YRFLYTRY 2T &

PR VDY NP S SN

TINF AT 4 TBEESBLE 1317
(1995. 12. 1)

Replica Control Protocol Based
on Domain Leader Concept

Kenji Nakamura T, Yohtaro Miyanishi } , Fumiaki Sato T and Tadanori Mizuno t
t Shizuoka University 1 Mitsubishi Electric Corporation,
3-5-1 Johoku, Hamamatsu, 432, JAPAN 7-10-4 Nishigotanda Shinagawa, Tokyo, 141, JAPAN

There are several algorithms of replica management in distributed database system, all it present the similar problem
in trade-off of performance issue between read and write. Beside this problem, the available algorithms do not maintain
the performance in system with great number of replicas. With the advance of technology, the utilization of replica in
great scale tend to be important subject principally in system that involve multimedia application.

Our domain-leader algorithm have as objective to manage great quantity of replica maintained the reading
performance similar to primary-copy and writing performance superior to quorum-consensus algorithm and promote
flexibility to facilitate the concurrency execution of transaction in mobile system.

In addition, domain-leader improve the availability of system in occurrence of fail using the concept of priority and
majority. In this paper, we present our domain leader algorithm, how the consistency is maintained between replicas,
the performance comparison showing through simulation the domain leader and other two algorithm cited above, the
future directions of research.

RAA Y —Farvl bERAVWE
BRIGHE 0 haL

mA T BT REARERD (e Bt kEFBANT
THEAETER ! =EDHEN

PSEDBEBIEE ST b2z) — K/F A MEED F— FX7HERH 5. T, SRENE DL
EASMICETHAMELH 5. BIE, HEBENOEBRICLIVKRBOT—FE2RITATATATTSY
e a v ERWB VAT ARKEL LEIT B I N, SROBMICAHIETE S0 b a VHELEICR
HLBbh3.

FaDRBLE FAL VY —FTAIY XLESROBEREHRL L, HERE SERTRAERZRSZ
LEEMETE. BB, ARX T RAL VY —FTATY XAORN, BB TO—BEORE, ko
FATY Xh L OMRELE, SERBAROXL, “hhbOHRMELER~S.

I Introduction
With the advance of technology, where every day the
network is more and more rapid and the cost of resources

In this paper we considerate the transaction as a
primitive operation of reading and writing, where read
mean retrieve of data; write mean operation that perform

is every time more cheap, as consequence the use of
replica in great scale tend to improve.

Replica control protocol is used to hold the consistency
of the data among the replicas and to control the access in
the replicas in distributed databases. Transaction [10] are
frequently effectuated in each site of the replicas, and to
maintain the consistency of data, this transactions are
propagated to other replicas.

There are several algorithms of replica management
which the more known is primary-copy method [2] and
quorum-consensus method [1, 3]. Moreover exist other
algorithm as hybrid schemes this two[4, 5, 6, 7, 8].

the retrieve of data, process and perform writing, i.c.,
operation of updating; the site is the node that contain the
replicas of data.

I1. Motivation and Goals

The two algorithm mentioned above, not satisfy
completely in performance of reading and writing both at
the same time. Other problem presented is that this
algorithms has been developed within of limited network
environment where trade-off of performance and cost was
great problem, i.e., the network communication was slow
and the resources was costly, the algorithm not foresee the
system with great number of replicas. The flexbility fault

of this algorithm also is a problem at to be considered. If
have a system which each site have several characteristic
of reading and writing, the algorithm fit all system to
support more reading or fit all system to wri-ting,
compromising the general performance of system.

We algorithm objectify to resolve this problem
introducing the concept of domain-leader which have
next goal:

1) Ensure graceful degradation of performance in
system with great number of replica;

2) Reduction of communication cost between replicas;

3) promote high availability in moment of fail.

