T AT 4 THEE LS HAE 6423
(1994. 3. 4)

BEMARI D &R A T30

M T, RN AR
FO RO TS THR

BEDOSE, RITESORGEY A7 LTI, FIH, FYTESOBIKOETHEH S
WREINTV S, SfTHEIORER, ZRIXEZERNE L, HEET, REQHERZSXE LT
3. TO7=HIz, BRRKE, BEFICL D, HEE D IGEITTERWESIZ, HEOBE, £ERIE
STy, AWRSCTIE, SETHER SR, AOMMIIRET 2 ARIZOWTEET S, Blik
OATY =7 OB, FEFN, EBETEAMTERLMEE LS., ik, BIZEMHND
FTV o hETVITBE RTINS 5 LTEFIET S, BEHAD 5 HF 7 2 ahineD
O Y7 RT3 LY, B, B8, Bo=>2>0FR%RT. 272, BiEoBRIER:o vr0
BEIZDOWCRUS. BRIZ, Oyr3INdL TV =7 MU OWT, ZAREHET 5.

Management of Vehicle Transactions

Satoshi Hamada and Makoto Takizawa
Tokyo Denki University
Ishizaka, Hatoyama, Saitama 350—03, Japan
e—mail {hama, taki}@takilab.k.dendai.ac.jp

This paper discusses how to find a path in a space for a vehicle to move to the destination. The
space is composed of space objects structured in a hierarchical tree named ‘a .space tree. Higher-
level objects denote broader area than lower-level ones in the space tree. Vehicles first finds broader
paths which include higher-level objécts in the space tree, and then the path isimade more detailed
as the vehicles are approaching to the destinations. A movement of each vehicle v.on an object o is
atomic, i.e. v can either pass o:or. net. Vehicles are modeled as transactions which:-hold objects in
the space tree. There are kinds of vehicles with respect to how to move on the space. For example,
cars can stop but airplane cannot; packets can be removed but trains cannot, and cars can back
but cannot in the motorway. In this paper, we discuss three schemes, i:¢. . close; semi-open, and
open ones on when the vehiclés.release the objects, and discuss how the-schemes can be adopted
to the vehicle types and the evaluation of the schemes.

—129—

1 Introduction

A vehicle system is a model of systems where some-
thing is moving, e.g. packets in communication net-
works, automobile cars in roads, and trains in rail
ways. The vehicle system is composed of wehicles
which move around in the vehicle space. [2, 5, 13] dis-
cuss a broad path decision where each vehicle v first
decides the broad path to the destination, and then the
path is more detailed as v is approaching to the des-
tination. The space is composed of paths, e.g. roads
and rail ways. The space is partitioned into disjoint
units named space objects. Each object includes some
parts of the paths. The objects are further partitioned
into smaller objects. Thus, the space is structured in a
tree whose nodes denote objects. Each object o mon-
itors the states of the component objects, e.g. how
much they are congested.

Since each object o can admit a limited number
of vehicles, some vehicle cannot pass o if o is con-
gested. There are two approaches to resolving conflict
among the requests on o from multiple vehicles, i.e.
scheduling and dynamic resolution. In the schedul-
ing method, the movements of vehicles on objects are
scheduled, i.e. before each vehicle v departs, it is de-
cided what time and what objects v would pass. In
the railway systems, trains move according to the time
table. In vehicle systems including large number and
various kinds of vehicles in a complex space, it con-
sumes much computation to make up the schedule.
Hence, it is not easy to change the schedules if un-
expected accidents occur. In the resolution method,
each vehicle v requests to pass an object o any time
v would like to pass o. If o is congested, v may au-
tonomously change the way. In this paper, we adopt
the resolution scheme where v locks o, i.e. distributed
control. If the lock request is accepted, v can move to
the objects.

