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Generating Realistic Spatial Distribution of Flowers in Plant
Ecosystem using Artificial Life System Awvida

Rawitat PULAM * DongSheng CAI f

Abstract

Generating realistic spatial patterns of Plant Eco-System (PES) has a lot of important applications in com-
puter graphics (CG) modeling of outdoor scenes and landscapes, as well as other potential areas such as a study
of theoretical ecology of plant population. However, the evolution of PES, including the complexities and noises
in the environment, is indeterministic and therefore make this a difficult and challenging task. Also, pervious
works had focused on either generating plant distributions for CG applications or studying spatio-temporal pro-
cesses in real plant communities. In this research, we propose an approach based on computer simulation using
an adaptive and self-organizing Artificial Life system Avida, as a realistic natural PES texturing engine, merging
together CG and theoretical studies, and thus enable us to gain more understanding of PES and generate realistic

CG scene at the same time.
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1 Introduction

Synthesis of realistic images of terrains covered with
vegetation with realistic spatial distribution is chal-
lenging and important problem in CG, as well as un-
derstanding the underlying processes and natures of
how these natural textures are formed in real plant
communities is a challenging and important problem
in theoretical ecology.

Several research works had been undergoing in both
fields. However, most of them fall into two categories:

e Generating spatial distributions of plants in PES
by methods that yield no insight of how there are
generated in reality. Example of such works are
[6] and [9].
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e Study the spatio-temporal processes using statis-
tical data collected from real fields and/or mod-
eled them mathematically (mostly using differen-
tial equations), without generating spatial pat-
tern. Example of such works are [5], [7], and [8].

However, this created a paradox: how a spatial pat-
tern can be generated, with all its natural spirits such
as high environmental entropy and noises, without
modeling real plant communities, and how the un-
derlying processes of pattern formation be understood
without really generating the pattern?

In this research, we propose a framework for bind-
ing them together using bottom-up, synthesis ap-
proach with might yield new insights into theoreti-
cal ecology and, at the same time, generating realistic
spatial distributions for CG applications.

2 Spatial Pattern Formation in Plant
Communities

PES are three-dimensional entities. However, as
the vertical dimension is the height of the horizontally-


研究会Temp 
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

研究会Temp 
2003－ＣＧ－113　　（10）

研究会Temp 
2003／11／25

研究会Temp 
－57－


arranged plant bodies, therefore spatial patternin PES
is referring to the two-dimensional projection of the
plant bodies onto the earth’s surface. Even though the
vertical dimension plays an important role as plants of-
ten compete in vertical growth which result in death
of some individuals and hence effect the horizontal
pattern; the height is still largely determined by the
biochemical constraints. The horizontal dimensions,
however, have no such constraint.

Understanding spatial patterns in PES had been
a long-standing challenge in theoretical ecology and
biology. This is due to several natures of the plant
communities themselves. For instance [8],

e Most patterns are scale-dependent. There seems
ot be range of correct scales at which the pattern
is the most interesting. This is because individ-
ual plant species differ markedly in intensity and
range of their aggregation.

e Their dynamic nature. Even though the general
features of spatial patterns tend to be quite per-
sistent, the patterns almost remain frozen.

e Noises in environment. In PES, many factors for
indeterministic and there are always a lot of envi-
ronmental noises, both within a single PES itself
and between several PES. As a result, patterns
are very vary. Patterns found in two similar com-
munities are almost differ [7]. Nevertheless, they
are statistically self-similar.

For detail discussions on these topics, see [8].

In this research, we take an bottom-up approach
in generating spatial patterns in PES, that is: use
the internal processes operate in the system and let
the emergence and self-organization criticality (SOC),
which are ones of the ubiquitous properties of complex
systems, bring out the spatial patterns.

There are two major internal processes operate in
the PES that could generate the spatial patterns seen
[8]:

o Natality (associated with dispersal): While plant
individuals themselves usually do not move, new
individuals typically establish at a distance from
the mother individual. Dispersal distance that is
associated with establishment is highly variable
between species and often highly species-specific.

e Interactions between individuals: Because plants
are immobile, they interact only with their im-
mediate neighbors. Interaction here refers to ef-
fects, both positive and negative, that one plant
individual may exert on another individual. The
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majority of interactions are due to resource com-
petition.

For detail discussions on these topics, see [§]

According to these natures of plant communities
and internal processes, we found that artificial life sys-
tems (section 3) are suitable as tools for modeling and
studying plant communities, and hence as well as gen-
erating the spatial patterns.