Our research search solution and goals considering that
each site have storage capacity, CPU and I/O; the cost of
data storage is uniform to all sites; the network topology
is ignored considering that network is all connected; all
site contain a copy of data; the local databases design is
ignored; only the data transmission is considered, i.e.,
locking and commit message and wait time is ignored;
the local cost of processing is ignored.

III. Domain Leader Model

In system with great number of replica, is plenty
complicated to maintain the consistency and correctness
of data between replica without to pain the performance,
principally in occurrence of fail.

Our domain-leader share the replicas in group which we
call of domain (fig.1). Each site within of domain is
attributed a numeric value of priority where site with
major number is considered as leader. This assure that in
situation of leader break, possibility other site with major
priority to assume the place of leader as sub-leader.

The priority value is kept in a table called of list_of site
(fig.2a) which contain all sites within domain with
respective priority value. This table is maintained in all
sites where the content is different for each domain.
Beside priority, is maintained in table a variable called
majority_of site which have the minimal number
operable of site in domain. This assure in the moment of
communication fail, where the sites is parted in
partitions, at least one partition to be operable and only
one site to be chosen as sub-leader.

All transaction executed by site is controlled by leader
and only leader can communicate with other leaders.
With this, domain-leader assure the concurrency execu-
tion of transaction within of domain and between other
sites.

In domain-leader is used other table called of list_of _
leader (fig.2b) which have the numeric value of priority
of all leaders which leader with major priority is chosen
as primary-leader. The primary-leader control the concu-
rrency execution of transaction between leaders similarly
as primary-copy method. The table list_of leader is

maintained in all sites of all domain unlike list_of site
which is alone to each domain. With use of priority,
domain-leader allow in moment of break of primary-
leader, other leader to be chosen as sub-primary-leader.

domain
leader

fig.1: Domain leader model.

As in list_of site, the table list_of leader contain a
variable called of majority_of leader. The concept of
majority besides treatment of fail, also is used to improve
the response time between leaders. That is, when primary-
leader through multicast seek the approval of majority of
leaders, not is needed the response of all sites.

Besides this tables, we attribute to all sites a variable
called of situation_of site which present two state, active
and passive. This variable is used to avoid the overload in
occurrence of fail, i.e., the site inaccessible by leader or by
primary-leader, site is put in passive situation. The passive
site is passed over by other sites, and only is returned to
active state when site can communicate with leader.

Site(x) | priority Leader(x)| priority
sx1 psx1 Ix1 pix1
sx2 psx2 Ix2 pix2
sx3 psx3 Ix3 plx3

Sx pSx Lx pLx
majority| mSx majority | mLx

Ix: leader that have data x

plx: priority of Ix

mLx: majority of Ix in all
replicas

sx: site that have data x

psx: priority of sx

mSx: majority of sx in
domain

fig.2: Table of list_of_site and list_of_leader.

In domain-leader we use to all communication between
sites the 2PC (two phase commit protocol), 2PL (two
phase lock) [9] to all operation of reading and writing.
Finally, is used the file logT to maintain the consistency at
moment of recovery after fail.

We explain in following with more detail how is
proceeded the transaction when performed by clientin one
ofsites.

A. Behavior insite

When an operation of reading of the referenced data-
item x is happened in site which not is leader, the
transaction T is executed as showed below:

leader(x) = choose(list_of_site(site?(x)));
if site(x) not in list_of_site(x) /*site(x) = current site accessed*/
then access directly the leader;
else begin site(x) = site;
read(site(x), version(x));
send(leader(x), site(x), version(x), T);
version_of_sitc(x) = version(x);
receive(leader(x), value(x), version(x), T);
if version_of_site(x) = version(x)
then read(site(x), value(x));
else begin write(site(x), value(x), version(x));
write(site_logT, "actualized”, T);
end;
end;

fig.3: Behavior in site for read operation.

The site?(x) is a function that return a list contained all
the sites of the referenced data-item x within of the
domain. We frequently use the word within of the
domain to remember that access not is made in all sites.
Don't forget too that the leader is simply a site which
have the higher priority compared with others. We use
the word priority only to define the choice order of the
leader and primary-leader.

