RNMF AT 4 THBEESEHME 76— 9
(1996. 5. 16)

Flexible Group Communication for Dynamic Membership Changes

Takayuki Tachikawa, Hiroaki Higaki, and Makoto Takizawa
{tachi, hig, taki}@takilab.k.dendai.ac.jp

Dept. of Computers and Systems Engineering
Tokyo Denki University

In distributed systems, the group communication among multiple objects is required to do the
cooperation. Kinds of group communication protocols have been discussed so far, which support the
reliable and ordered delivery of messages. In distributed applications like teleconferences, the membership
of the group is dynamically changed. For example, objects join and leave the group. If the group
membership is changed, every member object in the group is required to agree on the membership.
Furthermore, the messages sent by the member objects have to be causally delivered. In this paper, we
would like to present a group communication protocol which prov1des the causally ordered delivery of
messages while the membership is being changed.

A VR OBINEILICKT T 2 b b hnw I A — TiEE
)l BT RiE EE IR M
HEEB A TR S T2

v

DB X FLTE BROF T V= 7 F BUTEEELTTS DK, BROFT V=7 ECOIA—T
BREELELAS. ThEC, BehaZAr—7EBE e taArBdBRhTtey, e, BENT LI LS
BEAy e — PEREFBR I TV 3. %?%%OI5&%&@F%T&,tizz?}OMA,ﬁ%,17
Pz ' OEESKIY, ST DRV NERBELT S Ir—T DAy ASEROBECTLT, -
TOEL WA Y NERICOWTO/BELTMB L L, ZA—T7DELVWEEA 7 V=2 METAy - Y%A
RECERXT 280 EBL A3 KRATR, ZOEDOIA—TFRS v b 2 A RBRT 3.

objects be established so that the objects commu-

1 Introduction nicate with each other in the group. This type

Distributed systems are composed of multi-
ple computers connected by communication net-
works. In distributed applications like teleconfer-
ences and teleclassrooms [4], a group of multiple
objects have to be cooperated. The group com-
munication protocol is required to coordinate the
cooperation of the objects in the group.

Current distributed systems are based on the
client-server model. To support more reliable ser-
vices, a group of multiple server replicas support
the clients with the service even if some replicas
are faulty. Here, the messages sent by the clients
are multicast to the group of the server replicas.
This type of communication is referred to as mul-
ticast and is discussed in many papers [2,14].

While the multicast supports communication
between a client and a group of server replicas,
there is a requirement that a group of autonomous

of communication is adopted to teleconferences,
parallel processing, and routing processing in in-
ternetworking. In the group communication, the
following services have to be supported:

(G1) A message sent by the member object is re-
ceived by one or multiple destination mem-
bers in the group. ’

(G2) A member object in the group receives mes-
sages in the causal order (2].

In the group communications discussed by Tak-
izawa, Tachikawa, and Nakamura [9,10,15,16], the
membership of the group is fixed. That is, if the
membership is changed, the group is closed and
a new group is established again. In the telecon-
ferences, some new member joins the conference
and a member leaves the conference. Further-
more, some object may be faulty and may not
be communicated due to the network partition.

If the membership of the group is changed, ev-
ery member object has to reach agreement on the
membership, i.e. what objects are included in the
group. In addition, the messages sent by the mem-
ber objects have to be causally delivered to every
member objects in the group. By the group mem-
bership protocol, only and all the member objects
make agreement on the membership of the group.
In the papers [2,13], the membership protocols are
discussed. Reiter [13] discusses a centralized mem-
bership protocol where one coordinator object co-
ordinates the cooperation among the objects and
the data transmission is stopped during the exe-
-cution of the membership protocol. The protocol
is robust to the Byzantine faults of the objects by
enciphering the messages with digital signature.
These protocols assume that the network is reli-
able and the faulty objects can be detected by the
underlying system. In this paper, we would like
to discuss how to support the services (G1) and
(G2) without stopping the data transmission in
the presence of the membership change. Further-
more, we would like to discuss how to support
these services by using the distributed member-
ship protocol, i.e. no controller object exists. This
type of the group communication is referred to as
? flezible.”

