aid demonstration tool

Sdf-learning assistant software

Enhancement of visua facility

Graphical user interface

Easy improvement and quick distribution
Employment of Java programming language
Browser-based execution environment
Digtribution of software may utilize computer network
connectivity. Web stes provide downloadable data and
binaries on their home pages, accept access from anyone
through network, and trandfer data or binaries according to
request. So it is quite naturd thet we choose a design
policy to utilize software didribution style basad on
network and web daa trander service A famous
methodology of software design, "Stepwise Refinement/
Enhancement” advocated by Niklaus Wirth[2], teach us
that it may be effective for many types of software to be
designed and implemented from a Smple prototype into
more complicated products through severa versons. So
we have employed the following design procedure of
visud dmulator: designing lower verson of product,
opening the implemented version to the public on our web
Ste, obtaining some reports on using and evauating it by
students and designing higher verson with error decrease
and enhancement based on usage reports.

We mug choose another desgn policy to build
software based on windows-based operability with smple
manipulaion such as button pushing and so on, because
dl the PCs dready adopt multrwindows system.
Sdecting programming language is one of the mogt
serious problems whether system and/or software will be
successtul or not. Inthe generd, C/C++, Visud BASIC or
Java may be powerful and practicd candidate of software
description languages. With mogt regard to cumulative
results till now, C/C++ mugt be chosen. Sdection based
on popularity will persuade us that Visud BASIC has
obtained maxima numbers of users in the PC world. We

g 740

decide to choose Java as description language, however,
because Java can provide both of environment
independent executable binaries and window-based
operability for multiple platformg[1].

3. System Configuration of Visual Simulator

This section describes detail on system configuration of
our visud dmulaor, namdy, implementation with Java,
smulation capability, operability with GUI and more
effective feaures for enhancing educationd
demondration. From now, we denote VisuSm as the
abbreviation for our visud smulator. The pronunciation
of VisuSim is /vizin.

3.1 Implementation of VisuSim with Java
VisuSm is written in Java language whose software

codes has induded about 2,000 line gatements. And the

current version of it has been organized with the following

subsystems:

(1) GUI Components + Display Layout,

(2) Routines working for Standalone Applications,

(3) Routines working for Java Applet,

(4) Severa Threads for Concurrent Operation,

(5) Event Handlersfor Man-Machine Interaction, and

(6) Simulator for | nterpreting Pseudo-Assambly Codes

Figure 1 System Configuration of VisuSim

VisuSim written by Java
Variables + Constants

GUI components + L ayout

Routinesfor Standalone Apps

Routinesfor Applet

Thread:
Runnable(Simulating+Drawing)

InitHandler

L oadProgHandler
SepGoHandler
AutomaticGoHandler

Instruction fetch
Instruction decode
Execution

Simulator:

Subsystem (1) plays a role of user interface, whose
components condsts of bottoms; labels, and text fields for
information interchanging between Java goplet and user

研究会Temp
－74－

who operates the corresponding browser. Display Layout
may be one of the mog importat fectors to define
practice of GUI and to determinewhether that system is
convenient to use or not. With Java programming style, it
is easy to sHect suitable GUI components and put them in
the very effective position.

Subsysgem (2) is going to work whenever VisuSim is
invoked as stand-done agpplication program with java
interpreter, while subsystemn (3) begins to operae efter
VisuSim is downloaded as Java gpplet into web browser.
The both subsystems play dmost same role of presdtting
variables and dates of the whole system, making event
handlers be reedy to sarve, and prepaing for mgor
functions of Visuam, for example, system initidization,
program loading, pseudo-assembly codes interpretation
and 0 on. VisuSm includes both of the above two
subsysems in its dngle source code, S0 that it can
facilitate the two different activities Namdy, even one
type of VisuSim can work correctly as dther sanddone
goplication or Java applet. In addition, a single source
code gpproach may give us ancther advantage, thet is
convenient to update and easy to maintain source code of
VisuSim.