The movement of each vehicle v on an object o is
considered to be atomic, i.e. v can either pass o or not.
Hence, we model the movement of v on o as a trans-
action which locks o before arriving at o and releases
o after leaving o. Since o is composed of smaller sub-
objects, the movement on o is realized as a sequence
of the movement on the subobjects. It is modeled as a
nested transaction {10, 11]. There are multiple kinds
of vehicles on how they can move on the objects. For
example, airplanes cannot stop, and automobile cars
on motorways cannot back in the inverse way on the
motorways. For the vehicle which cannot back, there
is no need to hold the objects passed by v. On the
other hand, a vehicle v which can back may hold the
objects which v has passed since v may back. Vehi-
cles which cannot stop have to hold objects farther to
them in order to make sure that they could move. In
this paper, we discuss schemes for locking and releas-
ing objects with respect to types of vehicles.

In section 2, we present a system model. In section
3, we discuss how to make a path for each vehicle.
In section 4, we present a synchronization schemes by
which vehicles lock objects as transactions. In section
5, we present the evaluation of the synchronization
schemes.

2 System Model

We present a model of the vehicle system.

2.1 Vehicle space tree

A vehicle system T is composed of a collection V of
vehicles and a space S where vehicles move. A set of
roads is an example of the vehicle space where auto-
mobile cars move around as vehicles. S is partitioned
into disjoint units named objects. A sequence of ob-
jects denotes a path which vehicles pass. Each object
o is further partitioned into smaller objects oy, ...,
on. Here, o is a parent of o;, and o; is a component of
o (¢ = 1,...,n). Thus, S is structured in a tree named
a space tree whose nodes denote objects and branches
represent the parent-component relation among the
objects. In S, let lca(oy, 0;) denote a least common
ancestor (Ica? of objects 0; and o;. For each o, let
level(0) be alevel of 0, i.e. number of nodes in a path
from o to the root. o; and o, are at the same level

01 = 03) iff level(0,) = level(03). oy is higher than o,
01 > 03) iff level(0,) > level(0;). Higher-level objects
denote broader paths than the lower-level objects. A
tree is balanced iff every leaf in the tree is at the same
level. In this paper, we assume that S is balanced.

Each object o has a set of ports {prt, ..., prt,}
(h > 1). Here, let o:prt; denote a port prt; of 0. A
vehicle v can move from a port prt; to priy in 0. It
is written as prt;:o:prt,, named a primitive path. (o)
denotes some primitive path in o.

Figure 1: Space object

The same-level objects o; and o, are directly
connected if there is a link between o;:prt;; and
02:p7tg,. If 01 and oy are directly connected, vehicles
can move between oy and o0;. In this paper, we assume
that there exists at most one link between any two
objects, and each port participates in only one link.
Let (01) and (03) be primitive paths prt;;:01:prt;; and
Priyx:02:pTiy; 01 and oy, Tespectively. (o01) and (o,) are
directly connected iff 0, and o, are directly connected
by a link between priy; ar_ld prig. A path p is a se-
quence of primitive paths, i.e. ({(01), ..., (0n)) where
every (o;) and {o0;4,) are directly connected. Here, o,
is the source and o, is the destination of p,

—130—

[Example 2.1] Figure 1 shows that an object o is
composed of disjoint component objects a, b, ..., g
which are further composed of smaller component ob-
jects. p1, po, and py are ports of 0. p; : 0 : py,
P1:0:pa, and p; : 0: p3 are primitive paths. The
double lines between objects indicate links. b and d
are directly connected because there is a link between
the ports g; of b and 7, of d. There is at most one link
between two objects. Figure 2 shows the space tree of
Figure 1. o is the root. O

Each primitive path (o) is represented by a path p
= {{01), -+, (on)) where each o, is a component of o.

o 1 1.
p is written as (0)". (o) is named a component path
or first ezpansion of (o). The i-th ezpansion (o) is
defined as ({01)'™%, ..., (0,)' ") for i > 1, and <og° =
{0). Since the space tree is finite, there exists a fixed
point (o)’ such that (o)’ = (0)* for every k > j, and
(0} # (0)* for every k < j. Let (0)* denote the fixed

point. There may be multiple candidates as {0)*. o
selects an optimal one among the component paths
so that the moving cost is the minimum. (o;) and
{03) are indirectly connected iff (1) level(o1) # say o3

> 03, and (2) for some j, (03) and {0;)’ are directly
connected. (o1) and (o03) are connected iff they are
directly or indirectly connected. For example, (o) =
D1 : 0 : py can be expanded to multiple paths, e.g.
((d), (e}, () () ¥.(<d>r (8), {a), (e}, (¢)) in Figure 1.
o can select an optional one. ((d1), {da), (da)) and (b)
=gy : b: g, are indirectly connected.

