FEEREN LB B
IPSJ SIG Technical Report

2008—CG—133
2008,711,78

FOox—=AfailzRAVicamEn
TIv—/ 14 AR ZER > R HRDER

Zoltan Szego! & mifE mE KR

Blue noise %R0 7V 7 RF — 03 CG 3B CREAFBASE O, T2 9hRC 4
FRS B DI LV, AHFFETI blue noise FitE % 5o 7o sEA Z ALELR U CAR T 2R EHRZ
FHEERET S, REFHRIAESD Fex—=ZAF0E 21T, ZAROSMEAOFTRRDO LD
EROT, TOPRLRICREMZADZ E2B/VBBLTH T T 2TH, £, Vo FABOHE
HE., BESMIS CLERHY 7Y 7 3 Ratim EToV 7Y VIR ARETH D,

Generation of High-Quality Blue Noise
Distributions based on Delaunay Triangulation

ZOLTAN SZEGO,t YOSHIHIRO KANAMORIt and TOMOYUKI NISHITAf

Sampling patterns with a blue noise distribution are widely used in many areas of computer
graphics, yet their efficient generation remains a difficult problem. We propose a method to
generate point sets with a blue noise distribution using a deterministic algorithm with no pre-
processing. We insert each new sample at the center of the largest empty circle in the point
set, which is obtained by calculating the Delaunay-triangulation of the set and finding the
triangle with the largest circumcircle. Our method supports adaptive sampling according to
a user-specified density function, as well as specifying the exact number of required samples.
It can also be extended to perform sampling on a three-dimensional curved surface.

1. Introduction

Sampling is a fundamental part of many graph-
ics applications such as image processing or ren-
dering. With the number of samples allowed of-
ten being limited in these applications, getting the
best-quality results out of as few samples as possi-
ble is essential. For this purpose, one of the most
often used sampling patterns are Poisson Disk pat-
terns, defined by a minimum distance between all

neighboring sample points. These have the spectral

properties of blue noise, defined as having a spec-
trum with low energy in the low frequencies. This
property has been shown to be very effective at pro-
viding good sampling with a low amount of noise
or aliasing, as evidenced by the fact that it also
occurs naturally, for example, in the placement of

photoreceptor cells in the eyen).

T RRRFER LG TERIFIER 2 v ¥ a — 2 BEER
Department of Computer Science, Graduate School of
Information Science and Technology, The University of
Tokyo

Fig.1 2,000 sample points with a blue noise distribution

The traditional approach to generating blue noise
sampling patterns involves random dart throwing,
which is a time consuming process. There are many
alternative approaches and ways to accelerate the
process, some of which we will introduce in Sec-
tion 2. The general trend, however, is that of a
tradeoff between speed and quality, as well as pre-
computing large chunks of data in advance. Our
method, while slower than some of the alternatives,

17



power
Py

‘ JAVAW

I3} Trequency

Ll

(a) (c) Héghery

Fig.2 (a) A typical blue noise power spectrum. The
graphs on the right represent (b) the radially aver-
aged power and (c) anisotropy.

produces point sets with high-quality blue noise
distributions without any precomputation, using a
geometrically-based algorithm to determine the ex-
act position for each new sample.

For many applications, the requirement to per-
form importance sampling often arises. For exam-
ple, a renderer that uses an environment map as a
light source will need to sample the map for light
colors at relevant points - the brighter areas of the
map, requiring an algorithm that adaptively sam-
ples the map based on some importance function, in
this case, brightness. Our method supports adap-
tive sampling with a simple modification to the al-
gorithm.

2. Related Work

2.1 Quality evaluation
Before introducing other related methods, we will
first explain how the quality of a blue noise dis-
tributed point set is evaluated, as detailed in®.
We assume the samples are generated on a two-
dimensional domain [0,1)2. We can consider N
point samples z; as a signal given by the sum of
Dirac-deltas () located at the position of each
point:
N
> oz — ). (1)
i=1
Taking the Fourier-transform of this signal gives the
spectrum for the point set, and averaging many of
these gives the characteristic power spectrum P(f)
for the method used, with f being the frequency.
The typical blue noise spectrum (as shown in Fig-
ure 2) has a low-frequency band surrounding the
center, followed by a sharp transition to higher en-

ergies, finally flattening out for high frequencies.
The spectrum is radially symmetric, therefore it
can be represented by a one-dimensional radially
averaged power spectrum by averaging P(f) in con-
centric rings corresponding to frequencies:

N(fr

)
P(f) = 5775 o PIC). @)

where N(fr) is the number of samples that are
taken from the spectrum in each ring with radius
fr. C(i) gives the position for the i*" sample in
the ring. The variance of the power for each fre-
quency, s?(f-), is used to derive the anisotropy of
the spectrum:

As) = g, ®)
where
N(fr)
s*(fr) =

= NG 2 PO =R @)

High-quality blue noise spectra are characterized by
a wide central low-energy ring and low anisotropy
(around -10dB, like in Figure 2).

2.2 Methods based on dart throwing

Dart throwing, introduced by Cook?, generates
Poisson disk distributions by first generating uni-
formly distributed points, then rejecting points that
are too close to each other given a minimum sep-
aration distance. While easy to implement, this
algorithm is slow and difficult to control since a
minimum distance needs to be given instead of the
required number of samples. Dart throwing has
been optimized and extended in a number of ways,
one of which is called relazation dart thmwings),
where the minimum separation distance starts out
large and is gradually reduced, producing hierarchi-
cal samples somewhat faster than traditional dart
A method called Lloyd’s relazation”
is often applied to these results as a post-process,

throwing.

which is a rather costly iterative process that con-
structs the Voronoi-diagram for the entire point set
repeatedly.

In 2008, Wei'® proposed a method to generate
blue noise distributed samples at high speed on
highly parallel hardware, i.e. programmable GPUs,
based on the observation that areas of the sampling
domain that are far enough apart do not affect each



Fig.3 Overview of a step of our algorithm. Left to right: an initial set of points, their Delaunay triangulation with

the largest empty circle, the new sample point immediately after being added, and the updated triangulation.

other, and can therefore be handled independently
in parallel. The method produces good quality re-
sults at high speed thanks to the high performance
provided by GPUs, however, it is difficult to con-
trol the exact number of produced samples due to
the random nature of the algorithm. Our method
can deterministically generate any given number of
samples.

2.3 Tile-based methods

Methods based on various tiling schemes use a
different approach than dart throwing. Instead of
relying on randomness, they generally precalculate
distributions for a given number of predefined tiles,
and then arrange those on the sampling domain,
allowing for better performance at the expense of
quality and precomputation time.

For example, Wang tiles are used by various
methods. Hiller et al¥) introduced the use of Wang
tiles for generating point sets, however, the power
spectrum of the method is of low quality. Kopf
et al® used Wang tiles recursively to produce hi-
erarchical sampling patterns at high speed from a
large precomputed dataset, but the spectrum still
has unwanted spikes and noise.

Ostromoukhov® proposed a different tiling
scheme based on hierarchically subdivided poly-
ominoes. The method produces reasonably good
results at high speed, however, it still requires
a rather complicated and expensive precomputing
step. The variety and randomness of the results
are limited by the number of pregenerated tiling
variations.

Our method produces point sets with high-
quality spectra, and is not limited in the variety of
outcomes by any kind of precomputed data. Note
that our method does not fit into the two categories
presented in this section, it should instead be clas-

sified as a geometrically-based method that selects
the exact position for each sample point.

3. Algorithm

3.1 Overview

Our method generates samples deterministically
and sequentially. Each new sample is placed at the
center of the largest empty circle in the already ex-
isting set of samples. The intuitive reasoning for
the algorithm used is that given a set of samples,
the next one should go in the most sparsely sam-
pled area so far, and should be equidistant from the
other samples surrounding it. Finding the largest
empty circle is equivalent to finding the triangle
with the largest circumcircle in the Delaunay tri-
angulation of the point set, a triangulation which
guarantees by definition that no other point lies
within any triangle’s circumcircle. The process is
repeated, gradually filling up the sampling domain
with points.