Subsystemn (4) has some routines for thread, which are
introduced for VisuSm to operae concurrently. This
ubsysem is desgned and implemented according to
formd thread description methodology of Java, because it
is difficult for us to write entirdy corrective program
reglizing concurrent operations with Java language. Both
smulaing and drawing are multitasking, therefore, they
can work concurrently. Event-handling routines play
esentid roles of interaction, namdy, they redae
manipulation of GUI components by user to the
corregponding inner routines of VisuSm, so subsystem
(5 mug be vay much prindpd in VisuSm. This
subsystem can be initidized by subsystem (2) as well as
subsystem (3), may be invoked by usar's operation for
GUI components, and will be carried out to sart some
evet handling services Moreover a pat of them are
triggered to be changed into a multitasking thread to
computing suitable processes, and then return the results
in accordance with events.

Subsystem (6) is the main part of VisuSm. It condgts
of the following three mgor routines. ingtruction fetch
routing, ingruction decode one and execution one. All
three routines and the following data area and text fidds
are combined to organize virtud computer hardwarein a
doserdaion of corresponding red hardware structure. At
fird, indtruction fetch routine reads an indruction located
by program counter (PC) out of memory aray, and
trandersit into ingruction register (IR) built in control unit.
Secondly, indruction decode routine investigates the

g 750

content of IR, deciphers it into specification of operation
code and operands, and throws those specified Sgnds to
the suitable units, which recognize what they must do.

Findly, execution routine indicates that every unit
should operate correctly dong the received order. The
three addressng modes such as direct addressing, indirect
one and immediate one, dso interpreted by execution
routine. Almogt routines described above have own inner
vaiables and dates, and compute ther proper processes
with little dependence on other routines. Such routines can
be tuned and updated by themsdves without influence of
others because of benefits from object-oriented
programming. As a mater of fact, we wanted to write
pure modular programming code, brush up every routine
of VisuSm, and decreese a whole number of globd
vaigbles in the source code of VisuSm. Frequently, each
routine can hardly redlize smooth co-relaion with other
parts of routines anly by message passing mechanism, a
the result of globd variable decrement. Therefore, we
must stop to decrease number of globa varidbles and
employ farly conventiona programming style with the
suitable global variables for corresponding each other

3.2 GUI of VisuSim and its Operability

Firg of al, we show the overview of VisuSmin Figure
2. This figure demondrates that VisuSim is working on
the browsing window of Internet Explorer, which is a
Japanexe Edition bundied in Microsoft Windows 98 for
amog Japanese Windows PC's. Needless to say, another
maor browsr such as Netscgpe Composer can dso
provide an execution environment for VisuSm. In such a
cax VisuSm is invoked as Java goplet 0 thet it hes
hidden some GUI components for file access service
facilities in order to inhibit security violation.

i1 o Fiplun

‘Wienig |5 Lo 1 'am. (62 1 = Wlorces
b EES REN EMLCAN S-n T e

tIA

R ; :) i ad o e LA |
= -r{ ﬂ‘l Ao ﬂhmmm =
PEERIE] irv. s g s s ™ AN WLV TP T =] L B
mndll] = 4
o——— .l Dhaar Tk vt
| —— *“{g Test; frz boe Whilime S
LT — —gl
el il
L TR — mani]
eatind 2]
v E I — =
ltactivs wddhazifl]] e
wiiactive eidwel] Pl
mand11]
15 ﬁ
el
manf14]
P]
wandlE]
wanfl7]
mcrel16]
maradisl
el
o]
|
i
mendld]
anlE|
wonlZf]
L wenlerl
aalE]
iniw | LoadPrae | Bier e (SN | =o-Ei
=] | —
e
kel T
i o 1 m— -
4] | L|_I
B T, B oA

Figure 2 Overview of VisuSim' s GUI
The GUI window of VisuSm conggs of mgor three
parts for computer hardware and some GUI components