The function choose(list_of_site(x)), choose the leader
within of list_of site to the data-item x accord with the
priority. The choice also can vary accord with the
condition of network, that isithe site or leader or
communication can break for any fail. In this case, an
other site with the higher priority but less than leader can
be chosen as sub-leader. We explain afterwards with
more detail the treatment during and after of fail.

If the site accessed not have the referenced data-item x,
the access is made directly in the leader, if leader is
locked, is waited until the unlock of leader. If the data x
is founded in the proper site, is sent the version of data
of site to the leader. When the version is devolved by
leader is equal the version of local site, is read the value
of x in local site. Else, the site is actualized with the new
value sent by leader.

In following, is shown how is made the transaction of
write request.

When write request is arrived in site, it send to the
leader the message that want execute the writing. In
receiving the response of the leader that can proceed, is
sent the new value. Until receive the response of success
or not of transaction, the value of data is written in a not
volatile temporary disk [10] how order the 2PC. Note that
the operation of writing is generally executed
subsequently after of reading, but also can happen after a

some time. In this case can be necessary the new search of
leader of data-item x in list of site and after this, is sent the
new value together with the version of data of transaction
executed. Case transaction was executed over the version
not actualized of data, the new value is read from leader
and subsequently is made the reprocess and the writing.
Upon receive commit message from leader, is written
definitively in site the new value of data item x together
with the new version.)

version_of_site(x) = version(x);
send(leader(x), "prepare”, T);
receive(leader(x), message, T);
if message = "prepared”
then begin send(leader(x), site(x), value(x), version(x), T);
receive(leader(x), message, T);
if message = "commiitted”
then if site(x) in list_of_site(x) then
begin add 1 to version(x);
write(site(x), value(x), version(x));
end;
write(site_logT, "committed”, T);
else write(site_logT, "aborted”, T);

fig.4: Behavior in site for write operation

B. Behavior in leader

The leader is always involved in concurrency execution
of events between sites and between leader to maintain the
consistency and correctness of data. This events are
performed how follow.

When the leader receive the read request of site, verify if
the version of data of site is actualized or not activating
the lock(x). If the version is equal, is immediately made
the unlock(x) and a message is sent to site to indicate that
data is actualized. Else is sent to site a new value of data-
item x. Note that lock(x) and unlock(x) is a function
which respectively lock and unlock the leader of
referenced data-item x.

When the operation of reading is executed by proper
leader, is verified if datais in lock or not. If is in lock, is
waited until the unlock; else is read normally activating
the lock and after the ending of reading is made the
unlock. The request also can be sent by site that not have
the data. In this case is treated as the request of proper
leader.

Upon reception of write request performed by site, the
leader will seek the primary-leader in leader?(x) through
of choose(leader?(x)); leader?(x) is a function that return a
list contained all of leaders of data-item x in priority
order. Thereafter the primary-leader to be chosen, leader
will send the message to primary-leader to indicate that is
ready to write. At receive the message indicating that can
proceed, leader will send the new value of data to the
primary-leader and after response of commit, leader is

actualized. If the request was sent by site, then leader will
send a message indicating the success of transaction to
site. For facilitate the reading, we assume here that all of
operation of reading and writing in the leader is made the
lock, and unlock after the ending of transaction.

