“AF AT, TRELSBME 16— 6
(1990. 7. 12

SAL: Semantics Analyzer for LOTOS Specifications

Atsushi Sato? Kenji Kawaguchi
Kaoru Takahashi ' Norio Shiratori ' Shoichi Noguchi '

T Fujitsu Customer Engineering Ltd.

3-3-5, Ichibancho, Aoba-ku, Sendai, Japan 980

t Research Institute of Electrical Communication, Tohoku University
2-1-1, Katahira, Aoba-ku, Sendai, Japan 980

The design of a semantics analyzer SAL to analyze the semantics of a system specification
described in LOTOS is given. By using SAL, a transition system with variables (a TSV for short)
can be obtained from a given LOTOS spécification. The use of a TSV as a semantic model of a
LOTOS specification yields advantages such as a compactness of semantics representation. A
transition derivation system for obtaining a TSV is presented. SAL has been implemented on a
workstation. In its execution, SAL provides the user with two modes, i.e., auto mode and
interactive mode. In the auto mode, SAL uses the technique of a term rewriting system to
evaluate terms and predicates while in the interactive mode evaluation of terms and predicates
is left to the user. Some real running examples of SAL are demonstrated.

SAL: LOTOS 1D EMRETIER

EREY O JIIOHRET HIEET As gt g0 E-—H
t BLBARAIRRY T Z2TY S

B R SFWRGRIEWITEAT

LOTOS L D BHAY EIRIEIT £ X T 2 WA SAL 122V Tili R %, LOTOS #4526 h b
L. SALTIE, ERIFTORELE LTEBHEZ0BB I A7 %1835, EBNEEB AT A
X LOTOS MDD 3 > s F 2 TOMHERER L IR L., BEB LU NITHEL 7285
(F = F, BIREL L) 2B LATOER Y AT A CHIET 5, BB EEB I AT L2155
Lo DBHERGRNE L SR, o, TOEBKREAROBE L X T L OERER L OBE
MM EIN L, SALIE7—2AF—Yarhkilyacc BLUCEHWTERASh TS, SAL
DEFEHRWICIT) 20, BOHTE— FBLUMEE— FO2 >0fARE 2 — ¥ IZiRish
Twv3, SAL O BRI @A % v { 2 2R T,

1. INTRODUCTION

In order to describe a system specification precisely
and unambiguously, so-called FDTs are used. Estelle
[3], LOTOS [1] [2] and SDL [4] are FDTs for formal
specification of, in general, open distributed systems,
and, in particular, OSI protocols and services [5].
Estelle and LOTOS have been developed and
standardized by ISO while SDL has been developed by
CCITT.

Among others, LOTOS, dealt with in this paper, is a
FDT which has a well-defined mathematical
. foundation inherited from such theories as CCS [6]
and ACT ONE [7]. Thus LOTOS provides a solid basis
for specification analysis and for tool development.
However it seems rather forbidding to learn, at least
at first glance.

To help in interpretation of a given LOTOS
specification and to ease the problem of low
understandability of LOTOS, we develop an effective
semantics analysis tool for LOTOS specifications,
called SAL (Semantics Analyzer for LOTOS
specifications). The main characteristic of SAL is that
it obtains a transition system with variables as a
semantic interpretation from a given LOTOS
specification. A transition system with variables (a
TSV for short) is a usual transition system [1]
augmented by the addition of variables and
predicates. The use of a TSV as a semantic model of a
LOTOS specification yields

(a) acompactness of semantics representation, and

(b) an easiness of mechanical handling by (a).

SAL uses a dedicated transition derivation system
tailored for obtaining the objective TSV from a given
LOTOS specification. This transition derivation
system is proposed in this paper, and the relation
between the standard one [1] and this is considered in
terms of transition systems.

TSV’s obtained through SAL are available for
different purposes, e.g., simulation of behaviour and
verification.

SAL has been implemented on a workstation using
yacc and C. It provides the user with two modes of
execution, auto and interactive, to make the use of
SAL flexible.

This paper is organized as follows. Section 2 gives the
design of SAL, in detail. In Section 3, the
implementation of SAL and some application
examples of SAL are given.)

We assume that the readers have knowledge about
LOTOS.

2. DESIGN OF SAL

In this section, we describe the design of SAL. A
design outline of SAL is given first. Then its
components and the basic notion in their design are
described.

