2NF AT 4 TREEDELE 2-3
(1995. 9. 8)

T AR I 30 < HHAERERRICOWT

fiE BTG
kokada®@etl.go.jp
BFEINRETIRTIERT — %7 7 F + &
T 305 KR < Wit 1-1-4

KHRIRCESHEWEEDO 7 v FarfiRCEwT’, HEEAERRE 7 v F2Ar0fFx
DEECOTERCEVET 30 Br2RET 5. BAORBOTCA-Z T v F a2 fhER
ZOY DK, —EREER L CEUH»BEIr2BRBT oL iAEREAc & TH S,

AT, BRHEBHENCESE, 7T a tarodEd b3 —E20R S BOFRB L &
Ly Fhic ko THEZARERE T 3 HEEZTRT. B2, 20X aBRY X7 46%
KICRSFE OB 3> THEB L ko BBV AT LALHET v F 3L KDV TOEROHEY
FFe AHEE T v b I ABRROBAYERT 3 0CHERCEYTH L LELDLND,

Realizing Interoperability Testing on Formal Specifications

Koji OKADA
Computer Science Division, Electrotechnical Laboratory
1-1-4 Umezono, Tsukuba, Ibaraki 305, JAPAN

In the conventional protocol development, interoperability testing is a way to check whether
protocol implementations work poperly, or not. It is very hard to get certainty for the the
correctness of the protocol specification which was derived from the given service definition.

Based on the formal description techniques, this paper presents a method to synthesize
the description for the service behavior from the description for the protocol and to test
interoperability on the obtained description. We have realized it in a formal specification
language, OBJ|[2, 3, 4]. The paper also shows the outline of the test system and the results
of the experiments. The method introduced here would provide a very good conceptual
tool to reduce the total development cost.

1 Introduction

In protocol development, there is a phase to derive a
protocol specification from the given service definition.
it has been a crucial issue how we shall be confident of
the correctness of the derived protocol specification, i.e.,
that any implementations conforming the protocol spec-
ification would work, along with the underlying commu-
nication medium, as the service definition defines.

There are two ways to validate the correctness of pro-
tocols: protocol verification and interoperability testing.
Although protocol verification as an intention means to
prove its correctness mathematically, we at present can’t
prove the correctness of protocols but can only check
some desirable attributes of them, e.g., reachability, “
dead-lock free,” etc.[10, 5] Interoperability testing is the
more popular way for correctness validation[1, 12]. How-
ever, it is indirect and generally very much costly to get
certainty.

Some formal description techniques (FDTs) were develop-
ed[7, 8] in the late 80’s and have been believed to have
many advantages. In formal methods of protocol devel-
opment, if we could test interoperability using a formal
description for a protocol specification without any im-
plementation in early stages of development, it would
reduce the total development cost greatly.

This paper presents a method to synthesize the descrip-
tion for the service from the description for the protocol
and to test interoperability on the obtained service de-
scription. We have realized it in a formal specification
language, OBJ{2, 3, 4]. The paper also shows the outline
of the test system and the results of the experiments for
a sample protocol, the sliding window protocol{9].

Our experimental realization of an interoperability test
system in OBJ proves that the method introduced here is
very much advantageous as previously expected because
it is very easy, i.e., to require very little text.

2 Fundamental Concepts

This section explains fundamental concepts of the pa-
per’s subject.

2.1 Layer Structure

Based on the layer structure of network architectures,
our view for the constructs of each layer are described
in the Figure 1. Note that here specifications (or de-

scriptions) and their implementaions are strictly distin-
guished.

2.2 Protocol Verification

Given upper and lower service definitions S and M, ver-
ification of the protocol specification P is to prove that
the following expression is satisfied:

N

4 4
™ Y Y
s
P » P
" [m
p: protocol entity P: protocol specification for p
m: comm. medium M: service definition for m
s: service S: service definition for s

Figure 1: Constructs of a Layer

VpaP,YmaM : syn(p,m,p)< S

where “syn(p,m,p)” expresses some synthesized entity
with left and right protocol entities (PEs) and a commu-
nication medium, and “<” expresses conformity.

2.3 Interoperability Testing

Interoperability testing in the conventional methods is to
test the condition given in the above expression by using
some specific implementations p;, p;, and m; for protocol
entities and a medium. It is very much difficult to get
certainty of the correctness of the protocol specification,
not of the specific implementations, by testing for the
various combinations of the three elements of the service.