研究会Temp
－75－

for interaction between user and VisuSm. As shown in
figure2, the mgor three parts for computer hardweare are
represented with control unit, processor unit and memory
unit. Control unit has some objects condructed with text
fields which play roles of PC, IR and other regigers
respectively. Processor unit as wdl as control unit has
some objects condructed with text fidlds which play roles
of General-purpose regisers (GR[0]-GR[7]), two types of
memory regisers (MRBR, MWBR), Condition-code
regiger (CCR) and so on. Memory unit is nearly the same.
It has been entirdly implemented on didemovable pand
object 0 tha it can patly show locaion of
array-structured memory cdls. And view of contents in
memory unit can be did as the occasion demands.
VisuSm has four bottom objects such as Initidizaion
bottom, Program Load one, Step-wise Execution one, and
Automatic Execution one. These are prepared to control
VisuSm from user and accept extend requests For
example, pushing Initidization bottom, the mgor three
units of VisuSm ae reg 0 that IR, dght Generd-
purpose regigers, dl the memory cdls has been dear and
PC is =t into zero. Program Load bottom is used for
trandferring an assembly program written in Program text
fidd into memory unit. If VisuSm is invoked as
standdone Java goplication, pushing of Program Load
bottom can perform direct accessto thefile system, reed a
program stored infile, and transfer it into memory unit.
The two execution bottoms are used for sart and stop
smulator subsystem of VisuSm directly. One is for
sep-wise execution ingruction by ingruction, and another
is for autometicaly executing a series of assembly codes
until halt ingtruction in the codes is fetched and decoded.
A messege field below four bottoms is placed to display
current internd tate of VisuSm. After pushing bottom, a
request from user is accepted through event handler and
processed by the according routines of VisuSim. The
internd gate of VisuSim is updated and the corresponding
messege is output a text field for monitoring. Such a
message is rdaed to its current internd date like
“LoadProgFromTextArea: finished.”

3.3 Simulation Capability of VisuSim

This section describes detail of smulation capability
concarning VisuSm. lIts capability may be patly
evauated by means of indruction repertory which an
objective amulator can interpret. Namdly, the ingruction
st of target virtud computer sysem will be one of
measurementsfor smulaion cgpability. Table 1 showsthe
repertory of indruction st for VisuSm. Classfication of
ingruction set can be formaly divided into following four
groups: 1) Contral indructions including "halt" and "noop"
(noop means 'No Operation), 2) Jump indructions

g 760

including subroutinerdaed, conditiond-jump and
unconditional-jump operations such as "cal”, "ret”, "jpgt”,
'ipge’, jpit’, ‘jple’, jpecf, "jpne!, and ‘jump’, 3) Unery
operation indructions induding aithmetic and
stack-related operations such as "neg’, "push” and "pop”,
and 4) Binary operaion indructions including arithmetic
operdions such as "add’, "sub’, "move’ and logicd
operations such as "and", "or", "xor".

Each operdtion works smultaneoudy together with
condition-code regigter(CCR), which congsts of Negative
flag and Zero flag. CCR of VisuSm is represanted as
awyone of (N, 2=(- ,), (-, 2 o (N, -). All the
ingructions liged in table 1 may take maximum two
operands, which can be spedified as the following four
ways of operand specification: direct address, regider
identification, indirect address with register modification
and immediate value.

Direct address is the most normd addressng, which
uses only operand fidd and specifies target location of
memory. Regigter identification is another addressng
which means using register as either source or destination
of operation. “Regld” or “Regy” is defined to represent the
specific regiser from GRO to GR7 in our case Indirect
address with register modification is more powerful
addressng <o that it is indispensable to utilization of
indexed addressing, for example. Immediae vaue is a
vay convenient addressing and let us describe brief
assembly programs. Without this mode, we must secure
location of memory for dl the data to be manipulated in
programs.

In generd, iteration processing structure can be redlized
with combination of conditional jump, indirect addressng
and 0 on. Theefore, reaively complicated iteration
processing can be redized with such an addressing and
interpreted by VisuSm. Program incdluding iteretion is one
of the difficult subject matters of computer system.
Beginners sometimes suffer from lack of auitable
education tools which assg illugtrating how computer
works With VisuSm as visud educdion todl, it is
avaldble for beginners to underdand visudly a
mechaniam that program with iteration is processed by
computer.

3.4 More Effective Features of VisuSim

This section describes actud features which make
VisuSm more effective to be usad as an education todl for
computer sysem. With dmulaior, an overview for
processing sequence of program can be obtained through
iteration of indruction fetching, indruction decoding, and
executing. It is very useful to specify the flow of data
trandferring, namdy, to indicate when and where ddta is
reed out or written in. Therefore, VisuSm has two types

研究会Temp
－76－

of indicating function for memory access to make easy
underdanding of computer's behavior. Color of the
memory location turns to "blue” when the content of
memory is fetched by CPU, tha indudes both of
indruction fetching and data fetching. On the other hand,
color of memory cdl has been changed into “yelow” on
storing data at that location.