Let p be a path {(01), ..., (on)). If a path p;
is ({01), ..y (0i-1), (0:)7, {0i41), ..., {0n))for some
j (> 1), p1 is broader than p; (written as p; << 2).
Further, << is transitive, i.e. if p; << p3 << pz, then p;
~< pz2. The broader a path is, the higher-level objects
are included in the path.

[Definition] Let p, ¢, and r be paths from an object
stod. gis a broadest path of p if p << g and there is
no path r such that ¢ << 7. ¢ is a most detailed path
of pif ¢ << p and there is no r such that r << ¢ 0.

The most detailed path is composed of only leaf ob-
jects. For a path p = ({01}, ..., {on)), if 07 < ...%
Opy 01 = ...> 04, and 0y = ...= o,, p is an ascent,
descent, and flal path, respectively. If every o; is a
component of some ohject o, p is included in o oris a
component path of o.

Suppose that a vehicle v would like to move from
an object s to d. Let o, and o4 be component ob-
jects of o = lca(s, d) which are ancestors of s and
d, respectively. o, and o4 are a broadest source and
destination of v, respectively. A flat path from o, to
og, e ({0), .., (od>3 which includes only component
objects of 0 is a broadest path from s to d, written as
broad(s, d). For example, d and g are broadest source
and destination of a vehicle which would move from
dy to g1 in Figure 1. ((d), (e}, (f), (9))is an example
of broad(s, d). Here, a current object of a vehicle »
means an object where v is now.

2.2 Types of vehicles

There are types of vehicles on how they could move
in the vehicle space. For example, airplanes cannot

a

ay a3 b ¢ ¢
Figure 2: Space tree of Figure 1.

stop in the space, automobile cars in the motorways
cannot back, packets in the network can be removed.
The vehicles are classified with respect to the following
three points.

1. Vehicles are removable or not.
2. Vehicles are stoppable or not.
3. Vehicles are retreatable or not.

While packets in communication networks can be re-
moved, airplanes cannot be removed. Problem is how
to treat a vehicle v if v cannot move due to some events
like unexpected accidents or deadlocks. For example,
even if the vehicle system is deadlocked, no deadlocked
vehicle like automobile cars can be removed although
deadlocked transactions can be removed in database
systems. In order to resolve the deadlock or make
vehicles give up to hold objects, the vehicles have to
move to another object from the current objects.

The second point is concerned with whether vehicles
can stop or not. Stopping of a vehicle v at an object
o means that v can stay in o as long as v would like
to stay there. For example, airplanes cannot stop, but
trains can stop on the railway. For each unstoppable
vehicle v, objects farther from v have to be obtained
to make sure that v pass the objects. On the other
hand, objects farther from v need not be obtained by a
stoppable vehicle v because v can wait in some objects
if v could not obtain the objects.

The last point is concerned with whether or not v
can back along the path passed by v. For example,
packets in the networks can back, but automobile cars
in motorways cannot back. A vehicle v which can back
along the same path passed by v are a retreatable one.
For each unretreatable vehicle v, as soon as v passes
0, v can release o since v never backs. On the other
hand, if v is retreatable, v can hold o since v may
back the same path which v has passed. Here, v on o;
reireats to some o, iff v has taken some path p from
02 to 01 and takes the same objects in p in the inverse
way. v on oy backs to oy iff v moves from oy to o,
whether or not v takes the same path as v has taken.
2.3 Properties of objects .