In section 2, we would present a system model.
In section 3, we discuss changes of the group. In
section 4, we present the causal delivery. We dis-
cuss a membership protocol in sections 5 and 6.

2 System Model

A group G is composed of multiple objects Oy,
«es O { m > 2) interconnected by reliable high-
speed networks [Figure 1). Each object O; is given
to be a pair of data A; and collection II; of opera-
tions for manipulating A;. O; has a role R; in G,
which is specified in terms of operations, i.e. R;
C 0;. O; can be manipulated through operations
in R;. The objects in G are cooperated.

group G

XX

Figure 1: Group

In this paper, we make the following assump-
tions.
[Assumptions]
(1) There is a reliable, synchronous communica-
tion link between every two objects. That

is, messages sent by each object are delivered
to the destinations in the FIFO order. Mes-
sages are neither lost, contaminated, nor du-
plicated. In addition, the transmission delay
is bounded to be § time units.

(2) Each object communicates with each other
through the communication network. That
is, there is no shared memory among the ob-
jects.

(3) The objects may stop by fault. No other
faults occur, i.e. no Byzantine fault [13].

(4) Network partitions may occur, e.g. due to
the faults of routers. O

3 Changes in Group
3.1 Complete group

We have to discuss the following points if a
group G is changed:

(1) who detects the membership change of G,

(2) how only and all the objects in G make agree-
ment on the membership of G, and

(3) how the messages sent by the objects are
causally delivered to the destinations in G
while the membership of G is being changed.

While ISIS [2] assumes that the underlying system
can detect the membership change, we assume
that each object detects the membership change in
G. For example, an object O; detects that another
O; is faulty if O; had not received any message in
predetermined time units. Here, O; is considered
to leave G. O; also detects that O; would like to
join G if O; receives the request from O;. Then,
O; informs the other member objects in G of the
membership change. Here, the objects may have
different views. That is, one object considers that
O; is a member of G but the other thinks not.

Each object O; in the group G has a view
view;(G) which denotes what objects O; perceives
are included in G. If G is not changed, every mem-
ber object of G has the same view. If O; is in G
or would like to be in G, O; € view;(G). If O; €
view;(G), O; is referred to as participated in G. If
0; € view;(G), Oj is referred to as recognized in
G by 0;. If O; € view;(G) and O; € view;(G), O;
and O; are referred to as agree with one another.
view;(G) is changed if O; finds the membership
change of G. If O; finds that an object Oy leaves
G, Oy, is removed from view;(G). Even if O; finds
Oy’s leaving, another O; may not find it. Thus,
every pair of views view;(G) and view; (G) are not
always identical. O; and O; have to agree on the
membership of G. If O; and O; are participated
in G and view;(G) N view;(G) # ¢, O; and O;
are referred to as linked. O; and Oy are relaied if
(1) O; and O; are linked and (2) O; and Oy are
related. Let rel(O;) be a set of objects which are
related with O;.

[Complete group] For every pair of objects O;
and Oj, a collection of objects G = rel(0;) is
referred to as complete group if O; € rel(O;),
rel(O;) = rel(0;), and view;(G) = view;(G). O

If a group G is incomplete, the objects in G reach
no agreement on the membership of G. That
is, some membership change occurs in G but no
agreement on the membership is made yet in G.

[Example] Suppose that a group G is composed
of three objects 4, B, and C. Here, each object
‘has the same view, i.e. view,(G) = viewg(G) =
viewc(G) = { 4, B, C }. Hence, G is complete
[Figure 2]. In Figure 2, a directed edge o — 3
denotes 8 € view,(G).

B ‘//'B\
7 4 .
4 \’\\C \D/

(1) complete (2) incomplete

Figure 2: Complete group

Next, suppose that an object D joins G. Here,
suppose that A regards D as a member of G, i.e.
viewa(G) = { A, B, C, D }. For example, A
receives a join request from D and D knows that
G includes A, B, and C. However, B and C do
not yet agree that D is a member of G. Here, {
A, B, C, D } is not complete since views(G) #
viewp(G) = viewc(G). Here, G is not complete.
.