2.1 OUTLINE

As described in Section 1, SAL aims at an effective
analysis of LOTOS specifications, and the formation of
foundation for other LOTOS-related tools such as
simulator and verifier.

SAL reads a LOTOS specification, and outputs the
corresponding TSV (transition system with variables)
as a semantics representation of the specification. The
structure of SAL is shown in Fig.1. It consists of the
following two phases (components).

(A) Syntax & Static Semantics Analysis Phase

This phase receives a LOTOS specification, and
performs lexical analysis, syntax analysis and
static semantics analysis. After these analysis, the
corresponding flattened LOTOS specification,
consisting of process definitions part and data-type
definitions part, is generated. The details are given
in Subsection 2.2.

(B) Semantics Analysis Phase
Through this phase, the objective TSV is obtained
from the flattened LOTOS specification.
Subsection 2.3 gives the details of this phase and
some basic ideas in the design of this phase.

LOTOS spec.

—_(SAL) __*

Syntax & Static
Semantics
Analysis

flattened flattened data-
process definitions type definitions

N i

—_—
-~
;% Semantics
TRS 2 Analysis
interpreter
TSV

(Transition System with Variables)

Fig.1 Structure of SAL

SAL provides the user with two modes of the usage of
SAL, i.e., auto mode and interactive mode. The user
can select his/her favorite mode at the beginning of
execution. Terms and predicates, that occur in LOTOS
behaviour-expressions, are evaluated with respect to
their values by a TRS'(Term Rewriting System) [8]
interpreter in the auto mode or by the human user in
the interactive mode (see Fig.1). We believe this idea
makes the use of SAL flexible since a full mechanical
interpretation of terms and predicates using a TRS
interpreter may not necessarily succeed (for example,
due to a non-termination property of TRS).

The TSV Sys’ corresponding to a given behaviour-
expression B, obtained through SAL (more precisely,
through the transition derivation system used in
SAL), is a compact form of the (usual) transition
system Sys, obtained through the standard transition
derivation system defined in [1]. The transition
system generated by assigning concrete values to the
variables in Sys’, is equivalent to Sys (see Subsection
2.3).

2.2 SYNTAX & STATIC SEMANTICS ANALYSIS

In this phase, a LOTOS specification is processed for
lexical analysis, syntax analysis and static semantics
analysis. The current version of SAL handles a subset
of the full LOTOS syntax. With respect to process
definitions, abbreviations such as par-expression,
local-definition-expression and sum-expression are not
used. And, with respect to data-type definitions, local
data-type definitions and abbreviations such as
parameterization and renaming are excluded.
Incidentally we have newly introduced the keywords
constraint and endcons into our LOTOS syntax.
These keywords can be written at any places where
the existing keywords process and endproc can be
written. This provision helps in explicit indication of
the use of the constraint-oriented style which is one of
the useful specification styles [9].

In this phase, the following processing is mainly
performed for a given LOTOS specification.

identification and separation of lexical tokens

@ detection of the defining and applied occurrences of
identifiers

® derivation of the scopes of the defining occurrences
of identifiers

¢ application of the rules for scopes

® check for the use of the applied occurrences of
identifiers

® globalization of identifiers

® notification of syntax and static semantics errors to

the user
® generation of the flattened specification

The flattened specification for a given specification
consists of (a) flattened data-type definitions part and
(b) flattened process definitions part (see Fig.1), and it
is derived only for a specification which satisfies the
prescribed syntax and static semantics rules (or
requirements).

The flattened data-type definitions have the following
characteristics. The all data-type definitions in the
specification are integrated and expressed as a single
data-type definition. Identifiers (operation, variable
and sort identifiers) are unique every identifier class.
An equation is expressed in a prefix notation. A
variable identifier is expressed with its sort.

On the other hand, the flattened process definitions
are represented as follows. The processes, including
specification itself, in the specification are expressed
separately. Identifiers (specification, process, gate,

operation, variable and sort identifiers) are unique
every identifier class. A behaviour-expression is
represented in a prefix notation. This can be
accomplished by the application of the following
transformation rules. In the rules, [B] represents
the expression of a behaviour-expression B in the
prefix notation.