when receive read request from leader or othersite which not
have the data;
read(leader(x), value(x), version(x), T);
if site(x) != leader(x) then send(site(x), value(x), vers.(x), T);
when receive(site(x), version(x), T);
version_of_site(x) = version(x);
read(leader(x), version(x));
if version_of_site(x) = version(x);
then send(site(x), version(x), T);
else begin read(leader(x), value(x));
send(site(x), value(x), version(x), T);
end;
when receive(site(x), value(x), version(x), T);
primary_leader(x) = choose(leader?(x));
send(primary_leader(x), "prepare”, T);
receive(primary_leader(x), message, T);
if message = “prepared"” then
begin send(primary_leader(x), value(x), T);
receive(primary_leader(x), version(x), message, T);
write(leader_logT, message, T);
if message = "committed” then
begin write(leader(x), value(x), version(x));
if site(x) not equal leader(x)
then send(site(x), "committed”, T);
end;
end;
when receive(primary_leader(x), message, T);
if message = "prepare”
then send(primary_leader(x), “prepared”, T);
when receive(primary_leader(x), value(x), version(x), T);
send(primary_Jleader(x), "received", T);
receive(primary_leader(x), message, T);
if message = “committed”
then begin write(leader(x), value(x), version(x));
write(leader_logT, “committed", T);
end;

fig.5: Behavior in leader.

When the request of writing received by leader has been
sent by primary-leader, leader will send a response
advising that is ready to receive the data. In receiving the
new value of data, the leader is actualized and as soon as
is sent to primary-leader the response of success of
transaction.

C. Behavior in primary-leader

In primary-leader, the treatment of operation of reading
is performed similarly how in leader. The writing is
proceeded how showed down:

Upon receive the request of writing of leader, primary-
leader will do the multicast of that want proceed the

writing for the others leaders which is in list-of-leader of
data-item x. Yonder leader, the request also can be of
proper primary-leader or site which not have the
referenced data x into domain. In this case, the primary-
leader will do the multicast for all leaders.

when receive(leader(x), msg, T) or receive(site(x), msg, T);
if msg = "prepare” then
begin
list_of_leader(x) = leader?(x);
multicast(leader(x), list_of_leader(x), "prepare”, T);
leader_contacted(x) = receive(leader(x), message, T);
if leader_contacted(x) >= leader_majority(x) then
begin
send(leader(x), "prepared”, T);
read(primary_leader(x), version(x));
version_primary_leader(x) = version(x);
when receive(leader(x), value(x), version(x), T);
if version_primary_leader(x) not equal version(x)
then the value received by leader is reprocessed;
multicast(leader_contacted(x), value(x), T);
leader_contacted(x) = receive(leader(x), msg, T);
if leader_contacted(x) >= leader_majority(x) then
begin
send(leader(x), "committed”, T);
add 1 to version(x);
write(primary_leader(x), value(x), vers.(x), T);
write(primary_leader_logT, "committed”, T);
end;
end;

fig.6: Behavior in primary-leader.

When the received response is majority of leaders, is sent

the new value of data to the leaders. Upon receive the
response of commit of majority of leader, the primary-

leader will perform definitive save the data in it. If request
was sent by leader, then commit message of transaction is
sent to the leader.

Our domain-leader use concept of majority to hasten

response time of writing, that is, the transaction of writing

is performed as soon as have confirmation of majority of

leaders. The consistency and correctness of data is
maintained verifying the version which data was
processed in the moment of arrival of write request of
leader in primary-leader. If data was processed above of
not actualized data caused by any fail, is sent the new
version to leader and after reprocess, is made the writing.

D. Behavior during fail and recovery

We explain here how domain-leader manage the replica
in moment of fail accordant the type or characteristic of

fail through of behavior. We consider here that when table
of list_of site is actualized, the new value in table is sent

to all sites communicable within domain. When
list_of leader table is actualized, the new value in table is
sent to all leaders communicable. The function multicast

is not used only to verify if the group is formed by
majority of leaders or sites, is also used to search the
active leader or primary-leader, principally in moment of
fail and recovery. We divide the type of fail in behavior
which is showed below:
1. When the leader or primary-leader is broken or
isolated for any fail, in moment of recovery:
a) the leader will do multicast to the other sites of domain
indicating that is ready sending the version of your data.
The message only is treated in sub-leader active. If the
data of leader is not actualized, then the sub-leader will
send the new value to leader. If have not response of
active sub-leader, the leader will verify if can
communicate with the majority of sites of domain.
b) If have response of majority of sites, then the leader
will reassume your function sending to all leaders
through of multicast that is active, together with version
of your data. The message of leader is treated only by
active primary-leader or sub-primary-leader. If the data
of leader is not actualized, then will receive the new
value from primary-leader.
c) Case adverse, the leader will communicate with
primary-leader active through of multicast. If is possible
the communication, then the leader assume that the sites
of domain are isolate and perform the behavior 1.b. Else
is conclude that the leader is isolated.