3.2 Membership changes

The membership of the group G is changed if
some member objects leave G, new objects join
G, or member objects are faulty [Figure 3]. In
‘this paper, we assume that an object sends join
and leaving requests to G if the object would like
to join and leave G, respectively. If the member-
ship is changed, every object has to agree on the
following points:

(1) what objects join/leave the group, and
(2) when the objects join/leave the group.

Here, let O denote a possible set of objects. The
membership change is formalized to be a mapping
m-change: 2° x O — 2°. Here, suppose that a
membership of a group G is composed of multiple
objects Oy, ..., On, ie. G={01,..,0, } (n >
2).

[Membership changes]

(1) An object O, joins the group G, i.e. m-
change ({ O1, ..., On }, Ony1) = { Oy, ...,
Op, On41 }

(2) An object O; leaves G, i.e. m-change ({ Oy,
.}.., On }, O,) = { 01, aery O;_l, Oi+1, ey On

(3) A role R; of O; changes to R!, i.e. (R;:O;)
is changed to (R/:0;). O

In this paper, we would like to discuss the mem-

bership changes of (1) and (2). The change of the

role (3) is discussed in other papers.

Figure 3: Membership change

4 Causally Ordered Delivery of

Messages

Suppose that a group G is composed of mul-
tiple objects Oy, ..., O,,. Messages sent in G are
required to be delivered in the causal order — [2].
[Causal order] A message m; causally precedes
my (m1 — mz) iff
(1) an object sends m; before m,,

(2) an object sends m; after receiving m,, or
(3) there exists a message mg such that m; —
ma3 — my. O

Messages can be ordered by using the vector
clock [8,11,12]. In the system of the vector clocks,
the time domain is represented by a set of n-
dimensional vector.

[Vector operations] For every pair of vectors

VC’1 = (VCn, very Vc'lﬂ) and VC; = (VCzl,

vy VCay), the following relation holds:

(1) VC]_ = VC; iffVCli = VCQ,' fori= 1, vy T

(2) VC, < VG iff VCy < VCyifori=1, .., n
and VCy; < VCy; for some j.

(3) maz(VCl, VCQ) = (VC31, wrey VCgﬂ) Here,
VCs; = maz(VCy;, VCy;) fori=1,..,n. O

A vector time VC is given in a vector (VCy, ...,
VC,) where each element V C; represents an ob-
ject O; in a group G = (Oy, ..., Oy,). The scheme
of VC means which object in G each element VC;
represents. If the membership is changed, the
scheme also has to be changed.

O; has a variable VC; = (VCj3, ..., VCiy,)
denoting a vector time. VCy; is initially 0 for j
=1, ..., n. Each message m sent by O; carries a
timestamp m.VC = (m.VCy, ..., m.VC,). O;
sends and receives messages by the following rule.
[Vector clock rule]

(1) Each time O; sends a message m,
VCii:=VCy; + 1, mVC = VCy;

(2) Each time O; receives a message m from O;,
VC; := maz(VC;, mVC); O

The following proposition {8,12] on the vector
clock holds.

[Proposition] For every pair of messages m,; and
mg, my — mg iffl m.VC < mp.VC. O

The objects cannot detect message loss by us-
ing the vector clock [8,10]. Nakamura and Tak-
izawa [10] present a protocol by which message
loss can be detected and messages can be causally
delivered by using the sequence numbers of the
messages.

5 Membership Management

In this section, we would like to present a
method for detecting the membership change and
making agreement on the membership changed.

5.1 Timestamp scheme

We would like to discuss how to manage the
membership of a group G. The membership of
G is changed if a new object joins G, some object
leaves G, or some object is detected to be faulty in
G. If an object O; would like to leave or join G, O;
first notifies of it to some object O; in G. If some
O; is faulty in G, an object O; detects the fault
of Oj if O; had received no message from O; in
predetermined time units, i.e. timeout. Then, O;
initiates the membership protocol to make agree-
ment on the membership.