(a) [hide G in B]
b [B>>7B]

hide G ([B])
>> ([B)],[B'])

¢ [B[>PB] = [>([B],[B])
@ (BB] = ||(I[B],[B])
) [BB] = ||| (IB],[B])
® I[B|G1B]) = |IGcIB],IB])
(& [B[]1B] = [1c{B],I[B])
(h) [[P]->B 1 = [P} (IB])

@ [a;B] = a ([B])

G) [stop 1 = stop

(k) [exit] = exit

M [pl-1¢-) 1] = pl--1(-)

m){ (B)] = [B]

m) [(B)[R]] = (R} ([B])

In the above rules, B and B’ are behaviour-expressions,
G is a gate-identifier-list, P is a guard, a is an action-
denotation, p is a process-identifier and R is a
relabeling.

2.3 SEMANTICS ANALYSIS

In this phase, the objective TSV (transition system
with variables) is obtained (see Fig.1). Concretely
speaking, given the behaviour-expression of the
initial process definition (i.e., top level of behaviour-
expression in the specification), this phase applies a
transition derivation system to that behaviour-
expression, and, as a result, generates the
corresponding TSV. In the following, the transition
derivation system which this phase of SAL is based on
is first discussed. Next, the software design of this

- phaseis given.

2.3.1 DERIVATION OF TSV

We can get the corresponding transition system from a
(closed) behaviour-expression by the application of the
standard transition derivation system defined in [1].

The transition derivation system adopted in SAL is
different from the standard one. It is a modified
version of the standard one so that a TSV can be
obtained. Generally, a TSV has the small number of
states and transitions than the corresponding
transition system because the size of the value domain
of a variable can be reduced to one. As a simple
example, when a behaviour-expression g?x:bool ; stop
is given, we get a single transition in the TSV while
two transitions in the transition system. Such an
effect increases as the size of the value domain
increases.

I Definition 1] transition system with variables

A transition system with variables TSV is a 7-tuple
<N, G, AS,V,CA,—,init>

where

(a) N is a set of states,

(b) G is a set of gates,

(c) ASisan algebraic specification <8, OP, E> where
<8, OP> isasignature and E is a set of equations,

(d) Vis asetof variables over S,)

(e) CA is a set of conditional actions. Each conditional
action ca € CA takes a form of [condj] ----- [cond]
act or act where cond; (L=i=m) is an equation
over <8, OP> and V, and act is an action whose
formis@® i or@ gdj-- dn[SP1]--- [SPx] or @
i(vy --- vp [SP1] -+ [SPL]). g is an element in G. dj
(1=j=n) is either ltj or ?x:5; where {j is a term
over <S,0P> and 'V, and xjis; isa variable xjin V
whose sort is sj. SPj (1=j=h) is an equation over
<8, OP> and V. vj (1=j=k) is ?x:5j which is a
variable xjin V whose sort is sj.

() — is asetoftransitions — CNXCA XN ,
and

(g) init € N is the initial state of TSV. O

In (e) in the definition above, D represents an internal
action and @ represents an observable action with
(optional) selection predicates. It; and ?x;:s; correspond
to a value declaration and a variable declaration in
LOTOS, respectively. @ is same as @ except that it is
hidden.

When (si, ca, s2) belongs to — and ca is [cond;] -~
[condy] act, this means that a transition from state s1
to state sz is possible by the occurrence of action act
provided that each equation cond; (1=i=m) holds. It
isdenoted as s; —ca— sg.

The essential difference between the transition
derivation system SAL uses to obtain TSV’s and the
standard one [1] is in handling of variables which
occur in a given behaviour-expression.)

I Definition 21 transition derivation system for TSV

To obtain a TSV, we define the transition
derivation system V(s generated by a canonical
LOTOS specification CLS=<AS, BS> where AS is
an algebraic specification and BS is a behaviour
specification. (A canonical LOTOS specification is
obtained by the application of the flattening function
#.# to a given LOTOS specification [1].) ¥cis is
defined by the following axioms and inference rules
(for lack of space, only those peculiar to handling of
_ variables are given). Note that a behaviour-expression
isrepresented in the prefix notation. The notation and
functions used throughout this paper, including this
definition, are listed in Table 1.

