RIVFAT 4 TBEESHNE 17-9
(1996. 7. 12)

FERHRBERVEBRIT F TRy D a—) 7

%MW %11E Mo B B E
KIRA%: EM TS HER R

T R—ADEFFRERETEEIRR T Da— Y 7 TATY ARV DML TS, 0P TERIL
II27RBERANERSCa—Y 7 TATY XAZNFoF 7 a Vv OFOEITHELERT D 2 2 BambhTV 328,
ZOHFETEW L 21 OBERYEH . Thbh, BRILS 5 7 OREICREEINRIH B 72 DF — & R— R 25T 5 8
BEBRTLE DL L, ERENDIETEY A M EER LOBEENOEBETERVBERGFETEZ L THE. —F,
REHWATHIE & PRIEN 3 T R TOBRERELICETCE /BN H D, ELRAFNIr—2BVTERDOF—
BR—A~DEERALBELBOE DI LITLY, BENLOEERTERET L/ LETHRIZLTVWS, £27T,
ZOFEEBRILS F7EAVETATY XACHEAL, BEAMERERILY T 7REL WS TASTY XL 2EBRT
. TOTHIY XA ELT, BICBRREZBRILY 7 7REOBESREMRTIZ LN TES. £FTIE, 20TV
Y ZLDEETLTY XAE WL ONOEBETRT. Fk, MOTATY XALEBTEZLicED, zOFALTY
X LDE MRS

A Scheduling Method using Serialization Graph Testing with Write
Deferring

Harumasa Tada ~ Masahiro Higuchi Mamoru Fujii

Depertment of Information and Computer Science, Faculty of Engineering Science
Osaka University

Several scheduling algorithms for preserving database consistency are known. It is known that Serialization Graph
Testing (SGT) achieves higher concurrency of transactions than other scheduling algorithms. However, it has some
drawbacks. First, operations are delayed for a long time to check the serialization graph. Second, executions produced
by SGT may be unrecoverable from some failures. On the other hand, under Optimistic Concurrency Control (occ),
all operations are executed immediately. Moreover, OCC produces recoverable executions by deferring substantial
write operations using local copies. Therefore, we applied OCC approach to SGT and propose an algorithm which we
call Serialization Graph Testing with Write Deferring (SGT-WD). SGT-WD overcomes above drawbacks of SGT. In
this paper, we show the basic algorithm and some variant of SGT-WD. We compare SGT-WD with other algorithms,
and show that it is more useful than those algorithms.

1. Time to check the serialization graph tends to be-
come long, and an execution of an operation is
delayed until the chec¢k completes.

1. Introduction

The concurrency control in database systems is an im-
portant problem and it is studied by many researchers.
We have studied the scheduling algorithm called Seri-
alization Graph Testing (SGT) and proposed a schedul-
ing algorithm for distributed database systems[4]. In
SGT, a scheduler maintains a graph called serialization
graph (SG) and schedules operations ensuring that the
5G remains acyclic. It is known that the SGT scheduler

2. Executions produced by SGT are not recoverable
from failures. The further restriction (for example
striciness in [1]) should be imposed to executions
in practical databases in which several types of
failures are possible.

achieves higher concurrency of transactions than other
scheduling algorithms[1]. However SGT algorithm has
some drawbacks, i.e.:

To solve these problems, we focused on schedulers
called certifiers[1]. A certifier permits all operations to
execute immediately. When it is about to schedule a
commit operation, it checks whether the execution in-
cluding the commit operation is consistent. If the ex-

ecution is inconsistent, some transactions are aborted.
Since certifiers schedule operations immediately, the pro-
cessing time of transactions is shorter than other type
of schedulers. On the other hand, conflicts are not de-
tected until the transaction is about to commit.

Optimistic Concurrency Conirol (OCC)(2], which is
one of certifiers, produces recoverable executions by de-
ferring substantial write operations using local copies.
We apply OCC approach to SGT and propose a new
algorithm. Since it defers write operations using local
copies, we call it Serialization Graph Testing with Write
Deferring (SGT-WD).

In this paper, we propose a basic algorithm of SGT-
WD. We compare SGT-WD with OCC and the usual
SGT certifier in some examples. Moreover we show some
variants of SGT-WD.

