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Abstract

If we could automatically build a text-to-speech (T'TS) synthesis system by stochastically training every
modules of the system only from the speech of a human, we would be able to use various synthetic voices
in greater diversity of day-to-day situations. Automatic determination of the prosodic labels for the speech
is necessary for this purpose. However, the subtleness of physical features makes accurate labeling
difficult. In this paper, we propose a method that can accurately determine prosodic labels using both the
acoustic and linguistic models, and using speaker-dependent and speaker-independent models. Our

experiments on Japanese accent determination show the effectiveness of the combination of the models.
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1 Introduction tems including prosody models and phonetic segment
databases have become trainable based on the speech
corpora.

However, there are two modules that cannot be
automatically built in the conventional systems: the
text processing module and the speech corpus itself.

The recent improvements on text-to-speech (TTS)
synthesis systems made it possible to reproduce the
acoustic characteristics of human narrators by using
stochastic training [1]. Many modules of the sys-



For the text processing module, though it is still
common to use rule-based approaches, it is costly to
maintain numerous rules. As for the speech corpus,
a large speech corpus with accurate prosodic labels
is necessary for training of prosody models However,
manual labeling of accurate prosodic labels is expen-
sive and time-consuming.

Totally Trainable TTS (T*S) System

To tackle these problems, we are working on a
totally trainable TTS system every components of
which including the text processing module can be
automatically built from the speech corpus [2]. The
system configuration is illustrated in Fig 1.

The build process of the system first obtains the
alignments of the speech segments by using an auto-
matic speech recognition technology. The obtained
speech segments are stored in the speech segment
database. The prosodic labels are then automatically
estimated by analyzing the speech segments. The
prosodic labels are used for training of the language
models of the text processing module [3] as well as
training of the prosody models. The trained modules
are used in the runtime of the speech synthesis.

Among the modules of the whole system, we pro-
pose a novel approach for the automatic prosody
labeling module in this paper. Since errors in the
estimated prosodic labels result in poorness of the
trained modules and unnatural synthetic sound, the
accuracy of the estimation is important for the whole
system.
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Figure 1: System configuration of the TS system.
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The double-lined square is the module described in
this paper.

2 Automatic Prosody La-

belling

Recent work in this field has gained significant in-
sights into the challenges of automatic prosody la-
belling. Wightman et al. [4] showed consistent
prosodic labels were determined by using a decision
tree and a Markov chain model. Hirose et al. [5, 6]
showed HMM-based prosodic pattern modeling can
be used for prosodic phrase detection. The work
by Chen et al. [7] showed that use of a linguistic
model with an acoustic model can improve the ac-
curacy. Though the accuracy of automatic labeling
has approached the agreement rate of human label-
ers, the accuracy of accents is still below 90%. There
is clearly room to improve this.

For further accuracy improvement, we propose ex-
plicit use of the prosodic structure of the language
as constraints for the prosodic labels. Though the
prosodic structure is handled by Ma et al. [8], this
old approach simultaneously determines the multiple
layers of the structure. In contrast, we split the label-
ing problem into multiple layers and address each of
the layers from the top down. We use different acous-
tic models and linguistic models for different layers
(Table 1). In addition, for maximum leverage over
the linguistic constraints, the proposed method uses
a speaker-independent model only for the linguistic
model of the accent determination. This speaker-
independent model is devoted to describing knowl-
edge about the possible correct accentuations in the
language, and this is not dependent on the individ-
ual speakers. This combination of models makes the
best use of the prosodic structure of the language in a
proactive manner and enables accurate accent deter-
mination without requiring large speaker-dependent
training corpora (which are costly and time consum-
ing to supply).

2.1 The of

Japanese

Prosodic  Structure

In this paper, we assume the prosodic structure
of Japanese as illustrated in Fig 2. That is, a
sentence utterance consists of intonational phrases

Table 1: Four models

Acoustic model

Language model

Prosodic phrase boundary detection
Accent determination

Speaker-dependent GMM
Speaker-dependent decision tree

Speaker-dependent decision tree
Speaker-independent n-gram




(IPs), which are separated by periods of silence. An
IP consists of prosodic phrases (PPs). A PP is a
group of words that are uttered in a prosodic com-
bination. We assume that the accent type of an N-
mora PP can be either one of the accent type 0 to
the accent type (N — 1). The phonemes in a word
are grouped into morae. A mora consists of one or
zero consonants and a vowel, and is a phonetic unit
similar to a syllable.