D action prefix (observable action without selection
predicates)

® gdi-dy (B) —gvieva— [y, Ym'/yml B

is an axiom

iff

notation/ func. meaning

simultaneous replacement of all occurrences
[t1/z1, ——- , tulzg] § of variables z7, ---, z, in a behaviour-
expression B by terms ¢, --- , ¢, , avoiding

AS-congruence
signature <S,0P>,ie., {t|Qps - t=1t }

Qs a8 value domain of sort s € S, i.e.,
............................. {Itlas | tisagroundtermofsorts €S}
set of all functions from { (x, =, xu) } to
Avas Qsort(xl),AS Xeeee X Qsort(x").AS: i.e., all value

assignments to the variables in V

term or equation obtained by replacing the
o) variables in a term or equation r by the
ground terms which represent the values ¢ €

ent of a value v € Qgort(x),AS 0 2
variablex € V

Ly e=vyy e s Vi) value assignment which differs from ¢ €

Ay as,inonly y; < vy, -, ym < Vm

Note: In this table, the exiﬁtence of an algebraic specification
AS=<S, OP, E> and a set of variables V={xj, -, Xp} is
assumed.

Table1l Notation and functions

vi = Tyis; il di=7y55; 1Si=n;15j=m),

if di=1t; (1=i=n)and {;is a ground term,

if dj=I!t; (1=i=n)and t;is a non-ground term
where yj' (15j=m) is a fresh variable identifier, {y; , -,
Yt ={xi|di=7xps;, 1=i=n}and t; € [t;]as.

vi= 1ty

vi=lt

® action prefix (observable action with selection
predicates)

® gd; - dy [SP]-[SPu](B) — gvy- vn{SSPy] - [SSPi} —
Iy1/y1, =, ym'/ym] B isan axiom

the condition in @ above plus the following condition hold.

[SSPy], -, [SSPk] are non-ground equations in [y /yy, -,

Y /ym)(SP11 -+ [SPh)), Q2as = SP", -, Qas F SP”p where

SP"y, -, SP”f are ground equations in [yi'/y;, -,

Y /Ym)((SP1} - [SPy) and h=f+k.

® hiding

B —ca— B , name(ca)¢{gs,-,8gn}
° and
hide g1,--,8 (B) hide g1,--,gn (B")

— ca—

B —[cond;] - [condk]l g vi - vin [SP1] -+ [SPp]l = B,
gefgr,—, g}

hide g1,-—-,gn (B)
—[condy] - [cond] i (t1 - tr[SP1] -~ [SPuD) =
hide g1,-—,8n (B)

are inference rules

iff
{tr, -, td={vi| vi=Txiis;, 1=iSm}.
® guarding
B —ca— B
L] is an inference rule

[PI(B) —{Plca—>PB
iff P isanon-ground equation.
B —~ca—B

] is an inference rule
[P](B) —ca— B’

iff Pisa ground equation and Qag - P.

® parallel composition

Bl —ca— B , name(ca)eCU{&)

[[G]}(B1,B2) — ca— [[G}(B1’,B2)

B2 —ca—> B2 , name(ca)¢GU{d}

G} (B1,B2) — ca-> |[G]](B1,B2")

B1 = [condy;]--[cond;)8 — BT,
B2 — {condg;] - [condgg] & — B2’

[G)|(B1,B2) = [condy;]-[cond;,]
: [condg1] - [condgs) 3 — [[G](BY', B2')

B1 —[condy;]--{cond;] g vi1 -+ vin [SP11][SPykl—> BY,
B2 = [condg1]--{condgs] g va1 -+ Vo, [SPgy] [SPoy]— B2, g€G

[(GIl(B1,B2) —{condy;]) -~ [cond;,] [condgy] - [condag]
gvy - v [SP1] - [SPw] = |[GIl([s1]BY,{02]B2)

are inference rules
iff
vi="7x;:8; (x;is a fresh variable identifier),
o1i = XifXti, 02 = XifX;
il vyi=%pisq, voi=Txgpis; (1=i=n)
vi=ltgi, ori=taifxyi
if vyy=xyi81, voi =g, sort(ts;) =s; (1<isn)
vi=lt1i , ogi=t1/xai
if vij=Myi, voi=Txgiisi, sort(ty;) =s; (1=i=n)
vi=1tyj) if vii=ltgq, vei=ltg;, sort(ty;) =sort(ty;),
=(t1;, t2;) is a ground equation,
Nas - =(tyj, t2;) . (I1=i=n)

vi=lty; i vii=yi, voi=tg;, sort(ty;) =sort(ty;),
=(ty;, t2;) is a non-ground equation (1<i=n)
and
[o1]1=lo11, -, o1n] and [02]=[agy, -+, o2n]
and

{[8Py1], -, [SPnl} = {[SP]| [SPI=[s1]([SPy]), I1sj<k} U
{ISP] | [SPI1=[02]([SPy]), 1sjsh} U
{[SP1 | [SPI=[=(t1;, t2)], vii='t11,
vai = Itg;, sort(ty;) =sort(te;), = (ty;, tap) isa
non-ground equation, 1sisn} -]

The TSV, denoted as TSVcps(B), corresponding to a
behaviour-expression B relative to a canonical LOTOS
specification CLS= <AS, BS> is obtained using the
transition derivation system ¥c(s generated by CLS.