For each primitive path (o), the capacity of (o),

* cap((o)) represents how many vehicles (o) can admit
at the same time. The moving time of (o), time((o))
means how long it takes each vehicle to pass (o) if there
is no vehicle in (o). For a path p = ({01), ..., (0,)),
cap(p) = cap({o1)) + ...+ cap({0n)) and time(p) =
time((01)) + ...+ time((0,)). In this paper, we as-
sume that each vehicle cannot manage its speed. For
two primitive paths p, and p; in o, p; U p; means a
collection of p; and p;. p; and py are independent iff
cap(p, U pa) = cap(i) + can(ps). In this paper,
we assume that every primitive paths are indepen-

—131—-

dent. The throughput of (o), thru((o)) is cap((o
time((0)). The larger thJ'SL() o)) gegg,)t)he mo:gg(v)e)hi/-
cles can pass (0).

Let (a) and (b) be primitive paths directly con-
nected with a primitive path (o), {{(a), (o), (b). Let
PA be a set of component paths of {0) indirectly con-
nected with (a) and (b). A path p in P4 is the most
significant for (o) iff cap(p) is the maximum in PA.
The most significant path represents a trunk path like
the motorway. For example, if the motorway is con-
gested, the roads around the motorway are congested.
Also, vehicles take the motorway if there exists. Thus,
the trunk path represents all the paths in PA.

Suppose that there are component paths py, ...,
pn for a primitive path (o). cap((0)) and time((o))
are computed from the components as follows. Let p;
be the most significant component path of (o). Here,
cap({0)) = cap(p;), and time({0)) = time(p;).

hold({o)) denotes a number of vehicles which are
now in (o) (hold{{0)) < cap({0)). cong((0)) is a
congestion factor, l.e. hold({o)) / cap({o)). ptime({0))
is time when it takes a vehicle to pass (o). It is com-
puted as time((0)) / (1 - cong((0))). The more con-
gested (o) is, the longer time it takes to pass (o). If
cong((0)) = 1, i.e. (o) is fully congested. ptime((o))
is infinite. o selects (o) with the minimum ptime({o})).
It is not easy to get from every component informa-
tion on how much each component path is congested.
Hence, the congestion factor of the most significant
primitive path of (o) is used to represent how much
(o) is congested. Every component informs the parent
of the congestion factor of the most significant prim-
itive path periodically or when the state is changed,
e.g. some accident occurs. Based on the information
from the components, the object decides a component
path for a primitive path.

3 Path Decision Strategy

We would like to discuss how to decide a path to
the destination for a vehicle v. Here, suppose that v
would like to move from an object s to d.

1. First, the broadest source o, and destination o4 of
v are found for s and d, respectively. o = lca(s,
d) makes a broadest path broad(s, d) from o, to
04. It is rewritten as p = ({01}, ..., (Pn)).

2. p is more detailed as ({ol)d‘, <.+, (0n)*") where d;
> 0andd; >dj forz< j.

(0;) is more detailed than {o;) if ¢ > j, L.e. o; is nearer
to v than o;. d; is computed as follows. Here, let h
denote the height of the space tree minus level(o), i.e.
every j, (Oj>k = {o0;)" for every k < h. Here, dy = h,
i.e. {01) is the most detailed. Figure 3 shows d; for j.
[Expansion level]

l.dj=hforj<1I

2.dj =hx (1= ((G—1I)/n)*) for I<j< H.

3.dj=h/jforj>H. O
I and H are threshold parameters. The objects inside
H from the current object are sufficiently detailed for

vehicles to surely pass through them. The objects
outside H are broader. For unstoppable vehicles, I is

(d_3)n

0 I H n

Figure 3: d;

bigger than stoppable ones in order to make sure that
the vehicles can go ahead. :

4 Synchronization

Each movement of a vehicle v in an object o is
atomic, i.e. v can either pass o or not. We model
the movement of v as a transaction [4].

4.1 Locking scheme

Evenif a path p for v is decided by the path decision
strategy, v cannot pass an object o in p if o is fully
held by other vehicles. In order to make sure that v
can pass o, v locks o before arriving at o. If v locks
o0, v is assured to be able to pass o. After leaving o,
v can release o. If cap({0)) — hold({(0)) > 0, o can
accept further lock requests from vehicles. Otherwise,
vehicles which would like to lock o cannot hold o.

