o=V fvVET72—R 61—1
(1995. 7. 20)

Prediction of Part of Speech Categories for Words in English Text
Using Second Order Markov Model

Aksanul FARDHI' Kenji ARAKI ' Yoshikazu MIYANAGA ' Koji TOCHINAIL '

t Faculty of Eﬁgineering, Hokkaido University
tt Faculty of Engineering, Hokkai-Gakuen University

Abstract

In natural language processing, one of the problems for sentence parsing is
to assign the correct part of speech category to each word. This kind of task
is also known as tagging. Nowadays, tagging system mainly uses first order
markov model as its mathematical based. In this paper we present a tagging
system which is based on second order markov model. First, we trained the
system with a training data which was derived from a manually tagged LOB
corpus. After that, we tested the system on our 116,785 words test data which
was also derived from the LOB corpus. We carried several tests and the results
were very satisfactory.

WA E L2 2RIV T ETIVE W BEEE LS FH

Tr VT AT oIV ERREGE T EAE—T AAEXRT

t Faculty of Engineering, Hokkaido University
't Faculty of Engineering, Hokkai-Gakuen University

HoHIEL

HASELE T, MU O—DOMEREHBICELVRHALHTEDLILTHE. 0L) 2R
BhEyEITLVD), BROBLAEDIF V7V AF AL IRINVIATEFLVEHNTV S, SHICHL
Ty ARCTR2RINATEFVERC S F VT FELRET S, 3612, AFErmift&a—1x%
mwgigiﬁttT‘@@3~Nx%mwf%®ﬁ@ﬁ%§mt\Eﬂ&ﬁ%ﬁﬁ%htolmﬁ%ﬂo
‘/‘T f==] Z’o

1 Introduction

The task of predicting part of speech category is
also known as tagging. English text tagging is
widely researched due to the need of text with
disambiguated words, while English vocabulary
contains many ambiguous words. An ambiguous
word is a word which has more than one part of
speech categories. This kind of word appears in
the sentence with different part of speech cate-
gory, depends on the context of the sentence. De
Rose[2] has investigated this ambiguity of English
vocabulary that occured in the Brown corpus, the
one million words corpus widely used on English
text research. He found out that 11.5% of words
on the corpus’ vocabulary and 40% of running
words are categorically ambiguous. Meanwhile,
the part of speech category of a word reflects its
syntactic and semantic role in a sentence. A cor-
rect interpretation of an English word is impossi-
ble without disambiguating the word - that is to
assign the correct part of speech category to the
word. ’

There are two main approach commonly used
in a tagging system: rule-based approach and
probabilistic approach. The system constructed
by Klein et al.[5] is one of the systems which are
considered to be rule-based. They used 30 cate-
gories on their Klein and Simmons algorithm and
claimed an accuracy of 90% in tagging the words.
Greene et al.[4] were the first to attempt tagging
a large sample of data. Using a palette of 86 part
of speech categories, they succeeded in tagging
correctly 77% of the million words in the Brown
corpus.

In probabilistic approach, a large corpus is
required to construct the dictionary containing
word, part of speech category combinations and
their probabilities. Charniak et al.[1] divided the
Brown corpus into two: training corpus and test
corpus. The training éorpus was used to con-
struct the system’s dictionary. The system was
then tested on the test corpus. With 181 dis-
tinct part of speech categories they claimed an

accuracy of 96.45% on their system’s best per-
formance. Some other example of achievement
through probabilistic approach are achieved by
Kupiec[6] and Merialdo[7]. Kupiec introduced
word equivalence classes as substitutes for words.
By doing this, he succeeded in reducing the size
of the dictionary. Merialdo implemented a Maxi-
mum Likelihood Training to train the system with
untagged corpus.

In this paper, we present a tagging system
which is based on second order markov model.
We created a similar circumstance to that of Char-
niak’s system. We tested the system to it and
the results were satisfactory. However, it took
a lot of time. That was because the number of
possible combinations on second order markov
model was larger than that of first order one.
To solve the problem, we introduced the keyword
concept. By implementing this concept, we suc-
ceeded in shortening the processing time with-
out decreasing the accuracy. On its best perfor-
mance, our system yielded an accuracy of 97.09%
on a 116,785 words test data with 149 part of
speech categories. The data was derived from the
Lancaster-Oslo Bergen (LOB) corpus which was
already manually tagged.

2 Mathematical Model

First, let us assume that the English language
that we know has some fixed vocabulary. We
decide to make the mathematical expression for
this vocabulary as W = {w!,w?,...,w®} where
wl, w?, ..., w® are the member words of the vo-
cabulary, and z is the number of the words. For
example, W can be like W = {a;aback,...,
zymotic}. Secondly, we assume that the English
language also has some fixed part of speech cat-
egories. Like the vocabulary above, we make a
mathematical expression for these categories, that
is T = {t},t2,...,t¥} e.g. {adjective,adverb,
...,verb} where t*,¢2,... tV are the part of speech

categories and y is the number of the categories.