[Definition 3] TSV corresponding to
a behaviour-expression

The TSV, denoted as TSVcLs(B), corresponding to
a_behaviour-expression B relative to a canonical
LOTOS specification CLS= <AS, BS> is a 7-tuple

<DERcLs(B), GeLs(B), AS, VeLs(B), .

CAcLs(B), ~cLs, B>
where
DERcLs (B) is the smallest set satisfying:
(a) B € DERcLs(B) and
(b)if B’ € DERcLs (B) and ¥YoLs + B’ —ca— B”
for some ca then B” € DERcLs (B).
CAcLs (B), Vcws (B), and Ggrs (B) are a set of the
conditional actions, a set of the variables and a set of
the gates which occur in the process of derivation of
DERcLs (B), respectively.
—cLs = {(B1,ca,B2)| B1,B2 € DERcLs(B),ca €
CAcLs(B), ¥YcLs - Bi—ca—Bz2} O

The semantics of TSVcLs(B) is defined as a transition
system obtained by assigning concrete values to the
variables in TSV¢ps(B) and by evaluating the related
predicates (guards and selection predicates) under AS.

[Definition 4} reconstruction of transitions of TSV

The reconstructed transitions (denoted as
RT(TSV)) of a TSV TSV=<N, G, <S, OP, E>, V,
CA, —, init> are a set of transitions

RT(TSV) C P X Act X P

defined by the following rules @, @ and ® where

P=N X Ay,<s,0PE> and Act={i} U {g<v>|g¢€

G,ve(U{Qsas| s€S})*) (See Table 1 for the

notation)

@ there exists a transition such that ¢ —[cond;] -
[condpl i —q € — and Q<sopE> H o (cond;)
forallj(1=j=m).

= ((q, 0),1,(q, 0)) € RT(TSV)

@© there exists a transition such that ¢ —[cond;] -~
[condy,] g dy -+ dn [SP1] -+ [SPL] —q’ € — and
Q<s,0P,E> F o (condj) for all j (1=j=m). And,
Q<8,0PE> F olyjeuy, -, yeeu) (SPy) for all w
(1=w=h) where {y1, — , yet={ xi | di=™x:s;i ,
1=i=n}and u; € Qsort(y,),<S,0P,E> (1=z=k).

= ((q, 0), g<v1 - Vvn>, (¢, Olyy «uy, -,y <l)

€ RT(TSV)
where

vi=lo(t)l<sop,e> If di=lti (1si=n)

vi=ug if di=7x85,x3=y;(1sisn,1=z<k)
® there exists a transition such that ¢ —{cond;] -+

[condm] i (?y1:s1 - ?ykisk [SP1] - [SPhl) —q' € —

and Q<s,0pE> t o (cond) for all j (1=jsm).

And, 0 <s,0P,E> I d[y;uy, —, yeug] (SPw) for all,

w(l=w=h) where u; € Qs,,<s,0P,E> (1sz=k).

= ((q, 0), 1, (¢, Ofyy «uy, —, yx «uld)) € RT(TSV) O

I Definition 5] semantics ofa TSV

The semantics of a TSV TSV=<N, G, <S8, OP,
E>,V,CA, —, init> by an initial value assignment ¢
€ Ay, <S,0P,E> is a transition system (denoted as
TS(TSV))

<States(RT, (TSV)), Actions(RT, (TSV)),

RT (TSV), (init, ¢) >

where
RT(TSV)=RT(TSV) - {t|t € RT(TSV), tis

unreachable from state (init, ¢) },
States(RT,(TSV))={q| q € P, q is reachable from

(init, ¢} in RT(TSV) },
Actions(RT, (TSV))={a|a € Act, aiscontainedin
RT(TSV) }. 0

In the following, we consider a relation between the
standard one [1] and the transition derivation system
given in Definition 2. For convenience, the former is
called System A, and the latter is called System B.