Suppose that v in oy would like to pass (o). First,
v sends a lock request to o.

[Locking scheme]

(1) If cap({o)) — hold({0)) > 0, o accepts the lock
request from v. Then, o requests locks on all
the ancestors of o for v. If all of the ancestors
are cannot be locked, v cannot hold o. If locked,
hold((0)) = hold({0)) — 1.

(2) Otherwise, o rejects the lock request from v. That
is, v cannot hold 0. O

The lock request to o is propagated to the ances-
tor objects of o. If all the ancestors could be locked,

o can be locked. After v locks (o), v requires o to

decide a component path ({01}, ..., {on))of (o). v is

a sequence of subtransactions v, ..., v,, where each

v; is concerned with an atomic movement on (o;) (%

=1, ..., n). v is further realized by a sequence of

subtransactions v;1, ..., ¥jm, on the components o;1,

-+ 0jm; of o;. If v passes through o;, the subtrans-
action v; commits. If all the subtransactions commit,

v commits. Unless v can pass oj, i.e. v cannot lock

(0j), v; aborts. In the conventional database systems,

a transaction aborts, i.e. whole update effect done by

the transaction is removed. On the other hand, only

the part of the transaction can be aborted, i.e. partial
abortion [12, 17, 18]. That is, another path may be
tried to be found from o;_; if v aborts. By backing to
some o; (k < j), another path for o, may be tried to
be found. o tries to find alternate paths for o;_; It can

—132—

not be seen from the higher-level of 0, i.e. the move-
ment on o is atomic. Thus, the vehicle transaction v
on o is nested {10, 11, 16].

4.2 Releasing schemes

After leaving o, v can release 0. If v is a strict two -
phase locked (2PL) [3] transaction, v does not release
objects until v arrives at the destination. This means
that objects which v has passed through already can-
not be used by another vehicle. It decreases the num-
ber of vehicles which are moving at the same time.
On the other hand, if v releases objects which v has
passed, the objects can be used by another vehicle. It
implies that more vehicles can move at the same time
in the space. We would like to consider how v releases
locks on primitive paths which v has obtained. There
are three ways to release objects. Here, suppose that
(o)t = ({01), ..., {0,)) and v; denotes a subtransaction
of v on o;.

[Schemes for releasing objects]

1. If v is a root of the vehicle, i.e. v arrives at the
destination, all the locks held by v are released.
Otherwise, no objects are released.

2. {01}, -+, {on) held by the subtransactions vy, ...,
v, of v are released.

3. (o) is released, and all the paths obtained by vy,
...y Un are released if they are still obtained. O

The first scheme is a close scheme which is a strict
2PL [3]. That is, only when the whole transaction
commits, i.e. the vehicle arrives at the destination, all
the locks obtained are released. The second scheme is
a semi-open one. It is noted that (o) is still held by
v while {(01), ..., (o) obtained by vy, ..., vj of v are
released. When v passes o, v releases all the primitive
paths included in the component path of (o) but does
not release (0). The third scheme is an open one where
all the objects obtained by v are released. This means
that v releases (o) as soon as v passes o.

4.3 Relation among vehicle types and re-
leasing schemes

It depends on the vehicle type of v which scheme
is adopted to release objects. Suppose that v is
unretreatable, i.e. v never backs along the path passed
by ». Hence, as soon as v passes objects, v can release
them, i.e. unretreatable vehicles can adopt the open
scheme. A retreatable vehicle v may back to some ob-
ject which v has passed. For example, if v finds that
v cannot go ahead according to the path due to the
congestion and deadlock, v may back along the path
which v has passed. In this case, if the objects which
v has passed are released, v cannot back. Therefore, v
can adopt the semi-open or close scheme. If the close
scheme is adopted, v can retreat, i.e. v can reverse
the same path taken by v. In the semi-open scheme, v
can find another path to back by detailing component
paths of higher-level objects which v still holds. Since
the semi-open scheme holds less objects than the close
one, the semi-open implies that more vehicles can be
admitted in the space than the close one.