Sentence

I!ntonatlonal Phrase (IP) Ii
LProsodtc IThrase PP)l

|Word| |Wordl |Word|

| Moral | Mora | | Mora [

Figure 2: Assumed prosodic structure of Japanese

3 Method

The proposed method hierarchically determines
the mora accents of the input utterance using the
following steps: (1) Obtain word boundaries and the
part-of-speech (POS) of each word by analyzing the
sentence with a morphological analyzer (3], (2) Align
the phonemes by using an ASR-based phoneme align-
ment tool, (3) Separate the utterance into IPs at the
pauses, (4) Separate each of the IPs into PPs (Sec-
tion 3.1), and (5) Determine the accent type for each
of the PPs (Section 3.2).

3.1 Prosodic Phrase Boundary Detec-
tion

The objective in this layer is to determine the PP
boundaries among all of the word boundaries in the
given IP. The IP boundaries are excluded from the
candidate list for the PP boundaries. We let the
word sequence of the TP W = (wjws..w;), where w;
denotes the i-th word of the IP and ! is the number
of words in the IP. B = (b1by..bj_1) is a sequence
of the locations of the PP boundaries, where b; = 1
denotes the presence of a PP boundary just after w;.
The other possible value of b; is 0, used if there is no
PP boundary at that location. V = (vivp..0-1) is
a sequence of the acoustic feature vectors observed
at the word boundaries. The objective of can be
restated as a search for the B that maximizes the

conditional probability for given W and V.

Bz =

argmax P(B|W,V) (1)
B

argmax P(V|W,B)P(B|W)
B P(VIW)
= argmax P(V|W,B)P(B|W),
B

2
®3)

where ’argmax’ is the operator that returns the
value of the argument that maximizes the following
term. P(V|W) can be ignored when we only want
to find B,naz. P(V|W,B) can be obtained by us-
ing the acoustic boundary model, while P(B|W) is
a linguistic probability calculated by using the lin-
guistic boundary model. Speaker-dependent models
are used for these models because PP formation is
dependent on the speaker’s style. Since the presence
of a PP boundary at a word boundary has an effect
on the neighboring word boundaries, we search for
Binae by using the Viterbi algorithm.

3.1.1 Acoustic Boundary Model

We ignore W in P(V|B, W) and approximate its
value by a purely acoustic probability P(V|B) focus-
ing on the presence of the boundary. In addition, we
ignore the effect of the neighborhood as follows.

-1
P(V|B) ~ [ P(vilb). )
i=1
P(v;]b;) is calculated by using multivariate Gaussian
Mixture Models (GMM) trained by using the train-
ing corpus.

The feature vector, v;, is a three dimensional vec-
tor whose components are (1) the change of the loga-
rithmic fundamental frequency (F0) in the preceding
mora, (2) the logarithmic FO gradient in the follow-
ing mora (g2 in Fig. 3), and (3) the change of the
logarithmic FO gradient at the point (g2 — g3 in the
figure). As shown in the figure, a minimum point
near the word boundary and maximum points in the
neighboring morae are searched for when calculating
these features.

Logarithmic FO |, Word boundary
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\L— Gradient 9,
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Precedlng mora Following mora

Figure 3: Features for acoustic boundary model



3.1.2 Linguistic Boundary Model

The linguistic probability is calculated by using the
following equations.

P(B|W) = P(by, .., b, |W) (5)
-1
= PB:W) [ P (bilby, .. bir, W) (6)
=2
-1
~  P(by|wy,ws) [ P (bilbicr, wi,wina) (7)
=2

The conditional probability P(b;|b;—1,w;, w;v1) i
calculated from a decision tree trained by using the
learning corpus. The reason for the approximation in
the equation is that we found that b;_; and the infor-
mation on the nearest words (w; and w;41) were the
only important factors. The part-of-speech is used
for the information of a word.