In the same manner, when daa is trandered into a
genera-purpose regider, color of that regiger is changed
into “ydlow”. The above indication can make VisuSim a
more effective education tool for computer's behavior and
assig user to comprehend how deta is trandferred in the
computer's inner space. There is another idea which
dmulator has multiple execution modes for processing
program. Oneis "non-stop" execution, which is suitable to
explan what the target program does, while other is
"step-hy-gep” execution which is convenient to examine
eveay pat of the target program dosdy. From these
viewpoints, we condder that Smulator must prepare two
different types of execution modes. Actudly, execution
modes of VisuSm ae twofold: autometic type for
“nontstop” execution and stepwise one for “step-by-step”
are summarlzed asfollows;

"rH{l I‘IE I.-ﬂ.'j' t!.l_i':hgl =0T R

Sor. 2 a4

'PH-:?I:I.'I i e iy

ﬂhnmﬁ? o i
E

e ,--'.-u.'u LA T el |

L= —
LN T —

=

el E—fBrom =] =
= m“nGHl it Rl Akl
bowsoh Tand Sren ¥ ey e

o 81

TR

7
lnaes VIERAT GRT

itidi
akEa

by 11, Q101

FEEANHAEEE

=
=

3

[
i

Ha T

EHEEE:

=
=

EITEERInEE NI TR RId]

IHEHEEHENEEEEESS

fddgd
tasma

B -k

Figure 3. Automatic Execution Mode Using
“ Automatic Go” bottom
1) Automatic Execution (shown in Figure 3):

When the bottom for "Automatic Go" is dicked, the
internal dmulator of VisuSm dats on continuous
repetition of machine cycle execution until decoding
“hdt” indruction or occurrence of interruption. This mode
is much convenient for relaively longterm demonstration
where VisuSm mugt interpret a program induding severd
iterations, recursve procedure cdls or other kind of
complicated processes, for example. Becausethis mode of
execution looks like playing dide show, it is useful to trace
awhole target program sequentiadly and verify whether
program is computed accurately or not. While smulator

repedts its machine cydes in the automatic execution
mode, pushing wice the bottom for “Automaic Go”
triggers off occurrence of interruption.

arfdEl ERE BT un_my T ARTH _
Ho. FELE - LR | -
" £ !'I F“b 43 REAS -I: :F!- sz e
ol] ol P EL Mo @ TWrdows e Wik @0 Re OB QTR
FIJ-"I'.‘I- o e b s AR,

AraBiriTihire
mnil —m 'Fl;
] mmlil o UROLJY
PLy i o :ﬁ T -
Drords EH il »
sEe— |3 S
[— malll e
- ki TR
***** | — o e
e i (1] walll] L GET
MAE [T -:,:;Il TA * -III
- T — :
e I e ;
minlll] 3
wllil
:IIIHI ;—
CoR | b Il oy
mellBl B
ol (V]| — ey
| — — mel &
Rl — mnll
C 1 17| — — m
e R —
WA N —
——
e sk | Lo | BT :-l:i! r—
':.r”x.-':.‘.?‘. 1 Baa T b :Ei
——rm i

=lrrzeas

BT L

Figure 4. Step-wise Execution Mode Using
“ Step Go” bottom
2) Stepwise Execution (shown in Figure 4):

When the bottom for “Step Go' is clicked, the internd
samulator of VisuSm ectivates only one machine cyde
execution. A machine cycle of this mode drictly condsts
of indruction fetch, ingtruction decoding and execution. so
seguentid execution of the specific part of program needs
consecutive operations of clicking the bottom for “Step
Go". This execution mode is aso convenient for
interactive modification of registers and/or memory. It is
easy to sop execution of program a any point, change
contents of memory andlor CPU (induding severd
registers), and restart from such a broken point.

This mode could make VisuSm compute only the
limited part of long size program code, if program counter
is ret to the specific location and the bottom for “Step
Go” is beng dicked during the suitable times. Such a
process can point out the illegd description of programs,
offer a better modification for improving, and findly
prove code consstency of those examined programs. A
detail testing of program can be realized in this mode.