If the broken leader is fairly the primary-leader, repeat
the step 1.3, 1.b, l.cand 1.d.
d) The primary-leader will do the multicast to all leaders
indicating that is active. If have the response of majority
of leaders, the primary-leader will reassume your
function actualizing the list_of leader table.
2. When the site is broken or isolated, in moment of
recovery:
a) the site will do multicast to the other sites of domain
indicating that is ready sending the version of your data.
The message only is treated in leader active. If the data of
site is not actualized, then the leader will send the new
value to site. If have not response of active leader, the site
will verify if can communicate with the majority of sites
of domain.
b) If have response of majority of sites, then the site will
choose a site of major priority as sub-leader actualizing
the table list_of site and list_of leader. The sub-leader
will send to all leaders through of multicast that is active
together with version of your data. The message of leader
is treated only by active primary-leader or sub-primary-
leader. If the data of leader is not actualized, then will
receive the new value from primary-leader.
¢) Case adverse, the site will communicate with primary-
leader active through of multicast. If is possible the
communication with active primary-leader, then the site
assume that other sites of domain are isolated and

perform the behavior 2.b. Else is conclude that the site is
isolated.

3. When the leader do not achieve the communication
with primary-leader:

If no achieve to communicate with the majority of
leaders, the primary-leader wait until to get the
communication with majority. In this case is made as
behavior 1.

4. If leader do not achieve the communication with
primary-leader:

The leader will do the multicast to other leaders, and if
have response of majority, the leader will choose the
major priority as sub-primary-leader and the table
list_of leader is actualized. Case have not the response of
majority, the leader wait until to get the communication
with majority. In this case is made as behavior 1.

5. If site do not achieve the communication with leader,
then is executed as behavior 2.

IV. Comparison with other algorithms

We compare here, the communication cost of reading
and writing between the our domain-leader with primary-
leader and quorum-consensus method. In quorum-
consensus, we use the dynamic adjustment of reading and
writing quorum accordant the characteristic of system.

A. Communication cost

In primary-copy method, the processing of reading is
done in proper site accessed which the cost is maintained
zero, see fig.2. The writing is done for all sites saving the
current site.

In quorum-consensus, the cost of reading and writing
vary accordant the quorum definition. When the reading
quorum is defined as 1, the cost of writing is considered S
(total of sites or replicas), and when writing quorum is
considered S, the cost of reading is 1. In resume, we can
conclude that the medium of communication cost is
maintained in S/2 to reading and writing.

The domain-leader maintain the medium 1 in cost of
reading, due to access is done in proper site or in one
leader. The writing is done in site accessed and all leaders
where the cost is 1 + L(total of leaders). Note that the
number of leaders is less than S/2.

As result, the cost of domain-leader is better than other
two method in reading and writing.

|_method Read Write
primary-copy 0 S—1
M‘égg %ﬁl‘rﬁ%’l—?ﬁn{c’é‘ qsuorum) s/2 §,/2,,‘
gzo'_rrggn-leader 1 L+1

fig.7: communication cost between methods.

B. Simulation

We consider that the transaction events is arrived in
each site in poisson order and the number of replica as
100. In domain-leader we consider the number of leader
as 10 and for each leader we consider that exist 10 sites.
We simulate in term of 200000 seconds where is done
sampling at each 0.1 second time step. The comparison of
result is showed in fig.8, fig.9 and fig.10. The fig.8 show
the result of simulation when the number of read
transactions arrived in site is very large. The fig.9 show
the result when the transaction of write is superior than
read transaction.

response time Sec.