In this paper, being oriented to a formal method for
protocol development, we trys to realize interoperability
testing on formal descriptions, i.e., without any imple-
mentations. It can be done in an early stage of the whole
processes and would reduce the total development cost
greatly because it would prevent unnecessary feedbacks.

3 Interoperability Testing on
FD

The method of interoperability testing on formal de-
scriptions, introduced in this paper, is based on the two
following ideas:

o the universal communication entity with a pair of
bi-directional ports

e parameterization for synthesizing descriptions in
formal languages.

3.1 Universal Entity

We notice many entities to communicate with others
have a form of a body and two bi-directional ports. We

call it the universal entity with a pair of bi-directional
ports. A PE is connected with a user and a medium,
and a medium is connected with left and right PEs, via
their pairs of ports. Furthermore the service which is
constructed with two PEs and Med is also regarded as
a univeral entity connected with left and right users via
its ports (Figure 1).

This view is very much beneficial, according to which
we can treat various entities uniformly. For exmple, if
we have a test system for the universal entities in a for-
mal language, it can be used in testing protocol entities
and also in testing the service. The test system in OBJ
presented in the next section is originally made for the
universal entities and this paper shows an application of
its to interoperability testing.

3.2 Parameterization in FDTs

In most formal languages including programming lan-
guages, the concept of the parameterization is adopted,
implicitly or explicitly. This is 2 programming technique
to save text and thought by abstraction .

A parameterized description is a framework-like one hav-
ing a body which is previously described with formal
parameters. Instantiating a parameterized description
with actual parameters, we can obtain a rather compli-
cated description easily. It is important that the text
required for instantiation is very shorter than the resul-
tant description.

In our formal method for protocol development, the pa-
rameterized description is invented to describe the ser-
vice behavior whose parameters are the left and right
PEs and the communication medium. Provided that
the parameterized description was previously prepared,
specifiers have to write only one sentence to instantiate
it with actual parameters of given protocols and medium
in order to obtain the description of the behavior of the
service. It enables us to realize interoperability testing
on formal descriptions very economically.

4 Test System in OBJ

4.1 In What an FDT?

By the discussions in the preceding sections, the base
language for an interoperability test system are required
to satisfy the conditions:

¢ to have parameterization facilities,
e to be able “to be executed”.

We have not chosen any among FDTs developed for pro-
tocols but adopted an algebraic specification language
OBIJ[2, 3, 4] by customizing it to describe distributed
systems.

In OBJ every concept in a problem domain must be ex-
pressed uniformly in the form of a data type (set of val-

ues) and operators on them, and consequently the lan-
guage is purely functional, which is different from the
so-called FDTs. It may seem very restrictive and not
capable of describing communication protocols. OBJ,
however, indeed can express dynamic behaviors of proto-
cols and furthermore has advantages to support protocol
development with its several features, such as the sim-
ple but universal language constructs, modularity and
hierarchical structures, parameterization, and clear se-
mantics.

4.2 Algebraic Language OBJ

OBJ|[2, 3, 4] is a specification and/or programming lan-
guage based on the algebraic specification technique for
abstract data types. An OBJ text is a sequence of mod-
ules , most typically objects . Each object defines one
or more new sorts of data and operators on them and
may refer to some preceding objects. An object’s syntax,
therefore, consists of declarations of

1) its name,

2) objects referred to,

3) its new sorts and operators, and

4) equations which give semantics to operators.

OBJ provides the parameterization mechanism which fa-
cilitates to construct hierarchical specifications in a dis-
ciplined way[3]. The objects TRIV, SEQ and SEqInt be-
low illustrate parameterization. The parameterized ob-
ject SEQ[X] defines the sequences of sort E1t of object X,
which would be designated by an actual parameter. The
theory TRIV prescribes the conditions for the parameter
X. Object SEqInt is an instantiation of SEQ[X] by object
INT(eger) and defines the sequences of integers.

th TRIV is sort El1t . endth
obj SEQ[X :: TRIV] is --- sequence of X
sort Seq . pr BOOL .

op . : -> Seq .

op (L .) : Elt Seq -> Seq .

op _$. : Seq Seq -> Seq .

op _¥_ : Seq Elt -> Seq .

vare S §’ : Seq . var E :

eq: (. $8) =5,

eq: (ES) $S’=E (S$5’) .

eq : SEE=S$ (E.) .
endo

=== nil sequence

=== cons op.