Here, let O be a set of possible objects. For a
group G, let G; be a membership of G, i.e. Gi
C O. The membership Gj of G is changed to
Gr+1 (C O) if the membership is changed. If G,
is changed to G4, all the objects in G4, have
to agree on Gj4i. That is, if every object O; in
Gp41 has the same view;(G), every object makes
agreement on the membership Gi43. Here, Gy is
referred to as the kth version of G. The scheme of
the vector clock VC; denotes the view view;(G) of
'0;. If O; detects the membership change, the vec-
tor clock scheme of VC; is updated in O; so that
the new scheme represents the new membership.
The dimension of the vector clock is changed ac-
cording to the update of the vector clock scheme.
For example, if a new object On 4.1 joins G, VC; of
O; is updated from (VCjy, ..., VCi,) to an (n +
1)- dimension vector { VCiy, ..., VCin, VCjni1)
). If the scheme of the vector clock is changed, the
.version of the vector clock is said to be changed.

Each version is identified by the version number. -

Each object O; has a variable ver; which denotes

the version number of V'C;. ver; is initially 0. ver;

is updated by the following procedure.

[Update of version number] O; receives a

membership change request m from O;.

(1) O; increments the version number by one, i.e.
very 1= ver; + 1.

.(2) The vector clock scheme of VC; is updated
so as to denote the new membership notified
by m. O

The version number of VC; is carried back in a

field m.ver of a message m. The messages with
the same version numbers can be causally ordered
according to the proposition.

Every object has to be synchronize to update
the version number. We take the distributed ap-
proach to synchronize the objects while Reiter [13]
takes the centralize approach. In the distributed
approach, there is no coordinator.

5.2 Detection of changes

The membership of the group G is changed if
the following events occur in G:

(1) an object Opnyy joins G.

(2) an object O; leaves G.

(3) an object O; is faulty or cannot communicate
with objects in G due to the network parti-
tion.

If On41 would like to join G, Oni sends a join
request to one object, say O; in G. Another ob-
ject which would like to join G may send the join
request to an object different from O;. Similarly,
if O; would like to leave G, O; sends a leaving
request to one object, say O; in G. The faulty
object O; is detected by an object, say O; if O;
had not received one message from O; for some
predetermined time units, say 25. Then, O; ini-
tiates the membership procedure presented in the
succeeding section.

5.3 Membership procedure

Each object O; has two kinds of variables, L;
and J;. L; denotes a set of objects which are de-
tected to leave G, and J; denotes a set of objects
which are detected to join G. Initially, L; = J; =
¢ and O; is in a normal state. While the mem-
bership of G is not changed, L; = J; = ¢. If O;
detects O;’s joining and leaving G, O; is added to
L; and J;, respectively. G — L; U J; denotes a
view view;(G) of O; in G.

[Membership procedure}

(1) If L; or J; is changed, i.e., O; finds the mem-
bership change, O; sends a membership mes-
sage m with L; and J; to all objects in G U
J;. O; is in an updating state.

(2) On receipt of the membership message m
with L; and J; from O;, O; manipulates L;
and Jj as I‘/j = Lj U L; and Jj = Jj U J;.
Oj is in an updating state.

(3) If L; and J; are changed, O; sends the mem-
bership message with L; and J; to all the
objects.

(4) If Oy receives the membership message with
Ly, and Jy from every object O in G — Lg
U Ji, and L, = Ly and Jp = Jp, then O
updates the membership of G to G — Ly U
Ji. The version number ver;, is incremented
by one. O; leaves the updating state and is
in a normal state. Ly := Ji := ¢. O

In an updating state, L; # ¢ or J; # ¢ in O;.
If O; receives the membership change request like
join and leaving or O; finds the fault of another
object, O; stores the events in the log while O; is
in the updating state. On transiting to the normal
state, O; updates L; and J; by using the events
in the log. Then, O; initiates the membership
procedure again.

It is noted that each object O; can send normal
messages in the updating state. That is, O; does
not stop the data transmission while the member-
ship procedure is being executed.