After that, we make assumption on sentences
occured on English language. We assume that
sentence is a words’ sequence which can be ex-
pressed as w;,ws,...,w, where n is the number
of words on the sentence. Any word can become
one of wy,ws,...,w, as long as it is a member
of vocabulary W. In the same way, we assume
that part of speech categories of words in a sen-
tence can also be expressed as ty,ts,...,¢,, and
any part of speech categories can become one of
ti1,t2,...,t, as long as it is a member of part of
speech category set T. With all these assump-
tions, we define the tagging problem as below.

S(wy,n) = arg max P(t1,n | win))

tin
It means that the most suitable part of speech
categories sequence ?; , for sentence w; , is that
with the maximum probability value. We expand
equation (1) into equation (2).

S(wy,n). = argmax P(t;q]win)

" (@)

= arg max P(tl,m'wl,n)

tin Pwin)

Because the denominator on equation (2) does
not have anything to do with any combination of
t1,m, the maximum value of equation (2) simply
depends on its numerator. That make the equa-
tion become as simple as equation (3).

S(wly"') = arg max P(tl,ns wl,n) (3)

tl,n

At this point, we could simply estimate P(¢; ,,,
wy n) like equation (4) below, where N is the
number of sentences on the training data.

Cltin, win)
Chmma)

However that will not be practical. First, since

P(tl,nywl,n) ~

the training process will be carried on the sen-
tence level, it will not create a large number of
statistic data. Second, there will not be any uni-

versality since each sentence on the training data

will vary in number of words. Because of that,

we break P(t;,,w;,») on equation (3).

P(ty n,wia) = Pty Iw1)HP(ti | wi1, wi)

=2
(5)
Next, we substitute P(¢; ,,w;,») on equation
(3) with what we have got here on equation (5).

S(wl’n) _ arg l’tnla-: {P(tl I wl)gP(t. l w,-,l,w;)
(6)

Finally, in order to make the process run on

word level we modify function S(wy) into S’ (w;).

}

¥ er Pt | wi), fori=1
S'(w,-) =
o8 e Pt | wig,wi), for2<i<n

(M

Equation (7) means that:

¢ Only the first word of the sentence is solved

with first order markov model.

e The second word and every word to the
right of the second word is solved with sec-
ond order markov model.

The

second order markov model data that we build

However, practically that is not true.

is based on training data. Because of that, only
words combination which appeared at least once
somewhere on the training data has a second or-
der markov model probability. Words combina-
tion which never appeared on the training data
will be treated as an unknown combination and
will have to be solved with first order markov
model. So we decided to modify equation (7) into
equation (8). Here, @ was the weight given to the
first term of the equation (8).

{aP(t;jwi_;,w:)+

ST Py ®

S'(w;)=arg max

3 Training the System

It was one of our goals from the very beginning to
make it an open system. As the consequence, two
different data were required. To fulfill the require-
ment we derive two different data from the LOB
corpus. The LOB corpus itself contains 1,157,260
words in 54,490 sentences. The question is, how
many words are required for the training data
and how many are for the test data. Fortunately,
there is a good example for this. Charniak et
al.[1] used 114,203 words for their test data. The
size of the training data is never been revealed
but it is said to be nine times of the size of the
test data. Furthermore, Charniak et al. used first
order markov model which was very similar to
second order markov model we use. This similar-
ity will make the evaluation and the comparison
between the two system easier. For the reason
above, we decide to make our test data’s size in
the neighbor of one hundred thousand words and
to leave the rest as the training data.

Another important requirement for an open
system is the heterogeneousness of both the train-
ing data and the test data. To clear this require-
ment the test data has to be sampled at a fix
interval. In this paper, we sample every ten sen-
tences starting from the second sentence of the
LOB corpus. The sampled sentences become the
test data and the rest become the training data.
The outcomes are a training data with 1,040,475
running words in 49,041 sentences and a test data
‘with 116,785 running words in 5,449 sentences.

After getting a training data in a sufficient
size, we train the system with the training data.
The purpose of the training is to obtain frequency
data so that we could approximate the probability
function like the equations below.

; C’t,—=tﬂw,~=w"
Plti=t |w; =w*) » (C(w~=wk))

(9)

P(t,' =i I Wi—1 = w",w; = w')

) N) (10)
~ C(ti=t’ ,w;_1=w”*,w;=w')
= T Clwisi=wFwi=wl)

Where,

¢ iisanarbitrary natural number on equation

(9).

e iis an arbitrary natural number larger than

1 on equation (10).
et eT={t"e,. ..,
o wh wle W ={w!w?, . .., w}

Equation (9) means that the probability of
part of speech category t/ become the tag of the
word w* is approximated by the appearence fre-
quency of word w* with / as its tag, divided by
the total appearence frequency of the word w*.