[Definition 61 bisimulation [10]

Let TS1= <8, Act, —1, s01> and TSg= <SSy, Act,
—9, 502> be transition systems and let S=S; U Sy . A
relation R € S X S is a bisimulation relation if for
every pair (s1, s2) € R and every action a € Act:

@ whenever s —a—s1’:

sg —a— s9’and (s1’,s2") € R for somesg’ € S
@ whenever sp—a~—sg’:

s1 —a— s’ and (sy’,s2") € R forsomesy € S.

TS; and TSg are bisimulation equivalent if there exists
a bisimulation relation R such that (sg1,s02) € R. O

If TS; and TSy are bisimulation equivalent then TS;
and TSy are weak bisimulation equivalent [2].

The main difference between System A and System B
is in handling of variables (in the form ?x:s). In System
A, for a given closed behaviour-expression, the
corresponding transitions (in the form of —action—)
are obtained with evaluation of variables by concrete
values. On the other hand, in System B, the
corresponding conditional transitions on the values of
the variables (in the form of —[cond;] - [cond;,]
action —) are obtained, remaining the variables (and
consequently the related guards and selection
predicates) unevaluated.

The difference between the Systems A and B in action-
prefix appears if variables occur in an action-
denotation. In System A, the variables are evaluated
by the corresponding concrete values and then
transitions are obtained. If needed, the evaluation of
~ the selection predicates is involved. On the other
hand, in System B, the variables (and the selection
predicates containing the variables) remain
unevaluated, and then transitions are obtained. It is
clear that the transitions (reconstructed transitions)
constructed, by evaluating the variables in the
transitions ‘obtained through System B by the
corresponding concrete values and by simultaneously
evaluating the related selection predicates,
correspond to the transitions obtained through System

A. And, the destination states of the transitions
obtained through System B correspond to the
destination states obtained through System A, by
making the values in the evaluation participate in the
identification of the destination states, as in
Definition 4.

The difference between the Systems A and B in
guarding is similar to that of action-prefix. By
evaluating the variables by the concrete values and by
evaluating guards, the reconstructed transitions and
destination states of the transitions corresponding to
those in System A are obtained.

In hiding, the hidden actions are recorded in the
transitions, in case of variable declarations, in System
B. As in Definition 4, by reconstructing the
transitions and the destination states of the -
transitions, considering the recorded information, the
reconstructed transitions and destination states
correspond to those obtained through System A.

The essential difference between Systems A and B in
parallel-composition is in derivation of a transition by
a synchronization which involves two terms (value
declarations) where at least one contains a variable.
In System A, in such a case, a synchronization holds
when the evaluation of the both terms is equal.
Therefore in System B, a selection predicate which
asserts that the evaluation of the both terms should be
equal is added as a condition for transition. As in
Definition 4, by reconstructing the transitions and
destination states of the transitions with evaluation of
the variables by the concrete values and evaluation of
the selection predicate, the reconstructed transitions
and destination states correspond to those obtained
through System A.

From the above mentioned argument, for a closed
behaviour-expression, there exists a reconstruction
(see Definitions 4 and 5) of the transitions and

destination states of the transitions obtained through ™ -

System B, corresponding to those obtained through
System A. Thus, the following theorem holds.

[Theorem 1] relation between Systems A and B

Let B be a closed behaviour-expression relative to a
canonical LOTOS specification CLS=<AS, BS>.
Then

TScLs(B) and TS, (TSVLs(B)

are bisimulation equivalent
where
TScLs(B) is the transition system corresponding to B,
TSVcLs(B) is the TSV corresponding to B, ¢ is an
arbitrary initial value assignment to the variables in
TSVcLs(B), TS, (TSVcLs(B)) is the semantics of
TSVeLs(B) by «.) O

By a similar argument to the above mentioned
argument, the following theorem holds, for the
behaviour-expression in the initial process definition
of a canonical LOTOS specification.