Figure 4 shows an example of a group G = {
0, ..., Os }. O3 would like to leave G and Og
would like to join G. O3 sends a leaving request
71 to O;. On receipt of r1, L; = {O3} and J; =
¢. O; sends the membership message m; with L;
and J; to all the objects, i.e. O;, O3, Oy, and Os.
Og sends a join request r; to Og. On receipt of 73,
Ls = ¢ and Js = ¢, and Oy sends the membership
message my with Lg and J; to all the objects. O,
receives m; and my. Here, Iy = Ly U Lg = { Og
}and J; = J; U J5 = { O3 }. Since L and J; are
changed, O; sends the membership message ms
with L and J; to all the objectsin G =G — Ly U
J3 ={ 0, 03, Oy, Og, Og }. On receipt of m3, Lg
and Je gets { O3 } and { Os } in Og, respectively
and Og sends the membership message to all the
objects. Here, every object in { Oy, O3, Oy, Os,
Og } has the same view.

5.4 Fault in membership change

Next, we would like to consider a case that an
object is being faulty in G when the objects are
in an updating state. Let us consider a case that
Og leaves the group G = { 04, O3, O3, Oy, O5 }
in Figure 4. First, suppose that the initiatior O
of the membership procedure is faulty. There are
the following cases:

(1) O, faults before sending the membership
message m;.
(2) O, faults after sending m;.

If the fault (1) occurs, the other objects do not
receive m;. Hence, the objects detect the fault of
O, by timeout. Then, one object, say O initiates
the membership procedure.

If the fault (2) occurs, the other objects detect
the fault of O; by timeout. After the objects O,,
O4, and Os agree on the membership { Oy, O,
O4, Og }, the membership procedure is initiated
to make agreement on { O,, Oy, Os }.

Next, let us consider the fault of the other ob-
ject than O,, say Oj. Suppose that O; faults be-
fore sending the membership message. The other
object, say O4 detects the fault of Oz because Oy
does not receive the membership message. After
receiving all the membership massages from Oy,
O4, Osg, the membership procedure is initiated to

exclude O, from the membership.

lime

Figure 4: Membership change

[Theorem] For every pair of objects O; and O; in
a membership of a group G, O; and O; have the
same version number if the membership procedure
terminates and O; and O; are included in the new
membership of G. O

6 Delivery of Messages

The dimension of the vector clock is changed
according to the membership change of the group
G. Hence, each object may receive messages with
different version numbers. Suppose that an object
O; receives two messages m; and my. If m; and
mg have different version numbers, i.e. m;.ver
my,ver, the vector times m;.VC and m;.VC
cannot be compared because they have different
dimensions of the vector clocks. Hence, O; cannot
causally order m; and my. If m;.VC and m,;.VC
have the same scheme, i.e. m;.ver = my.ver, O;
can decide how m; and m; are causally preceded
by comparing m;.VC and m3.VC. m; and m;
are ordered by the following rule.

[Ordering (O) rule] For every pair of messages
m, and my, m, precedes m, if the following con-
dition holds:

(1) if my.ver = ma.ver, m;.VC < my.VC,

(2) otherwise m;.ver < my.ver. O

[Theorem] m; causally precedes m; if m; pre-
cedes m; by the O rule. O

We would like to present a protocol to causally
deliver messages while the membership of G is be-
ing changed. Each object O; has a variable ver;
denoting the current version number. Suppose
that O; receives a message m from O;. There
are following three cases:
(1) m.ver > ver;.
(2) m.ver < ver;.
(3) m.ver = ver;.

We would like to consider the first case (1)
m.ver > ver;. This means that O; sends m to

O; after the version of the vector scheme is up-
dated while O;’s version is not updated yet. O;
stores m in the buffer. m is stayed in the buffer
until ver; is updated.

The second case (2) m.ver < ver; means that
O; sends m to O; before updating the vector clock
while O; has updated the vector clock. Thus,
O; may receive messages with older version num-
bers than O;. Here, O; receives messages from
the objects in the new membership. These mes-
sages have the same version number as ver;. Sup-
pose that O; receives a message m; from O; where
m;.ver = ver;. However, O; does not deliver m;
by the O rule because O; might still receive mes-
sages whose version number is smaller than ver;,
i.e. messages sent in the old version of G. Here,
O; stores m; in the buffer. If the following condi-
tion holds, the messages stored in the buffer are
causally delivered according to the O rule.