The paper is organized as follows. Section 2 describes
the serialization graph testing. In section 3, we de-
scribe the overview of certifiers and optimistic concur-
rency control. Section 4 describes the basic algorithm of
SGT-WD. We compare it with other algorithms in sec-
tion 5. Some variants of SGT-WD are shown in section
6. Conclusions appear in Section 7.

2. Serialization graph testing
2.1 Serialization graph

The property called serializability is widely used crite-
rion for ensuring the correctness of concurrent execution
of transactions. Intuitively speaking, for an execution
H, if there is a serial execution H, which contains the
same operations as H, and the relative orders of all pairs
of conflict operations in H and H, are the same, then H
is called serializable. The strict definition is described
in [1].

The serializability of a concurrent execution of trans-
actions is determined by analyzing a graph derived from
the execution, called a serialization graph(SG).

Definition 1: For a concurrent execution H, the seri-
alization graph SG(H) = (V, E) is a directed graph such
that
V = {T; | T; is a transaction that is already started
in H} .
E = {(T},T;) | there exists conflicting operations o; €
T; and o; € Tj such that o; is scheduled
before o; where T}, T; € V'} O

Figure 1 shows an example of a serialization graph. The
following theorem is shown in [1}.

Theorem 1: An execution H is serializable iff SG(H)
is acyclic.]

2.2 Serialization graph testing

Serialization Graph Testing (SGT) uses a serialization
graph in order to verify the serializability of concurrent
execution of transactions. In SGT, a scheduler main-
tains an SG. The scheduler behaves as follows. Suppose
that the SG is acyclic, and the scheduler receives an op-
eration o of a transaction 7. If a node for T’ does not

Ty —Jo—T3 Ta

~__~

}
7 5<\—‘—/Js

Tg Ty

Figure 1 An example of a serialization graph

yet exist in the SG, the scheduler first adds the node in
the SG. It adds an edge from Tj to T for every previ-
ously scheduled operation g of the transaction T; that
conflicts with 0. Two cases are possible:

1. The resulting SG contains a cycle. In this case,
the scheduler rejects o. The scheduler aborts the
transaction T, and deletes T from the SG and all
edges incident with 7. Deleting T makes the SG
acyclic again, since all the cycles involves T. The
aborted transaction T' will restart later.

2. The resulting SG is still acyclic. In this case, the
scheduler can accept o. It can schedule o immedi-
ately.

In above algorithm, the nodes for committed transac-
tions are never deleted from the SG. If this algorithm is
used, as time goes on, the size of the SG grows larger and
larger and so does the cost of maintaining the SG. The
SGT scheduler must delete nodes and edges for com-
mitted transactions which are already unnecessary for
scheduling. The detail of the method to delete unnec-
essary nodes from the SG is out of focus of this paper
and is not mentioned here.

The major advantage of SGT is that the consistency
checking in SGT is based strictly on the definition of
serializability. Therefore, it achieves higher concurrency
than other scheduling algorithms, for example, Two Phese
Locking (2PL) or Timestamp Ordering (TO)[1].

Orn the other hand, SGT has some disadvantages.
First, it takes time to check the serialization graph.
The checking time tends to become long on distributed
database systems[4]. In the case of distributed database
system, intersite communication is needed for the check-
ing on distributed system because the serialization graph
has global structure. Each operation must wait until the
check completes. Therefore, lifetime of transactions may
become too long. Second, executions produced by SGT
are not recoverable. To use SGT in practical database
in which several types of failures are possible, a further
restriction must be imposed to executions. For example,
strictness is a widely used condition for recoverablity [1].

3. Certifiers
3.1 Overview of certifiers

To overcome the drawbacks of SGT, we focused on
schedulers called certifiers.