[Theorem 2]

Let B be the behaviour-expression in the initial
process definition of a canonical LOTOS specification
CLS=<AS, BS>, let x3:81, - , Xn:spn be the formal
value parameters of the initial process definition, and
let tibe a ground term of sort s; for each i (1=i=n).
Then)

TScLs([t1/x1 , -, tn/xn] B) and TS,(TSVcLs(B))
are bisimulation equivalent
where
9 = tlxg < Itilas, -, Xn < ltalasl»
¢ is an arbitrary initial value assignment to the
variables in TSV¢cps(B). a

2.3.2 SOFTWARE DESIGN

This semantics analysis phase generates the objective
TSV, through the application of the transition
derivation system given above, from a flattened
LOTOS specification obtained by the first phase.

' In evaluation of terms and predicates occurring in
behaviour-expressions, this phase provides the user
with two modes of usage: auto mode and interactive
mode. In the auto mode, the equations given in the
data-type definition are regarded as term rewriting
system (TRS) [8], from left hand side to right hand
side. Terms and predicates, that occur in behaviour-
expressions, are evaluated with respect to their values
by a TRS interpreter. The strategy which this TRS
interpreter adopts in the current version is leftmost
outermost reduction, expecting TRS’s such that linear,
non-overlapping and left system. On the other hand,
in the interactive mode, such evaluations are all left to
the user. The user is always requested to input the
reduced form (normal form) of the term to be
evaluated or the truth value of the predicate to be
evaluated. We believe that this idea, i.e., two modes of
execution, makes the use of SAL flexible since a full
mechanical evaluation of terms and predicates using a
TRS interpreter may not necessarily succeed, e.g., due
to a non-termination property and reduction strategy.
The user is requested to carefully use SAL.

To effectively perform execution of this phase, a
composition on relabelings and a cancel of an identity
relabeling are done, i.e.,

(a) BISI[R] — B[ReS]

(b) B(I] — B
where S and R are relabelings and I is an identity
relabeling.

If the given process has infinite control structure, the
execution of this phase never stops. An unguarded
process [6] as shown below is an example of such

processes :
process pla]:noexit := pla] [] a;stop endproc

Therefore, similarly to the use of the auto mode with
respect to evaluation of terms, the user has to pay
attention to the property of the specification.

3. IMPLEMENTATION AND APPLICATION

SAL has been implemented on a Sun-3 workstation, In
the implementation of the syntax & static semantics
analysis phase, we have used yacc for a rapid
development. About 600 lines of rules given to yace for
lexical and syntax analysis and about 1,300 lines of C
program codes for static semantics analysis were
created. On the other hand, in the implementation of
the semantics analysis phase, about 3,300 lines of C
program codes are created including about 600 lines
for the TRS interpreter.

An input specification to SAL is given as a file which
is created using a general purpose text editor such as
emacs. If there are some errors such as lexical, syntax
and static semantics errors, then the kinds and places
of the detected errors are notified. If the specification
contains no errors, then the corresponding flattened
specification, consisting of the process definitions part
and data-type definitions part, is generated in files. (If
the input is a basic LOTOS specification, then the
data-type definitions part is empty.) Next, a semantics
analysis based on the transition derivation system
described in the preceding section is carried out for
this flattened specification. As described in the
preceding section, the user has a choice between two
modes of execution. In case of the auto mode, the
evaluation of terms and predicates is left to the TRS
interpreter. However, to avoid infinite loop of the

- evaluation due to a non-termination property of the

TRS, SAL imposes some upper limit with respect to
the number of times of term rewritings, When
exceeding this limit, -the TRS interpreter stops
evaluating, and it asks the user to input the reduced
form (normal form) of the term being evaluated or the
truth value of the predicates being evaluated. The
terms and predicates previously already evaluated are
never evaluated again, in the both modes.

The TSV obtained through SAL is stored in a file. If
necessary, it can be displayed on the screen, by using a
tool for display.

Next, we show a real application example of SAL.

_ The example is given in Fig.2. The left window shows

a part of the given specification. The use of the
interactive mode in the application of SAL to this
example yields interactions as shown in the top-right
window. An input from the user is performed
following the prompt message “>". In this figure,
“ml” is input as the evaluation of the term
“first(add(new__channel,m1))”, and “true” is input as
the evaluation of the predicate “=(eq(in1, m1), true)”.
After such interactions between the user and SAL, the
TSV partly shown in the bottom-right window is
obtained. In the auto mode, there are no such
interactions between the user and SAL, and the same
result is obtained.