If o cannot accept v, e.g. o is congested, v wants.on
o or tries to find another way. The first is a-wait ac-
tion. In the database systems, transactions wait until
they could get the objects. As stated before, although

the stoppable vehicles can take the wait action, the
unstoppable vehicles like airplanes have to go ahead
without stopping. The second is a re-planning action.
If 0 is outside H, i.e. o is farther from the current ob-
ject, v may carry on to take the path. If o is inside H,
v tries to find another path to escape o. In addition
to the conventional wait, the re-planing is adopted in
our system. Suppose that v is now in o; and tries to
move to o; adjacent to o;. If v can lock 05, v leaves
o; for o; and then releases o;. When v adopts the re-
planning strategy, the path for v has to be canceled
by releasing the objects. Then, a new path is decided.

Table 1 summarizes the relation between the vehicle
types and the releasing schemes.

5 Evaluation

We evaluate the close, semi-open, and open schemes
in terms of the number of objects held by the vehi-
cle. We assume that a space tree 7' has a height and
breadth balanced tree whose height is | and where
each non-leaf object has k subobjects. The lowest-
level path includes k' lowest-level objects. Assume
that a vehicle v moves on all the objects from the left-
most lowest-level object to the right-most one, i.e. v
passes k' lowest-level objects. Suppose that v isin a
lowest-level object o; in 7. A -parent of o; is denoted
by 0;_;. Thus, o; is an ancestor of 6 which is at a level
(<). Here, oo denotes the root of T'. o, is the a;-th
component object of the root, i.e. 0,. o; is the a;-th
component object of 0;_; (1 =1, ..., k). The position
of v in T is represented by (ay, ..., a;), where each a;
< k.

In the open scheme, v holds only objects o;, o1_1,
..., 01, 0o since v releases the objects as soon as v
leaves them. Hence, v on o; holds (I + 1) objects. In
the semi-open scheme, v on o; holds (T4+ar+...+a)
objects since v does not release the ancestor object.
In the close scheme, v on 0; holds (1 + (a; — 1)1 +
Bt + BN 4+ (14 (a2 = 1)1+ k+...+ k=2)) +
s F (T (- D)L+ E) (14 (@ —1)+1 =
(1+1)+(a1~1)(1~&") /(1= k) +(az— 1)(1-k'=1) /(1 -
E)+...+(ai_y —1)(1~k?)/(1 — k) + (a; — 1) since v
does not release the objects.. Let No, Nso, and Ng be
the average numbers of objects held by v in the open,
semi-open, and close scheme, respectively. No = I+1,
Nso = ((1+2)/2)+(k1/2), Nc = ((142)/2)+1/2 (for
k=1), ((1+2)/2) + (k/2)(K -—rl)/gk ~1) (for k> 1)
Figure 4 shows No, Nso, and.Ng for k given [= 10.
The semi-open transaction holds less objects than the
close one. The semi-open-scheme locks O(k) objects

while the close locks O(k!)-objects.

6 Cohcluding Remarks

In this paper, we have discussed how to model the
movement of a vehicle in a tree:structured space. The
vehicle movement is modeled as a nested transaction
in the vehicle space. The vehicles are classified with
respect to three points; rermovable or not, stoppable
or not, and retreatable or not.” While transactions in
the database systems can be removed by aborting the
transactions, most vehicles like automobile cars can-
not be removed. The unremovable vehicle has to move

=133—

Table 1: Releasing schemes and vehicle types

Releasing | Concurrency | Retrealable Vehicle types
schemes degree degree Retreatable | Nonretreatable
close X O O X
semil-open [AN JAN O X
open O X X O

O : good. A : marginal. x :

2 le+20 ¥ T T T T v
5 close scheme (N _C) =
bl semi-open scheme (N_50) -+--
— open scheme (N_Q) -s--
2
9
5]
o
Q
[S]
s 1e+10
u
g
e
@
=3
©
A N U e & e b e b
S frs=b"HE 5. 570 5.0 -0-8-0-0-a-9-0-u-5-
. 1
o 2 10 12 14 16 18 20

4 6 8
number of subobjects (1=10)

Figure 4: Evaluation

to another object in order to release the objects which
it holds. We have shown three schemes for releasing
objects, i.e. open, semi-open, and close ones. The
close scheme corresponds to the conventional strict
two-phase locking one where the objects are released
when the vehicle arrives at the destination. In the
open and semi-open schemes, the objects are released
before the vehicle arrives at the destination. We have
discussed how each kind of vehicle can adopt a syn-
chronization scheme. We have shown the evaluation
of the releasing schemes in terms of the number of
objects locked.