See Figure 3 for a graphical overview of the al-
gorithm. Initially, the input point set consists of
a few seed points, which serve as a means of pro-
viding deterministic control over the pseudorandom
outcome of the process. The procedure to generate
new points are as follows:

// N : the total number of samples required

// Points : the vector of sample points

// (initialized with a small arbitrary set of seed points)

Delaunay := InitializeDelaunayTriangulation(Points);

while (Points.length < N)

C := Delaunay.findLargestCircumcircle();

Points.append(C.center);

Delaunay.insertPointUpdateTriangulation(C.center)
end

In order to find the largest circumcircle quickly,
in addition to the Delaunay triangulation, we main-
tain a heap data structure containing all of the



Fig.4 Example of the appearance of undesired regular
patterns mentioned in Section 3.2. The pattern in
the generated points (left) causes hexagonally ar-
ranged spikes in the spectrum (right).

triangles, sorted by the radius of their circumcir-
cle. The largest triangle can therefore be obtained
in constant time, and updates to the triangulation
(such as inserting and modifying triangles) happen
in O(logN). Triangles with a circumcircle whose
center lies outside of the domain [0, 1)? are excluded
from the search.

3.2 Avoiding regular patterns

Running the above algorithm as-is, it produces
results that are often uneven, with noticeable large
areas of regular patterns that show up as spikes
on the power spectrum. See Figure 4 for an exam-
ple. The reason these patterns emerge is because of
the way the algorithm behaves for equilateral tri-
angles. If the Delaunay triangulation happens to
include a cluster of equilateral triangles sometime
during the process, and one of them is selected as
the one with the largest empty circle, the new point
will form smaller equilateral triangles, with further
subdivision of the area only preserving the pattern.
The result is a regular triangular grid, obviously
unsuitable for blue noise sampling.

To prevent this, an additional step is included in
the algorithm: when inserting a new point into the
Delaunay triangulation, we first check if the trian-
gle containing the point is close to being equilateral
up to a certain threshold. If it is, the new point is
first offset by a small amount, such that it stays
within its triangle, in a pseudorandom direction
(depending only on the point’s original position,
in this case, to keep our algorithm deterministic).
This modification eliminates the formation of reg-
ular patterns and fixes the occasional spikes in the
power spectrum.

3.3 Adaptive sampling

With a simple modification, the proposed method

can also perform adaptive sampling based on a user-
specified importance function f : [0,1)* — [0,1],
that specifies how dense the samples should be in
an area. For all of the triangles in the heap data
structure mentioned in Section 3.1, the radius of the
circumcircle that acts as the sort key is weighted by
a sample from the importance function, taken at
the center of the circumcircle. This way, triangles
that lie in areas requiring more thorough sampling
are given more priority, resulting in sample points
that are distributed according to the importance
function.

3.4 Sampling on 3D curved surfaces

Our method can be extended to generate sam-
ples on three-dimensional surfaces. The basic pro-
cess is mostly the same: starting from a sparse set
of points and their Delaunay triangulation on the
surface, new sample points are added in triangles
with the largest circumcircle. The new points are
projected onto the original surface and the triangu-
lation is updated.

In case the surface is specified by a complex
polygonal mesh, the initial set of points and their
connectivity can be obtained with a mesh simplifi-
cation method such as edge decimation®. Adaptive
sampling is also possible if an importance function
is defined on the surface.

4. Results

The environment used for our experiments was a
desktop PC with an Intel Core 2 X6800 CPU run-
ning at 2.9 GHz and 2GB of memory.

We compared the quality and speed of our im-
plementation to two other techniques: a tile-
based technique (recursive Wang tiles®) and a dart
throwing-based one (Curl noise® ). See Figures 7
and 8 for the spectral analysis of the results for the
case of 20,000 and 50,000 samples. Table 1 shows

our speed measurements.

Table 1 Time to generate a given number of samples

Number of samples
Method 20,000 50,000 100,000
Proposed 348.25 ms 1057.98 ms 2716.16 ms
Curl noise 182.25 ms 403.69 ms 810.12 ms
Wang tiles 2.01 ms 5.14 ms 10.28 ms

Recursive Wang tiles performed several orders of

—100—



Fig.5 Adaptive sampling on the surface of a sphere. From left to right: the initial sample points and their connec-
tivity, the 3D Delaunay mesh after adding a few samples, two additional intermediate states, and the final
result of 2,500 samples shown as points on the sphere. The importance function used concentrates samples on
one side, demonstrating, for example, the sampling of an environment map with one bright light only.

Fig. 6 Halftoning: a linear gradient drawn with 4,000
points, and a greyscale image drawn with 100,000
points. The source images are shown in boxes.

magnitude faster than the alternatives, however, at
the expense of quality. The larger the number of
samples required, the noisier the output, as seen in
the spectrum and anisotropy graphs in Figure 8.
Our method, while slower than Curl noise, pro-
duced slightly better quality results, based on the
wider inner ring of the power spectrum.