© Domain-leader
50f |- Quorum-consensus 1
45F | B Primary-copy

. Sandiluiieiid . . A
O .2 03 .04 05 .06 07 .08 .® .10

fig.8: read request response time when arrival
probability is 90%.

- Domain-leader

A Quorum-consensus|
B3~ Primary-copy

arrival prob.
1/Sec.

01 .02 03 04 05 .06 07 .08 .9 .10

fig.9: write request response time when arrival
probability is 80%.

In fig.10 is done the comparison using 10 replicas. Note
that when the number of replicas is great, the difference
of performance is more significant between domain and
other two methods.

Ires;onutimeSec.

T T T T T T T T T T

-©- Domain-leader
50 |- Quorum-consensus|
4 € Primary-copy

arrival prob.
1/Sec.

O @ 03 04 05 06 07 .08 .09 .10

fig.10: write request response time when arrival
probability is 80%(10 replicas).

V. Conclusion and Directionsfor Future R esearches

Through method of division of distributed databases sys-
tem in group which we called of domain, we achieves to
improve plenty the performance of response time, princi-
pally in system that involve great quantity of replicas. Our
domain-leader utilize two tables to maintain the con-
sistency of data and to hasten more the response time of
transaction execution. Our domain-leader show through
simulation, good results compared to other algorithms.
Principally in system that involve writing transaction.

Finally, due to our research is in initial phase, fault to
verify with more detail the performance issue principally
at time of system fail. The availability is a other topic that
will be studied with more detail. Proof that the problem of
bottleneck in leaders is despicable.

References

[1]1D.Gifford, "Weighted voting -for rep d data," in Proc. 7th ACM
Symp.Oper Syst. Princip., Dec.1979, pp.150-162.

[2]B.M.Oki. and B.Liskov, "Viewstamped replication: A new primary
copy method to support highly available dist. systems," in Proc. 7th
ACM Symp. Princip. Distrib. Comput. Aug.1988, pp.8-17.

[3]M.Ahamad, M.H.Ammar, and S.Y.Cheung, "Multidimensional
voting,” ACM Trans. Comput. Syst., Vol9, Nod, pp.399-431,
Nov.1991.

[4]M.Herlihy, "Dynanic Quorum Adjustment for Partitioned Data,"
ACM Trans. Database Syst., Vol.12, No.2, June 1987, pp.170-194.
[S]A.El Abbabi and S.Toueg, "Maintaining Availability in Partitioned
Replicated Databases,” Proc. Symp. Principles Database Systems

(PODS}, ACM Press, New York, N.Y., 1986, pp.340-351.

[6]S.Jajodia and D.Muichler, "Dynamic Voting Algorithms for
Maitaining the Consi y of a Replicated Database,” ACM Trans.
Database Systems, Vol.15, No.2, June 1990, pp.230-280.

[7]P.Triantafillou and D.J.Taylor, "The Location-Based Para-digm for
Replication: Achieving Efficiency and Availability in Dist. Sys-
tems,” JEEE Trans. on Soft. Eng., Vol.21, No.1, Jan.1995, pp.1-18.

[8]A.Nakajima, "Decentralized Voting Protocols and their
Communication Structures,” /EICE Trans. Inf. and Syst., Vol.E78-D,
No.4, April 1995, pp.355-362.

[9]P.Bemstein, V.Hadzilacos, and N.Goodman, Concurrency Control
and Recovery in D Systems. Reading, MA: Addison-Wesley,
1987.

[10])B.Lampson, "Atomic transactions”, in Lecture notes in Computer
Science vol. 105. Distributed Systems: Architec-ture and
Implementation. New York: Springer Verlag, pp.246-265, 1981.