4. CONCLUSION

In this paper, we have described SAL, a semantics
analyzer for LOTOS specifications. Through SAL, a

transition system with variables (a TSV) is obtained
from a given specification written in a large subset of
LOTOS. A transition derivation system, which SAL is
based on, has been formally presented to obain a TSV.
The TSV provides the semantics of the specification in
a compact form. TSV’s obtained through SAL are
available for different purposes such as a simulation,
verification, implementation, etc. Consequently, as an
effect of SAL, it is expected that the productivity of
system developments based on LOTOS is enhanced.

The following further studies are expected:

a) an extensive application of SAL
b) a development of a new version of SAL that covers
the full syntax of LOTOS
c). an extension of the proposed transition derivation
system, for b)
d) a development of tools (e.g., simulator) based on
TSV’s obtained through SAL
REFERENCES
[1] ISO, “Information processing systems - open
systems interconnection - LOTOS - a formal
description technique based on the temporal
ordering of observational behaviour,” ISO 8807,
1989.
T.Bolognesi and E.Brinksma, “Introduction to
the ISO specification language LOTOS,”
Computer Networks and ISDN Systems, vol.14,
pp.25-59, 1987,
Enacstool ‘- G Enacs 18.55.3 -
0 Zore mess
first(new_channei) -
first(add(rev_channel X)) =
first(add(add(ch,¥).y)) =
ofsort channel
rest(new_channel)

rest(add(nev_channel,x)) =
rest(add(add(ch,x),y)) =

(2]

mli
X
first(add(ch,x))

new_channel H

ofsort boot
is_empty(new_channel) = true H
is_empty(add(ch,X)} = false H
ofsort nat
length(new_channel) = 0 H
length(add(ch,x)) = succ(length(ch))
endtype
oehaviour

PEI[s1,r1]

1{s1,M]} PE2(s2,r2]
1{s2,r2]i ch_12(s1,r2](nev_channel)
1] Ch_21[s2, r](new_channe!)

re
process Ch_12(s1, r2}(ch:channe!) :exit:=
stm:mess;Ch_12(s1,r2)(add(ch,m)}
i []Atrz!first(ch);ch_12[si.n](rvst(ch)))
exi

ndproc
process Ch_21(s2, r1](ch:channef) :exit:=
S2m:mess;Ch_21{s2, r1}(add(ch,n))
a []'trl!firs!(ch);Ch_z‘lv.n](rest(ch)))
ex

endproc
process PE1(s1,r]:exit - =
s1Imi;Sub_PE1[s1,M] ~ [}

re
process Sub_PE1[s1,r1)mexit :=

S11m2; rim:mess{ea(n.n3) = true):exit [1
<« APyl

AP U]

new_channel H
add(rest(add(ch,x)).y) :

[3]

[4]

(5]

(6]

[7

[8]

{9}

[10]

rim:mess(eq(m,m3) = true];Sub_PE1(s1,r1]

ISO, “Information processing systems - open
systems interconnection - Estelle - a formal
description technique based on an extended
state transition model,” ISO 9074, 1989.
CCITT, “Specification and Description
language SDL,” CCITT Recommendation
Z.100, 1988.

ISO, “Information processing systems - open
systems interconnection - basic reference
model,” ISO 7498, 1984.

R.Milner, “A calculus of communicating
systems,” Lecture Notes in Computer Science,
vo0l.92, 1980.

H.Ehrig and B.Mabr, “Fundamentals of
algebraic specification I,” Springer Publishing
Company, Berlin, 1985,

G.Huet and D.C.Oppen, “Equations and rewrite
rules: a survey,” in “Formal language:
perspectives and open problems,” R.Book eds.,
Academic Press, pp.349-405, 1980.
C.A.Vissers, G.Scollo and M.v.Sinderen,
“Architecture and specification style in formal
descriptions of distributed systems,” Protocol
Specification, Testing, and Verification VI,
pp.189-204, 1988,

D.Park, “Concurrency and automata on infinite
sequences,” Proc. 5th GI Conf., Lecture Notes in
Computer Scienice, vol.104, Springer-Verlag,
1981. '

[=(ea(m1,m1), true)] Evaluate this predicate.

nput tree / false if it is evaluated as true or false. Oth
ervise, input its reduced form. You may input y if the redu
fifced form coincides with the original ore.

L3> true

i1 [=(ea(mil,m), true)} Evaluate this predicate.

r2imt—

r2imi

@

F1im3,

siim2 ritm3 r

kiku[42]% screendump | lor -v
X

Fig.2 An example