=== concat.

=== Elt to end
Elt .

obj SEqInt is pr SEQ[INT] . endo
—--- sequence of integers

Besides its declarative semantics of the Initial algebra
semantics, OBJ has also an operational semantics based
on rewrite rules. The OBJ executor reduces a given
term into its normal form by interpreting equations as
left-to-right rewrite rules. In the above description, for
example, the term ((1 .) $ (2 3 .)) in SEqInt will be
reduced to (1 (2 3 .)).

How to describe distributed systems in OBJ is an inter-
esting problem and would be various for specifiers. Our
description technique to specify dynamic behaviors of
distributed systems in OBJ cannot explained here be-
cause of lack of space but done in detail in {11].

4.3 Interoperability Test System

This subsection is the prime part of the paper which
shows an interoperability test system in OBJ by using
the OBJ’s parameterization mechanism.

In the following, explanations for many subordinate mod-
ules are omitted.

4.3.1 Structure of the Description

Object LAYER is a parameterized object whose parame-
ters are two PEs and a medium. Theories PE and MEDIUM
defines necessary conditions for actual parameters as a
PE or a medium. The relationship among the modules
is shown in Figure 2.

LAYER ParameterizedObject
PE MEDIUM PE
'ormal Parameters
1 Instan| kiation f
PEx MEDIUMz PEy
Actual Parameters

Figure 2: Relationship among Modules for LAYER

Similarly, object SYSTEM is parameterized, whose pa-
rameters are two users and a layer. Theories USER and
LAYER-TH prescribe parameters. Object SYSTEM has been
introduced in order to give definitions of behaviors of the
layer, so that the two users here are objects only holding
input and output sequences.

After completing this framework-like description, we pro-
vide LAYER with PEs’ and medium’s descriptions of a
protocol in question, which results a layer’s description.
The constructed description for a layer is provided for
SYSTEM as a parameter. An example of the instantiations
for a protocol is shown at the last of this subsection.

4.3.2 Layer as a Parameterized Object

The parameterized object LAYER forms a big portion of
the description. Its text has about 200 lines. Using
constructs enumerated in theories PE and MEDIUM, dy-
namic behaviors among them occurred within the layer
are completely described although we don’t know con-
cretely what the actual parameters for PE and MEDIUM

are. In this sense, theories and their comstructs play
their roles of interfaces between the abstract, i.e., theo-
ries, and the concrete, i.e., actual parameters, very well.

Because LAYER’s behaviors have been generally defined,
we need not consider specific protocols in each protocol
development. It suffices only to provide LAYER with the
specifications in question for PEs and a medium. The
instantiation of LAYER will automatically represent the
expected service. This is the primary advantage of pa-
rameterization, or generally, abstraction.

obj LAYER [X Y :: PE , Z :: MEDIUM] is
~-~ parameterized object for layer
sort Layer . pr TIME .

op init-layer : -> Layer . ~-- init. layer
op layer : Pe.X Pe.Y Medium Time -> Layer .
==~ to construct layer
Layer -> Layer .
--~ to make transition
: Time Layer -> Layer .

op l-transit :

op 1l-transitil
op data-to-pel :
InputFromUser Time Layer -> Layer .
op data-to-pe2 :
InputFromUser Time Layer -> Layer .

eq l-transit(layer(PE1, PE2, m(PT1, PT2), T))
= if (fin (PE1) and fin (PE2)
and fin (PT1) and fin (PT2))
then layer (PE1, PE2, m (PTi, PT2), T)
else 1-transitl (
proceed-time-in-layer (
out-to~m~time (PE1),
out-to-m-time (PE2),
out-time (PT1),
out-time (PT2), T),
layer(PE1,PE2,m(PT1,PT2),T)) £fi .
eq l-transitil
(T’, layer(PE1, PE2, m(PTi, PT2), T))
= if ... then . else ... fi .
endo

Sort Layer has a constructor operator layer whose ar-
guments are Pe.X, Pe.Y, Medium, and Time. The oper-
ator init-layer designates one of the terms of Layer
as an initial one, which is layer(init-pe, init-pe,
init-med, 0) by its equation.