[Change of vector clock scheme] O; receives
a message with the new vector clock scheme from
every object in G. O

Finally, we would like to consider the case (3)

m.ver = ver;. In this case, O; delivers m in the
causal order by the causality rule.
[Theorem] By the membership protocol, mes-
sages are causally delivered without stopping the
data transmission even if the membership of the
group is changed. O

7 Concluding Remarks

In this paper, we have presented the group com-
munication protocol for maintaining the member-
ship of the group G and supporting the causally
ordered delivery of messages while the member-
ship is being changed. We have adopted the dis-
tributed protocol where there is no centralized
controller while ISIS takes the decentralized ap-
proach. By using the protocol, the objects can
reach agreement on the membership without stop-
ping data transmission. The protocol can ap-
ply to distributed applications where multiple au-
tonomous objects are cooperated with each other
like teleconferences.

References

(1] Agarwal, D. A., Moser, L. E., Melliar-smith,
P. M., and Budhia, R. K., YA Reliable Or-
dered Delivery Protocol for Interconnected
Local-Area Networks,” Proc. of IEEE ICNP-
95, 1995, pp. 365-374.

[2] Birman, K., Schiper, A., and Stephenson, P.,
“Lightweight Causal and Atomic Group Mul-
ticast,” A CM Transcations on Computer Sys-
tems, Vol. 9, No. 3, 1991, pp. 272-314.

[3] Comer, D., “Internetworking with TCP/IP:
Principles, Protocols and Architectures,”
Prentice Hall, Englewood Cliffs, NJ, 1988.

[4] Ellis, C. A., Gibbs, S. J., and Reln, G. L.,
“Groupware Some Issues And Experiences,”
Comm. of the ACM, Vol. 34, No. 1, 1991,
pp. 39-58. .

[5) Higaki, H., “Group Communications Algo-
rithm for Dynamically Updating in Dis-
tributed Systems,” Proc. of the IEEE IC-
PADS, 1994, pp. 56-62.

[6] Kaashoek, M. F. and Tanenbaum, A. S,
“Group Communication in the Amoeba Dis-
tributed Operating System,” Proc. of IEEE
ICDCS-11, 1991, pp. 222-230.

[7] Lamport, L., “Time, Clocks, and the Order-
ing of the Events in a Distributed System,”
Comm. of the ACM, Vol. 21, No. 7, 1978, pp.
558-565.

(8] Mattern, F., “Virtual Time and Global
States of Distributed systems,” Proc. of Par-
allel and Distributed Algorithms Conf., 1988,
pp. 215-226.

[9] Nakamura, A. and Takizawa, M., “Reliable
Broadcast Protocol for Selectively Ordering
PDUs,” Proc. of IEEE ICDCS-11, 1991,

[10] Nakamura, A. and Takizawa, M., “Causally
Ordering Broadcast Protocol,” Proc. of IEEE
ICDCS-14, 1994, pp. 48-55.

[11] Raynal, M., “About logical clocks for dis-
rtibuted systems,” ACM Operating Sysiems
Review, Vo). 26, No. 1, 1992, pp. 41-48.

[12] Raynal, M. and Singhal, M., “Logical time:
capturing causality in distributed systems,”
IEEE Computer, Vol. 29, No. 2, 1996, pp.
49-56.

(13] Reiter, M. K., “A Secure Group Membership
Protocol,” IEEE Trans. on Software Engi-
neering, Vol.22, No.1, 1996, pp. 31-42.

[14] Speirs, N. A. and Barretti, P. A., “Using Pas-
sive Replicates in Delta-4 to Provide Depend-
able Distributed Computing,” Proc. of IEEE
FTCS19, 1989, pp. 184-190.

[15] Tachikawa, T. and Takizawa, M., “Selec-
tive Total-Ordering Group Communication
on Single High-Speed Channel,” Proc. of
IEEE ICNP-94, 1994, pp. 212—219.

[16] Takizawa, M. and Nakamura, A., “Partially
Ordering Broadcast (PO) Protocol,” Proc. of
IEEE INFOCOM’90, 1990, pp. 357-364.