3 Artificial Life

In the past ten years, computers have become pow-
erful enough to enable us a new way of studying the
evolution of life. Rather than following the traditional
approach of trying to capture properties of while pop-
ulations in mathematical models, this new approach
models a large number of individual self-replicating
entities which are competing against each other for
resources required for replication. In simpler words,
artificially synthesizing self-replicating programs that
live in a virtual world and study them as they evolve.
These systems are called Artificial Life (ALife). Ex-
amples of such systems are Tom Ray’s Tierra system
[11], which pioneered this approach of study, and Cali-
fornia Institute of Technology’s Avida system [2], used
in this research.

Also, these ALife systems are not merely simula-
tions. As the programs replicate themselves, they
recreate the conditions necessary for evolution [14].
In other words, they adjust, self-organize themselves
into the environment in which they exist for a bet-
ter replication. Therefore, these systems are strong
AlLife systems (computer programs as actually living
in some respects), not weak ALife systems (computer
programs as useful simulation of real life) [13]. How-
ever, we will be using a strong ALife system Awvida
to study natural phenomena (in this case, spatial pat-
terns in plant communities) as an potential alternative
to using weak ALife systems suggested in [10].

3.1 The Avida System

The world in Awida is an N x M grid with the
topology of a torus. Each position in the grid hold ei-
ther an empty, unoccupied space, or a self-replicating
string (a program). Each string is a segment of code
written in a language similar to Intel 80x86 assembly
language with supplementary instruction sets that al-
low self-replication, running on a configurable virtual
computer [2].

The heart of the Avida system is the artificial en-
ergy metabolism of the organisms. The primary re-
source, without which no program can survive, is CPU
time [3]. CPU time is distributed in time slices to
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each organism in the population. Each individual re-
ceives the same amount of default CPU time. Extra
bonus CPU time is given out as a reward for those pro-
grams that have developed computational mechanisms
to accomplish certain tasks. In current implementa-
tion of Awida, these tasks are logical operations on
binary numbers, with up to three inputs [2][3]. As a
result, individuals that learned to perform such tasks
are given more CPU time (in a lingo of Awida, more
merits) and hence replicate better.

Individual programs in Avida learn to perform tasks
by learning to adapt to the environment in which they
exist. This is done through evolution of the programs
in Darwinian manner: each program in Awvida is sub-
jected to mutations, which is the key to adaptation.
Programs that adapted better to the environment are
said to have higher fitness (that is, they fitted better),
and therefore have higher merits. (In Awvida, fitness is
calculate by the merit of an individual divide by the
time required for its replication).

An Avida world, the embeddedness of the individu-
als and the scope of local interactions are graphically
illustrated in figure 1. According to the figure, we can
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Figure 1: Graphical illustration of Avida world.

clearly see why Awida is suitable for modeling plant
communities and we can instantly draw close analo-
gies between Awvida system and real plant ecosystems.
This will be the subject of section 4.

4 Artificial Life Framework for Model-

ing Plant Communities
4.1 Natural Plant Community and Awvida
From the natures of natural plants communities
discussed in section 2 and of ALife system Awida in
section 3, we can see a lot of conceptual similarities
between them, as listed briefly in here:
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e Mobility of individuals. Both are immobile.

e Local area interaction. Immediate neighbors for
plants, Moore neighborhood (adjacent sites) for
Avida programs.

e Spatial patterns are two-dimensional. ” Vertical”
dimension is for plant’s height, as for program’s
length (see figure 1). Plant’s height effect the
horizontal patterns as it effects plant’s ability to
get more sunlight and results in death of nearby
plants, Avida program’s length effects the ability
of getting CPU time for better replication, and
hence results in replacing its adjacent site.

e Plants adapt themselves to the environment
through evolution and natural selection. Awida
programs adapt themselves to the environment
through evolution and a mechanism akin to nat-
ural selection.

Also, there are various other results from previous
Avida and Tierra experiments that agreed well with
data collected from real field studies. For example,

e Relationship between mean plant mass and max-
imum population density in plant populations
obey a so-called power-law distribution [12] (fig-
ure 2), which is an evidence of existence of SOC
in natural plant communities. In ALife, power-
law distributions of genotype abundance (rela-
tionship between programs’ size and number of
species in a limited-space environment). were
reported from various studies of self-replicating
ALife programs, using various ALife systems [4].
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Figure 2: Relationship between mean plant mass and
maximum population density in 251 population of
plants. Source: [12]
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Figure 3: Abundance of genotype size plotted against
number of species with mutation rate = 0.004 in
Avida. Note that while the slope changes according
to the mutation rate, the power law characteristic is
ubiquitous. Source: [4].