In many scheduling algorithms, every time it receives
an operation, a scheduler decides whether to accept, re-
ject, or delay it. On the other hand, a different approach

is proposed. That is, the scheduler immediately sched-
ules each operation it receives. From time to time, it
checks to see what it has done. If it concludes that
all is well, it continues scheduling. If it detects that it
has inappropriately scheduled conflicting operations, it
aborts some transactions. Such schedulers are called
certifiers. Certiflers aggressively schedule operations,
hoping no conflicts will happen. Therefore, the pro-
cessing time of transactions is shorter than other sched-
ulers. On the other hand, operations are scheduled even
if they cause loss of integrity and it is not detected un-
til the explicit check which is usually done at the end
of the transaction. Therefore, in the case that conflicts
happen frequently, lifetime of transactions under certi-
flers may be much longer than that under other type
of scheduler. Most certifiers are constructed as vari-
ants of normal type schedulers. For example, there are
certifiers based on Two Phase Locking (2PL), Times-
tamp Ordering (TO) and Serialization Graph Testing
(SGT)[1]. The executions produced by such schedulers
are not recoverable. However there is another type of
certifier approach called Optimistic Concurrency Con-
trol (OCC) which produces recoverable executions.

3.2 Optimistic concurrency control

Optimistic Concurrency Control (OCC), proposed by
Kung and Robinson[2], is one of certifiers. OCC defers
substantial write operations using local copies. In OCC,
an execution of a transaction is divided into the follow-
ing three phases.

read phase: In this phase, all read operations are ex-
ecuted immediately. They are completely unre-
stricted. All write operations take place on local
copies which cannot be accessed by other transac-
tions.

validation phase: In this phase, it is checked whether
the changes the transaction made will cause in-
consistency of database. If not, the validation is
successful. Otherwise it fails.

write phase: In this phase, the data items in local
copies are written into real database. At this point
of time, the modification made by the transaction
become effective. The transaction commits at the
end of this phase.

All transactions first enter the read phase. When a
transaction is about to execute a commit operation, it
enters the validation phase. If the validation succeeds,
the transaction enters the write phase and it is com-
mitted. Otherwise, the transaction will be aborted and
restarted.

In OCC, in order to verify that serializability is pre-
served, the scheduler explicitly assigns each transaction
a unique integer called fransaction number t(i) during
the course of its execution. The meaning of transaction
numbers in validations is the following: there must ex-
ist a serially equivalent execution in which transaction
T; comes before transaction 7; whenever £(i) < t(j).
Transaction numbers are assigned at the end of the read

strict executions

cascadeless executions’

recoverable executions

Figure 2 Relation among three classes of executions

phase. In the validation phase, the validation condition
is checked. For a transaction T, we define readset(T')
and writeset(T) as follows.

readset(T): the set of data items which have been read
by T

writeset(T): the set of data items which have been writ-
ten by T

For each transaction T; with transaction number £(j),
and for all T; with £(z) < ¢(j); one of the following three
conditions must hold.

1. T; completes its write phase before T} starts its
read phase.

2. writeset(T;) N readset(T;) is empty and T; com-
pletes its write phase before T; starts its write
phase.

3. writeset(T;)N(readset(T;)Uwriteset(T;)) is empty
and T; completes its read phase before T; com-
pletes its read phase.

If none of above three conditions hold for some Tj, the
validation of 7} fails.

OCC has two merits. First, operations are scheduled
immediatedly. On the other hand, as other certifiers,
there are some cases in which abortions of transactions
occur frequently under OCC too. Second, abortion of
a transaction can be done easily. Write operations are
executed on real database only when the transaction
commits. Therefore, when a transaction aborts, there
are no data items modified by the transaction. Accord-
ingly, no more abortions are caused by the abortion.
That is, all executions produced by OCC cause no cas-
cading aborts. We call such executions cascadeless. It
is also said that the executions avoid cascading aborts.
As shown in figure 2, the class of cascadeless executions
is included in that of recoverable executions[1].

The OCC scheduler explicitly assigns a transaction
number to each transaction. This is regarded as a kind
of timestamp. In this meaning, OCC scheduler is con-
sidered as a certifier based on TO scheduler. However,
there are some difference between OCC and pure TO
certifier. First, OCC uses local copies to defer write
operations until the validation completes, while TO ex-
ecute them immediately. Second, OCC and TO certifier
differ in the way to check consistency of the database.
TO checks the consistency according to the order of op-
erations, while OCC checks the consistency according to
overlapping of concurrent executions.