3.2 Accent Determination

The objective in this layer is to determine the ac-
cent sequence, A = (a1as..a,,), for the given PP,
where a; has a value of H or L. Since the scope
of this section is limited to the PP, we use W =
(wyws..w,) as the word sequence of the PP and the
V = (v1v2..v,) as the sequence of the acoustic fea-
ture vectors. The value of n is the number of words
in the PP, and m = }_7., m; is the total number of
morae in the PP, where m; denotes the number of
morae in the word w;. The objective can be restated
as

Amaz

(8)
= argznax P(VIW,A)P(A|W), (9)

argmax P(A|W,V)
A

where P(V|W) is ignored again. P(V|W,A)
and P(A|W) are calculated by using the acoustic
model and the linguistic model of this layer, respec-
tively. We can obtain A,,,, by simply comparing
P(V|W,A)P(A[W) for all of the cases of A, since
the number of possible sequences for A is only m.

While a speaker-dependent model is necessary for
the acoustic model for handling the FO contour, we
use a speaker-independent model for the linguistic
model. This is because the variety of words is huge
and it is impossible to learn the linguistic proba-
bilities of accent types for words only from a small
speaker-dependent corpus. Another reason is that
there are indeed speaker-independent linguistic con-
straints on “correct” accent sequences.

3.2.1 Acoustic Accent Model

The components of the feature vector v; are (1)
the normalized logarithmic FO at the beginning of
the current mora, (2) the normalized logarithmic
FO change in the current mora, and (3) the loga-
rithmic FO gradient in the current mora (Fig. 4).
We approximate P(V|W, A) using the multiplica-
tion of P(v;|W,A) calculated by using a decision
tree trained with the training corpus. A multivariate
GMM is trained for each of the leaves of the tree.

P(VIW,A) ~ ﬁ P(v;|W,A)
i=1

~ HP(Uilai——lraivmai7(m_i)) (11)

i=1

(10)

For W and A, the necessary input variables for the
tree are the accents of the previous mora (a;—1) and
the current mora (a;), the number of morae in the
PP (m), and the distance to the PP beginning (4),
and the distance to the PP end (m — 1).

The normalized logarithmic FO (F0) is the loga-
rithmic FO normalized to fall in the range of [0,1]
according to

5 FO — FOpyin,

FO = —————— 2
0 Fomaa:_FOmin’ (1 )

where F0,,in and F0,,,, are the minimum and max-
imum logarithmic F0s in the PP, respectively.
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Figure 4: Features for acoustic accent model

3.2.2 Linguistic Accent Model

The linguistic prosody P(A|W) is obtained by us-
ing stochastic accent estimator [3] with the following
normalization:

P'(A, W)
S Pa,w)

A

P(A|W) = (13)
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where the summation of the denominator is used for
the m possible accent sequences.

n
P'(AIW) = [[ P(AilA, . Aioy, Wi, W),
i=1 (14)
where A; is the accent sequence of the i-th word,
and is a part of A. In other words, if the indices of
the first and last mora of the word W; are j and k,
respectively, A; is (a;, .., ax). The conditional proba-
bility P(A;|A1,..,A;_1, W1,.., W;) is calculated us-
ing the stochastic accent estimator.
The stochastic accent estimator is trained by using
a large speaker-independent corpus.

4 Experiments and results

We conducted experiments to evaluate the perfor-
mance of the proposed method. In the experiments,
we compared different combinations of the compo-
nents of the method.

4.1 Corpus

The speech corpus we used in the experiments
is a reading of excerpts of the ATR phonetically
balanced text corpus and consists of 503 sentences
[9]. We used 100 sentences for training the speaker-
dependent models and for testing. Each sentence in
the corpus was segmented into words and each word
was manually annotated with its POS, its phoneme
sequence, its accent sequence, and its PP boundaries.

The speech data was recorded by an adult female
using a laryngograph and a microphone. The F0 con-
tours were obtained by smoothing the pitch mark pe-

BA, BL and BAL The PP boundaries are de-
tected by using either one or both of the acous-
tic and linguistic boundary models. BAL is
our new proposed method for PP boundary de-
tection.