4.3.3 Whole System

Object SYSTEM is defined in the same manner as LAYER,
i.e., it is a parameterized object having three parameters:
the left and right users and the layer. Theories USER
and LAYER-TH are defined to specifying conditions for
parameters.

obj SYSTEM [A B :: USER , C :: LAYER-TH] is

~-- object for system
. sort SysLog . sort System . sort Log .
op sys : User.A User.B Layer Time ~> System .
== to construct system

op slg : System Log -> SysLog .
=== to construct syslog
op transit : System -> System .
==~ to make system proceed
op s-transit : SysLog -> SysLog .
--- to make syslog proceed
endo

The important sort in this object is System which is a set
of the systems’ configurations. Its terms have the form
of sys(left~user, right-user, layer, time). Oper-
ator transit makes a system proceed to its final state
as;

transit(sys(lu, ru, 1, t))
=mm) sys(lu’, ru’, 17, t’)) .

Auxiliary sorts and operators are also declared mainly to
facilitate logs. Sort Log is a record of changes of system’s
confignrations and SysLog is a pair of sorts System and
Log. It is necessary to keep histories of transitions by
logs to analyze behaviors of layers.

Object System represents the whole parameterized de-
scription which is generally applicable to any protocol
in any layer. To obtain an actual description for a par-
ticular protocol, there remains the following steps:

1. to obtain, or describe, objects PEx and MEDIUMx
for the protocol and medium specifications which
satisfy the conditions by theories PE and MEDIUM,

2. to instantiate LAYER with PEx and MEDIUMx and
name it LAYERx,

3. to obtain objects USERx and USERy for the users
which satisfy the conditions by theory USER, and

4. toinstantiate SYSTEM with USERx, USERy and LAYERx
and name it SYSTEMx.

4.3.4 Instantiations with Actual Protocols

The last steps of description are to instantiate LAYER
with actual protocols and medium and hence to instan-
tiate SYSTEN with actualized LAYER. We here show such
a procedure done with the sample protocol so called the
sliding window protocol (SWP)[9]. Its protocols and
medium have been described as TRANSMITTER, RECEIVER,
and SWP-MEDIUM in OBJ.

make SWP-LAYER is

LAYER [view to TRANSMITTER is
sort Pe to Transmitter endv,
view to RECEIVER is
sort Pe to Receiver . endv,
view to SWP-MEDIUM is

sort Medium to SwpMedium . endv]

endm

make SWP-SYSTEM is

SYSTEM [view to TRANSMITTER-USER is
sort User to TramsmitterUser . endv,
view to RECEIVER-USER is
sort User to ReceiverUser . endv,
view to SWP-LAYER is
sort Layer to Layer . endv]

endm

An OBJ construct view makes sorts and operators in
theories correspond to those in actual parameters.

Object SWP-SYSTEM, the result of these two consecutive
instantiations, is the description for the SWP service
which protocol specifications TRANSMITTER and RECEIVER
and medium description SWP-MEDIUM realize in combina-
tion.

It should be noted that if

e we had already had the OBJ parameterized de-
scription whose top object is SYSTEM, and

¢ OBJ descriptions TRANSMITTER, RECEIVER, and SWP~
MEDIUM for the SWP protocols and medium had
been supplied independently,

only two make sentences shown here are required to write
in order to obtain the interoperability test system for the
SWP protocol, which is very much less costly.

4.4 Execution and Its Results

As briefly mentioned in section 4.2, the OBJ system has
a facility (the executor) to reduce a given term into its
normal form by interpreting equations as left-to-right
rewrite rules.

In the case of SWP, sort SysLog in object SWP-SYSTEM
represents the whole system configurations and operator

s-transit : SysLog -> SysLog

proceeds a SysLog to a stable one and yield it as its
answer. This means that, letting the executor to reduce
term s-transit(SysLog) for a certain SysLog, we can
simulate how the SWP system goes on. By investigating
the result of reduction which contains system Logs, we
can know many things about both the functions of the
SWP service and its internal behaviors.

reduce in SWP-SYSTEM :
s~transit(
s1lg(sys(t-usex(
Tinit ; is(in-u((ut(’datai1)),1)) ;
is(in-u((ut(’data2)),3)) ;
is(in-u((ut(’data3)),5)) ;

is (in-u((ut(’data10)),19))),
r-user{Rinit), init-layer, 1),
log))

result SysLog:
slg(sys(t-user(Tinit),
r-user(Rinit ;
os(out-u((ur(’data1)),10)) ;
os(out~-u((ur(’data2)),12)) ;
os (out-u((ur(’data3)),34)) ;
os (out-u((ur(’data10),250))),
layer(

1(sys(t-user(Tinit ;

This is the output of an execution in SWP for a sample
data. We can know that transmission of ten data was
successfully terminated at time 258. Besides the func-
tions of the service, performances can be also examined
by checking times when data emitted and received, exe-
cution terminated, and so on.