Figure 5 shows the process of sampling on a 3D
surface, in this case, a sphere. The starting points
for the algorithm are the vertices of an octahedron.
To demonstrate adaptive sampling as well, as a sim-
ple example, the cosine of the central angle on the
sphere between sample points and a fixed point is
used as the importance function to increase the den-
sity of samples on one side of the sphere.

Finally, Figure 6 shows two examples of adap-
tive sampling on a 2D domain, demonstrated by
point-based halftoning of grayscale input images. A
simple linear gradient and a more complex bitmap
image are used as the importance functions.

5. Conclusion and Future Work

We described a method to generate sampling pat-
terns with a high quality blue noise distribution.
Our method is deterministic, produces the exact
number of required samples, requires no precom-
putation, and handles adaptive sampling based on
a user-specified importance function.

For future work, we would like to speed up the
proposed method via parallelization: after a cer-
tain density of samples has been reached, smaller
regions of the domain can be updated without af-
fecting each other, so the process should be able to
run in parallel. We would also like to try extend-
ing the sampling domain to three dimensions, us-
ing Delaunay-tetrahedrization to find largest empty
spheres in R®.

References

1) R. Bridson, J. Houriham, and M. Nordenstam. Curl-
noise for procedural fluid flow. ACM Trans. Graph.,
26(3):46, 2007.

2) R. L. Cook. Stochastic sampling in computer graph-
ics. ACM Trans. Graph., 5(1):51-72, 1986.

3) M. Garland and P.S. Heckbert. Surface simplification
using quadric error metrics. In SIGGRAPH ’97, pp.
209-216, 1997.

4) S. Hiller, O. Deussen, and A. Keller. Tiled blue noise
samples. In VMV ’01: Proceedings of the Vision Mod-
eling and Visualization Conference 2001, pp. 265—
272. Aka GmbH, 2001.

5) J. Kopf, D. Cohen-Or, O. Deussen, and D. Lischin-
ski. Recursive wang tiles for real-time blue noise. In
SIGGRAPH 06, pp. 509-518, 2006.

6) A. Lagae and P. Dutré. A comparison of methods
for generating Poisson disk distributions. Report CW
459, Department of Computer Science, K.U.Leuven,

—101—



2 2 2

5 i "
Y 3 3
£ i, i 2 4 Pt T Fiaa ™ p—
L L—J e e 2 P"// N < J v
0 0
Frequency Frequency Y Frequency
£ = ~
g 3 g
& 3 ®
2 2 2
b 8
So o To
3 3 3
] 3 3
S H 5 S\ 2 Lpdn b 211 -
Qlofh-'-:. "-w#“"‘ p/ i S 10 Jhee
Jrequency Frequency Frequency

Fig.7 Comparison with other techniques for 20,000 sample points. From left to right: the present method, recursive
Wang tiles, and Curl Noise. Each column contains, from top to bottom: the power spectrum, the radially
averaged power graph and the anisotropy graph.

2 2 2

§‘.‘—///"“\W §|W/-.——-W,. §1wv/mw
£ Jrequency 9 frequency £ Jrequency
2 2 g
S 10 gy §-1\7 §-mf0,,~“‘
Frequency Frequency Froquency
Fig. 8 Comparison with other techniques for 50,000 sample points. From left to right: the present method,
recursive Wang tiles, and Curl Noise. The graphs are laid out as in Figure 7
Leuven, Belgium, August 2006. 9) V.Ostromoukhov. Sampling with polyominoes. ACM
7) S. Lloyd. Least squares quantization in PCM. In- Trans. Graph., 26(3):78, 2007.
formation Theory, IEEE Transactions on, 28(2):129— 10) L.-Y. Wei. Parallel poisson disk sampling. ACM
137, Mar 1982. Trans. Graph., 27(3):1-9, 2008.
8) M. McCool and E. Fiume. Hierarchical poisson disk 11) J.Yellott, JI. Spectral consequences of photoreceptor
sampling distributions. In Proceedings of the confer- sampling in the rhesus retina. Science, 221(4608):382—
ence on Graphics interface ’92, pp. 94-105, 1992. 385, 1983.

—102—