We compared the following nine combinations for ac-
cent determination.

BN-TA, BN-TL and BN-TAL The mora accents
were determined by using either one or both of
the acoustic and linguistic accent models with
a single-layer approach. That is, PP boundary
detection was not done. The accent sequences
of the PPs were determined from all of the pos-
sible combinations.

BC-TA, BC-TL and BC-TAL For given correct
PP boundaries, the mora accents were deter-
mined by using either one or both of the acous-
tic and linguistic accent models.

BAL-TA, BAL-TL and BAL-TAL Based on PP
boundaries detected by BAL, the mora accents
were determined by using either one or both
of the acoustic and linguistic accent models.
BAL-TAL is our new proposed method.

Table 3: The experimental results of the compared
combinations. N, C, A, and L stand for “not-used”,
“correct”, “acoustic”, and “linguistic”, respectively.
While the performance numbers for PP boundary de-
tection is the F measure, that for accent determina-

tion are mora accuracy (%).

rifo;i; o:)tatuined from thehlaryngogT‘raah.2T he statistics PP boundary Accent || Accuracy
of the test corpus are shown in Table 2. N|C[A|L A'L

Table 2: Statistics of the test corpus BA v 0.657
# of sentences 100 BL Vv 0.781
# of intonational phrases 377 BAL ViV 0.862
# of prosodic phrases 686 BN-TA v Vv 62.4
# of words 1,813 BN-TL v v 85.5
# of morae 3,342 BN-TAL v VAV 69.7
# of morae with an H accent 1,729 (51.7%) BC-TA W YV 84.5
BC-TL 4 v 89.7
4.2 Compared methods BC-TAL i NARY, 94.6
We compared the following three combinations for BAL-TA vV VY 8.1
PP boundary detection. The combinations are also BAL-TL VAR v 87.8
shown in Table 3. BAL-TAL VIiVvIVI]Y 92.7
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4.3 Results

The results of the PP boundary detection are
shown in the upper part of Table 3. The accuracy is
shown in the F measure. Note that the IP bound-
aries were ignored in the calculations of these values.
For BAL, the accuracy of detecting PP boundaries
was 93.7%.

It can be seen that using both the acoustic and
linguistic models (BAL) produced the best results.
The poor precision of the acoustic model (BA) is
an intrinsic problem of this model. This is because
the acoustic features observed at a non-PP-boundary
word boundary next to a real PP boundary are some-
times very similar to those observed at the real PP
boundary, especially when the word sandwiched be-
tween these boundaries is very short. For example,
postpositionals such as “wa”, “ga”, and “0” have
only one mora.

The results of accent determination are shown in
the lower part of Table 3. The mora accuracy is ex-
pressed as percentages.

Again, the combination of the acoustic and linguis-
tic models showed the best performance (BAL-TAL
> BAL-TL and BAL-TA, and BC-TAL > BC-
TL and BC-TA). In addition, we can see the effec-
tiveness of the proposed layered approach by com-
paring the result of the proposed method (BAL-
TAL) and that of the non-layered approach (BN-
TAL). Though the errors in PP boundary detection
resulted in a 1.9% decrease for accent determination
accuracy (BAL-TAL < BC-TAL), the combined
result is still over 90% and is better than the other
approaches, the text-only processing (BN-TL) and
the non-layered approach (BN-TAL).

5 Conclusion

In this paper, we proposed an automatic accent
labeling method that makes the best use of the
prosodic structure of the language by combining
the acoustic and linguistic models, and the speaker-
dependent and speaker-independent models. The
method showed 92.7% mora accuracy using trained
speaker-dependent models with a speaker-dependent
training corpus containing only 100 sentences.

The combinations of the acoustic models and the
linguistic models resulted in the best performance
compared to the other models. Though the errors of
the prosodic phrase boundary detection affected the
accuracy of the accent determination in the subse-
quent stage, we confirmed that the separation of the

problem into multiple layers was effective even with
this amount of errors.
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