Furthermore, iterating performance testings with pro-
tocol parameters changed, experiments are possible to
approximate their desirable values. Becanse the window
size of the transmitter and the time length for time-
outs for data re-transmission are important parameters
in SWP, we executed testing for various values for them.

Although interoperability testing on formal descriptions
shown in this section may not be able to replace conven-
tional in the actual environments, we are convinced that
it is a very strong conceptual tool for protocol develop-
ment, especially in the design stage.

5 Concluding Remarks

We have introduced the idea of interoperability testing
on formal descriptions. It can be realized by synthe-
sizing the description for the service from the protocol
specification at a lower cost. A test system has been
developed by the auther in the OBJ language.

In the experimentsin the sliding window protocol (SWP),
the author has made various modifications on SWP and
examined them. In the original and simplest descrip-
tion, the parameterized one for the whole system is of
length of 1089 lines, the actual parameters for SWP’s
PEs and medium of 1542 lines, and instantiation of 116
lines. ! Only the text for the instantiation is necessary
to be written for starting interoperability testing upon
each protocol of interest.

This systematic method to obtain service descriptions
and to realize test systems is expected to reduce protocol
development cost greatly.

1They contain many empty lines for readability

This paper has presented a way to easily synthesize the
description for the service. Protocol verification should
be managed to prove that such a service description sat-
isfies all requirements stated in the service definition.
This is a more lucid explanation for protocol verifica-
tion than conventional ones based on natural language
statements. It is a future work of ours to establish pro-
tocol verification concepts and methodology in a formal
method.

Acknowledgements

This work was supported by the national R&D program
“Interoperable Database Systems”.

References

[1] N. Arakawa, M. Phalippou, N. Risser, T. Soneoka,
“Combination of Conformance and Interoperability
Testing,” Proc. of Fifth International Conference on For-
mal Description Techniques, (FORTE'92) pp. 389-419,
1992.

[2] K. Futatsugi, J. A. Goguen, J.-P. Jouannaud,
J. Meseguer, “Principles of OBJ2,"” Proc. of 1985 Sym-
posium of Principles of Programming Languages, ACM,
pp. 52-66, 1985.

K. Futatsugi, J. A. Goguen, J. Meseguer, K. Okada,
“Parameterized Programming in OBJ2,” Proc. of 9th
International Conference on Software Engineering, IEEE
pp. 51-60, 1987,

J. A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi,
J.-P. Jouannaud, “Introducing OBJ,” Technical Report
SRI-CSL-92-03, SRI International, Computer Science
Lab, 1992, To appear in J. A. Goguen, editor, Applica-
tions of Algebraic Specification Using OBJ, Cambridge
University Press.

G. J. Holzmann, “Design and Validation of Computer
Protocols,” Prentice Hall, International Edition, 1991.

ISO/IEC, “Information Processing System - Open Sys-
tems Interconnection - Estelle - A Formal Descrip-
tion Technique Based on an Extended State Transition
Model,” ISO 9074, 1989.

[7] ISO/IEC, “Information Processing System - Open Sys-
tems Interconnection - LOTOS - A Formal Description
Technique Based on the Temporal Ordering of Observa-
tional Behaviour,” ISO/IEC 8807, 1989.

ISO/IEC, “Information Processing System - Open Sys-
tems Interconnection - Guidelines for the Application of
Estelle, LOTOS, and SDL,” ISO/IEC TR 10167, 1992.

[9] R. E. Miller, “Protocol Verification: The First Ten
Years, the Next Ten Years; Some Personal Observa-
tions,” Proc. of Protocol Specification, Testing and Ver-
ification, 1990.

K. Okada, K. Futatsugi, “Supporting the Formal De-
scription Process for Communication Protocols by an
Algebraic Specification Language OBJ2,” Proc. of 2nd
Int'l. Symposium on Interoperable Information Systems,
INTAP, pp. 127-134, 1988.

O. Rafiq, R. Castanet, “From Conformance Testing to
Interoperability Testing,” Third International Workshop
on Protocol Test Systems, p. 15, 1990 .

[3

4

L

5

)

6

-

B

A

[10]

(11