From these conceptual similarities, it is therefore pos-
sible and reasonable to construct a model based on
Avida for modeling natural plant communities and
generating their spatial patterns.

4.2 Modeling Resources Competition and
Adaptation in Plant Ecosystems with
Avida

Using Awida for modeling resources competition is
suggested and thoroughly discussed in [3]. We will
briefly review it here.

As described in section 3, adaptation activity in
Avida is geared towards the evolution of computa-
tional genes. These computations (”tasks”) are log-
ical operations such as ¢ AND j, 4 XOR j, NOT i OR
j (NOR), etc. Genes that learned to perform these
tasks will get more merits and thus considered better-
adapted or fitter to the environment. These tasks,
therefore, can be considered as resources that individ-
uals compete against each other, both between and
within species, to get.

Let us imagine, a simple environment in which there
are only three different possible tasks, like ones in-
troduced above. Then, we associate resource A with
AND, B with XOR, and C' with NOR. We can now
load up the world with these resources, as well as con-
trolling and limiting them. Every time an organism
performs an AND operation, a certain amount of re-
source A is depleted, and similarity for the other re-
sources. The consequences of such scenario are very
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Figure 4: Example of spatial distribution of trans-
formable resources in Avida

important as computational genes can only evolve in
regions where the corresponding resource is present.
Thus local differences in resource abundances will lead
to different genes evolving in different areas.

At the same time, performance of a computation in
the presence of the enabling resource might transform
the resource rather than use it up. In such a model,
we could have

A AND

B
B NOE, ~

CXORA

Imagine we start an experiment in which three re-
sources A, B, and C, are distributed spatially as in
figure 4. If resources are continuously renewed, but
not transformed, specialists will evolve in the three
different habitats, and no species can invade the other.
On the other hand, if the resources become scare and
if they are transformed through usages, things become
very different as the dynamics of spatial pattern for-
mations will be emerge as the individuals performing
tasks.

5 Results

In this section, we show a spatial pattern of pro-
grams in Avida taken during an Avida run. Avida was
configured to analogically reflect a real plant commu-
nity as much as possible. For the result showed here,
the environment size was set to 40 x 40 sites. A birth
method for a new genotype is set to replace the oldest
and least adapted, least fitted neighborhood. Geno-
types also die when the age limit is reached. To allow
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adaptation, copy mutation rate was set to 0.0075, in-
sert and delete mutation were set to 0.005. Note that
the latter is not important, they help speed up the evo-
lution as suggested in [1]. Also, for the full complex-
ity of environment, a full set of computational tasks,
which the individuals have to learn to perform in order
to adapt to the environment, was used. The spatial
pattern generated in Awida is showed here in figure 5,
while a corresponding graphically rendered images are
showed in figures 6 and 7.

Figure 6: Plant community with spatial distribution
pattern generated by Avida (figure 5). Some genotypes
with small distributions and low fitness/merits were
left out as they will die as ”seeds” and never make it
to a real plant.

Note here that, there exist some small group of
genotypes in Awvida (figure 5) that are not in the ren-
dered images. This is because these genotypes were
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not fitted well to the environment and died out in
a few time steps. This scenario is akin to seeds of
plants that cannot grow in a particular environment
and hence never make it to the plant community as
they died in seeds.

Figure 7: Figure 6 with rotation and zoom.

6 Discussion and Future Research

In this research, we proposed an approach of using
an auto-adaptive, evolvable, self-organizing Artificial
Life system to generate spatial patterns of plant com-
munities for CG applications and as a tool for study-
ing them theoretically. The spatial pattern generated
looks realistic, but we still cannot judge the realness
of the pattern yet as the statistical analysis had not
been performed.

For future works, we’ve therefore planned to do the
followings: 1) Statistically analyze the generated pat-
terns comparing with natural data using various anal-
ysis methods used in real plant ecology research. 2)
Extend the concept of fitness landscape in Awida to
application in vertical plant growth. 3) Experiment
with other Artificial Life systems to see the ubiquity
of the behavior.
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