Almost the same meaning goes to equation
(10). The probability of part of speech category
t/ become the tag of word w' when its previous

k is approximated by the appearence

word is w
frequency of word w! with t/ as its tag and w* as
its previous word, divided by the total appearence
frequency of the word w' with w* as its previous

word.

Tag(s) | Word(s) | Frequency
1 41,811 430,299
2 4114 | 252,450
3 822 86,201
4 87 125,216
5 27 64,066
6 9 15,884
7 2 21,418
8 3 45,862
10 1 6,645

Table 1. The Distribution of P(t; | w;)

From the training process using equation (9)
we obtain 53,090 word-tag combinations. Table
1 shows the distribution. From 53,090 combina-
tions, 41,811 of them (around 78.76 %) are dis-
ambiguous. If we see it from the appearence fre-
quency’s point of view, of 1,040,475 total word

appearences only 430,299 appearences are disam-
biguous. That is only about 41.36%. The rest are

ambiguous.

Tag(s) | Combination(s) | Frequency
1 371,575 877,846
2 5,762 81,951
3 340 24,501
4 44 5,451
5 9 3,493
6 1 69

Table 2. The Distribution of
P(t; | wimq, w;)

From the training process using equation (10),
we obtain 384,346 combinations. Table 2 shows
the distribution. From 384,346 total combina-
tions, 371,575 of them (around 96.68%) are dis-
ambiguous. It is better compare to the disambi-
guity of first order markov model data which is
only 78.76%. Table 2 also shows that the ap-
pearence frequencies of the disambiguous com-
binations are high. From 991,434 combinations
detected on the training data, 877,846 of them
(88.54%) are disambiguous. On first order markov
model, it was only 41.36%. Last but not least, on
second order markov model you only have to deal
only with six probable tags even on the worst case
of ambiguity. With first order markov model, on
the worst case of ambiguity you have to deal with
up to ten probable tags. This is another good
things about second order markov model. From
the above data, we can naturely expect a higher
accuracy of tagging result compare to that of first
order markov model.

4 Testing the System
4.1 Without Keyword

Like we have already mentioned above, the test
data, which we are going to test the system to, is
different from the training data. In this way, the

system is kept as an open system.

To test the system, the weight o on equation
(8) needs to be fixed. Because we did not have
any clues how much the optimum value for the
weight o was, for the first test we fixed it on 0.8.
The result was, 113,669 words of 116,785 words
on the test data were correctly tagged. That is a
97.33% accuracy.

However, we did not take a high accuracy of
tagging result as a sign that the weight a was al-
ready optimum. Like we have already explained
on section 3 above the data itself, which was ob-
tained using second order markov model, was very
disambiguous. This factor could be the one that
gave us such a high tagging accuracy. We also
thought that an optimized value of weight a could
give us a high accuracy. Because of that on the
second test we tried in our own way to optimize
the weight a.

The optimization was done at the intermission
after one sentence was finished being tagged and
before the tagging process for the next sentence
was started. The equation for the optimization
was as follows. Here f is the total number of
words until the intermission, which has a non-zero
value of P(¢; | wi—1,w;). s is the total number of
running words until the intermission, which was
processed. We fixed the initial value of weight «
on 0.8.

f

a== (11)

The example below will help you to under-
stand our optimization method. Let us assume
that the sentences below are the first three sen-

tences on the test data.

1. Bill Clinton is the president of the United
States.

2. He is from Arkansas.

3. He is also from the Democrat Party.

From three sentences above we get 16 com-
binations, those are Bill_.Clinton, Clinton._is,
is_the, ..., Democrat_Party. Let us assume

that from 16 combinations, 10 of them:

Bill_Clinton
is_the
the_president
of_the
the_United
United._States
He.is

frbm_the

the_Democrat

¢ Democrat_Party

appeared at least once on the training data. Thus,
these combinations’ P(¢; | wi_;,w;) not equal to
zero. We call these combinations known combi-

nations. The rest combinations have zero P(¢; |

w;_1,w;) because they never appeared on the train-

ing data. We call these combinations unknown
combinations.

After understanding the unknown combina-
tion consept above, please note the movement of
weight o« from one intermission to another inter-
mission.