Consequently, combingtion of two execution modes
may provide a powerful debugging fadility. In the dass of
assembly programming exercise described below, for
example, these debugging fadility has been employed to
verify whether programs written by sudents work
correctly or not. With both of sepwise and automatic
execution mechaniam, it is not only effective to debug
program through some exhaudive mehod of
invedtigating every check point, but dso educationd to
demondrate the relation between numbers of repetition
and the corresponding content of loop control varigble in
the specific general-purpose register (GR[i]).

g77d

研究会Temp
－77－

4., Evaluation for VisuSim as Education Tool
This section describes some gpplications of VisuSm

into educationd fidd, and brief evauaion of VisuSm as

Web-based education tool by meansof itsactual usage.

4.1 Education Tool for Lecture

With VisuSm, it is effident for teechers to explain the
internd mechanism of computer and illusrate how
computer works at ther dlassroom lectures. For Example,
a practicd example of program sch as addressng
mechanism can provide useful images to sudents who
have begun to study computer science. They will think of
the reason why computer has some kinds of addressing
through actud programs with direct addressing, indirect
addressing and immediate vaue addressing, and find that
program detus of CPU is very much important to utilize
severa conditional branch operations.

Two kinds of execution mode provide a visud tracing
function to investigate how program is processed in
computer. Changing the vaue of loop counter makes
control of iteration, which is redized with the following
operdtion such as stopping execution, modifying and
redoring data, and redating from the location of
interruption. Dynamic demondraion tool enables
interactive communication between teacher and sudents
concerning their common theme, redtime check and
veification of anyonées question, quick gpplication to the
related problems, and then practica decison based on
visud examination. Figure 4 illugtrates image of lecture
with VisuSim as education tool.

Figure 5 Image of Lecture with VisuSim

4.2 Self-Learning with Web-based Education Tool
VisuSm can be downloaded from our Web sarver &
any time so thet it is easy for Sudents to obtain it a& any
place wherever it is avalable to connect with internet,
even if they didnt attend lecture or couldn't undersand
that content at their class.
With usage of VisuSm as sdf-learning software tool,

0 780

dudents have bendfits to utilize VisuSm to review the
content of lecture, invedigate whether their programs
work correctly or not, and verify ther reports for
homework by themsdves. Figure 5 shows schematic
diagram to explain that VisuSim can be downloaded from
Web saver a any place with connectivity to internet.
Mobile computing facility enhances some sudents to
utilize VisuSm outside of school and/or home, so they
can dudy and demondrate the contents of computer
sydem, informetion litracy andlor assambly
programming at any time and any place if they want.

Moreover, from the viewpoint of software developers,
Web-based software digtribution has some following
benefits namdy, quick and low-codt rdease of the latest
verson for products, direct reponse of postive / negetive
edimaion form usxs brief improvement and
modification of products into update verson, and
acquistion of kind and powerful cooperation from
excellent users through the internet.

5. Conclusion

We can conclude our study as follows:
(1) It is recognized thet our visud smulator, VisuSim is
one of effective education tools for computer-relaed
education and training by means of its practical usage.
(2) With use of VisuSm, graphicd demondration can be
avalddle in dassroom lecture on computer system and
information literacy, <0 that it is efficdent for even
beginners of computer to understand precisdly the internd
structure and behavior of computer.
(3) VisuSim can be eesly obtained from the webrgite,
aufficiently executed platform-independently, and Smply
operated through its GUI and interactive facilities.
(4) VisuSm may be a good example for Web-based
education tool. Execution environment is limited to Web
browser such as MS-E and Netscape Communicator o
that no other software will be reguired in order to utilize
VisuSim on any computing environment.

Acknowledgments

The authors would like to express spedid thanks to Prof.
Haruo Niimi, Kyoto Sangyo Univ., and Prof. Kazunori
Yamaguchi, Univ. of Tokyo for ther condructive advices.
This study is partly supported by grand 12040107 in ad
for scientific research from the Ministry of Education,
Culture, Sports, Science and Technology.
References
[1] David Hanagan, "JAVA EXAMPLES IN A
NUTSHELL, A Tutorid Compenion to Jva in a
Nutshell", O'Reilly & Associates, 1997
[2] Niklaus Wirth, "Algorithms + Daa Structures =
Programs", Prentice-Hall, 1976

研究会Temp
－78－