References

[1] Bernstein, P. A., Hadzilacos, V., and Good-
man, N., “Concurrency Control and Recovery in
Database Systems,” Addison Wesley, 1987.

Deen, S. M., Hamada, S., and Takizawa, M.,
“Broad Path Decision in Vehicle System,” Proc.
of the 3rd Int’l Conf. on Database and Ezpert
Systems Applications (DEXA’92), 1992, pp.8-13.

[3] Eswaren, K. P, Gray, J., Lorie, R. A, and Traiger,
I. L., “The Notion of Consistency and Predi-
cate Locks in Database Systems,” CACM, Vol.19,
No.11, 1976, pp.624-637.

[4] Gray, J., “The Transaction Concept: Virtues
and Limitations,” Proc. of the 7th VLDB, 1981,
pp.144-154.

[5] Hamada, S. and Takizawa, M., “Transaction
Model of Automated Guided Vehicles,” Preprints
of the JSPE-IFIP WG5.3 Workshop on the
Design of Information Infrastructure Systems for
Manufacturing DIISM’93, 1993, pp.281-292.

[6] Holt, R. C., “Some Deadlock Properties on
Computer Systems,” ACM Computing Surveys,
Vol.14, No.3, 1972, pp.179-196.

[2

[}

not good.

[7} Xnapp, E., “Deadlock Detection in Distributed
Databases,” ACM Compuiing Surveys, Vol.19,
No.4, 1987, pp.303-328.

[8] Korth, H. F., “Locking Primitives in a Database
System,” JACM, Vol.30, No.1, 1983, pp.55-79.

[9] Korth, H. F., Levy, E., and Silberschalz, A., “A
Formal Approach to Recovery by Compensating
transactions,” Proc. of the VLDB, 1990, pp.95-
106.

[10] Lynch, N. and Merritt, M., “Introduction to the
Theory of Nested Transactions,” MIT/LCS/TR
367, 1986.

[11] Moss, J. E., “Nested Transactions: An Approach
to Reliable Distributed Computing,” The MIT
Press Series in Information Systems, 1985.

[12] Takizawa, M. and Deen, S. M., “Lock Mode
Based Resolution of Uncompensatable Dead-
lock,” Proc. of the Far-east Workshop on Future
Database Systems, 1992, pp.168-175.

[13] Takizawa, M., Hamada, S., and Deen, 5. M., “Ve-
hicle Transactions,” Proc. of the 4rd Int’l Conf.

on Database and Ezpert Systems Applications
(DEXA’93), 1993, pp.611-614.

[14) Traiger, I. L., “Trends in System Aspects of
Database Management,” Proc. of the 2nd Int’l
Conf. on Database (ICOD-2), 1983, pp.1-21.

[15] Weihl, W. E., “Local Atomicity Properties:
Modular Concurrency Control for Abstract Data
Types,” ACM Trans. on Programming Language
and Systems, Vol.11, No.2, 1989, pp.249-283.

[16] Weikum, G., “Principles and Realization Strate-
gies of Multilevel Transaction Management,”
ACM TODS, Vol. 16, No. 1, 1991, pp.132-180.

[17] Yasuzawa, S., Takizawa, M., and Ouchi, T., “Res-
olution of Parallel Deadlock by Partial Abortion,”
Proc. of the International Symposium on Commu-
nications (ISCOM), 1991, pp.708-711.

[18] Yasuzawa, S. and Takizawa, M., “Uncompensat-
able Deadlock in Distributed Object-Oriented Sys-
tems,” Proc. of the International Conference on
Parallel and Distributed Systems (ICPADS), 1992,
pp.150-157.

—134—