1. Because we fixed the initial value of weight
a on 0.8, during the first sentence tagging
process weight a is 0.8

. At the intermission between the first and
the second sentence, because on the first
sentence there are six known combinations
(f = 6) and the total running words of the
first sentence are nine (s = 9) the weight
is optimized to:

. The second sentence is tagged with o«
0.667

4. At the intermission between the second and
the third sentence, because on the first sen-
tence and on the second sentence there are
seven known combinations (f = 7) and the
total running words of the first and the sec-
ond sentence are thirteen (s = 13) the weight
« is then optimized to:

7
= i = — =0.539
s 13
5. The third sentence is tagged with a = 0.539
6. At the intermission between the third and
the fourth sentence, because from the first
sentence to the second sentence total there
are eleven known combinations (f = 11)
and the total running words from the first
to the third sentence are twenty (s = 20)
the weight « is then optimized to:
f o1
=Z=_-=055
s 20
7. And so on.
0.5
oot]
085 |
£
8 o8} 1
£
2 o075t
2
07
0.65 |
0.6 . . .
0 1000 2000 3000 4000 5000 6000

Number of Sentences

Fig.1 Weight «’s Behaviour During
Experiment

With weight a optimized every sentence, we
carried the second experiment. The result was,
113,657 words of 116,785 words on the test data
were correctly tagged. During the experiment,

we sampled weight a’s value about every hun-
dred sentence. Fig.1 shows its behaviour. At
the end of experiment, it converged at 0.885841
(103,453/116, 785).

This second experiment did not give us re-
sult as good as we expected it would be. But
from this experiment we knew that of 116,785
total running words on the test data, 103,453
words among them were solvable with second or-
der markov model. Hence, 103,453/116,785 =
0.885841 is the optimum value for weight . On
the third experiment we fixed weight o on 0.885841
and we succeeded in tagging correctly 113,668
words of 116,785 total words.

4.2 With Keyword

So far, we have a satisfactory achievement in the
field of tagging accuracy. Three of our previous
experiments gave us result higher than 96.45%
which was achieved by Charniak et al.[1].
However we considered that there was some-
thing we could do with the processing time. So
far our fastest model was the first model which
gave a result with 97.33% accuracy. The model
took 40 hours 34 minutes and two seconds of time.

I wiTHOUT KEYWORD | WITH KEYWORD

* | RESULT TIME | RESULT TIME
0.8 97.33% 40 : 34'02" 97.33% 39 :4819"
Opt. 97.32% 42:21'35" 97.33% 34 :34'24"

Table 3. Summary of Results

In a bid to cut the processing time we used the
disambiguity which exists in the training data. As
we have already explained, 41,811 words (78.76%)
of distinct words which were detected on the train-
ing data are disambiguous (see Table 1.) We used
these ambiguous words as keyword. As the re-
sult, we succeeded in cutting the processing time.
With keyword, our slowest model took 39 hours

48 minutes and 19 seconds to do the tagging pro-
cess. Table 3 shows the details.

5 Conclusions

In this paper we presented our method to tag En-
glish text using second order markov model. We
also proved that second order markov model gave
better result than first order markov model. Our
experiments also show that the system took rel-
atively long time. That was because the combi-
nations detected were also relatively many. To
counter the problem, we implemented the key-
word and we succeeded in cutting the processing
time without decreasing the tagging accuracy.

However, only a high accuracy of tagging re-
sult does not guarantee a good result of sentence
parsing. A lot of hard work is still required to
make tagging useful in the sentence parsing. The
system we presented in this paper only refers to
two in a row words combinations. We think it
is worth to try other kind of words combinations
such as one word skip combination or two words
skip combination.

We also think there is a need to reconsider
the number of part of speech categories used. In
this paper we used 149 distinct part of speech
categories. There is still a possibility to reduce
it.

References

[1] Charniak, E., Hendrickson, C., Jacobson, N.
aend Perkowitz, M. Equations for Part of
Speech Tagging, Proc. of the 11th National
Conference on Artificial Intelligence, pp.784-
789, 1993

[2] De Rose, Steven J. Grammatical Category
Disambiguation by Statistical Optimization,
Computational Linguistics, Vol.14, No.1,
pp.31-39, 1988

(3] Fardhi, A., Araki, K., Miyanaga, Y. and
Tochinai, K. Next Word’s Probability Based

(4

[5

6

[7

—

English Text Part of Speech Tagging, Proc.
of the 1995 IEICE General Conference, In-
formation System Part I, p.284, 1995

Greene, Barbara B. and Rubin, Gerald M.
Automated Grammatical Tagging of En-
glish, Department of Linguistics, Brown Uni-
versity, Providence, Rhode Island, 1971

Klein, S. and Simmons, R.F. A Grammati-
cal Approach to Grammatical Coding of En-
glish Words, JACM, 10, pp.334-347, 1963

Kupiec, Julian Robust Part of Speech Tag-
ging Using a Hidden Markov Model, Com-
puter Speech and Language, No.6, pp.225-
242, 1992

Merialdo, Bernard Tagging English Text
With a Probabilistic Model, Computational
Linguistics, Vol.20, No.2, pp.155-171, 1994