Table 1 The basic SGT-WD algorithm
when a transaction 7 is in read phase

1 when received a read operation read(z)
2 add edges to the serialization graph
3 read = from the database
4 when received a write operation write(x)
5 write = to a local copy
(do not add edges to the serialization graph)
6 when received a commit operation commit
7 T enters validation phase

when T is in validation phase

1 add edges which is caused by write operations to
the serialization graph

2 check the serialization graph whether there is a
cycle

3 if there is a cycle then

4 remove the node T and incident edges from the

serialization graph

5 abort and restart T

6 else

7 T enters write phase

when T is in write phase

1 write all data written by the transaction in the
local copies to real database
2 commit T

4. Algorithm

We apply OCC approach to SGT and propose a new
algorithm which overcomes the disadvantage of SGT.
The important points are the following:

1. As certifiers, operations are scheduled immediately
and they are validated later. Therefore, the pro-
cessing time of transactions is shorter than non-
certifiers.

2. Write oi)erations are deferred until the validation
completes. This makes executions produced by
this algorithm cascadeless.

We call the algorithm which we propose serialization
graph testing with write deferring(SGT-WD). We show
basic SGT-WD algorithm in table 1. As OCC does,
SGT-WD also divides an execution of a transaction into
three phases.

5. Comparison

In this section, we show some examples of concurrent
executions in figures. In the figures, following symbols
are used.

e S means the start of the transaction.

o R(x)(W(x)) means the read(write) operation to
data item z.

o V means the validation. In OCC and SGT-WD, it
includes the validation phase and consequent write
phase.

time

Figure 3 Comparison between OCC and SGT-WD

o C means the commit of transaction.
e A means the abort of transaction.

5.1 Comparison with optimistic concurrency con-
trol

Figure 3 shows an execution produced by OCC and
SGT-WD. In the case of OCC, since readset(T;} and
writeset(Ty) conflict, condition 1 in section 3.2 must
hold in the validation of T;. However, T, starts its read
phase before 77 completes its write phase. Therefore,
the validation fails and T3 is aborted and restarted.

In the case of SGT-WD, since conflicts between T3
and T, cause no cycles in the SG, the validation is suc-
cessful and T3 is committed. In this situation, the pro-
cessing time of T3 under SGT-WD is shorter than that
under OCC.

Generally, suppose that read(z) of a transaction T;
is scheduled after write(z) of a committed transaction
T;. Under OCC, if T; has been started before T; was
committed, the validation of T} fails and 7; must be
aborted. In the case of SGT-WD, the validation of such
T; succeeds unless T; writes the same data item. Such a
situation happens frequently with database systems in
which processing time of transactions tend to become
long. This fact shows the advantage of SGT-WD over
OCC. The class of executions produced by SGT-WD
contains properly than that of OCC because the vali-
dation of SGT-WD is based strictly on the definition
of serializability, which is a correctness criterion both
algorithms use.

5.2 Comparison with serialization graph test-
ing certifier

Figure 4 shows an execution produced by the usual
SGT certifier and SGT-WD when a certain failure oc-
curred. Consider the case of the usual SGT certifier first.
A transaction T} is aborted by the failure, then T3 which
reads the data item z written by T1 must be aborted,
that is, cascading abort occurs. However, since T3 has
already been committed when T} is aborted, T3 cannot
be aborted and the database cannot recover to consis-
tent state any longer. This fact shows that the usual
SGT certifier may produce executions which is not re-
coverable. To make the execution recoverable, the usual
SGT certifier should defer the commit of T; until 7} is

usual SGT certifier

time

usual SGT certifier
ration was

(Commit

time

time
Figure 4 Comparison between the usual SGT certifier
and SGT-WD (when a failure occurred)

usual SGT certifier
(Commit operation was defered.)

7 Serialization Graph
T1aTy

time

Figure 5 Comparison between the usual SGT certifier
and SGT-WD (when no failures occurred)

committed or aborted (as shown in the middle of the
figure 4). On the other hand, SGT-WD avoids such an
execution by deferring the write operation of 7;. Under
SGT-WD, z is not modified when T} reads it, while T}
reads x which is modified by T} under the usual SGT
certifier. Therefore, under SGT-WD, T} don’t have to
abort when Ty is aborted. Clearly, SGT-WD is prefer-
able to the usual SGT certifier in this case. Consider
another execution in figure 5. At first sight, 7} and T3
don’t form a cycle. Under SGT-WD, however, the cycle
is formed because the real execution of W(x) of T} is de-
ferred until the write phase. Therefore T} is aborted and
restarted. In the case of the usual SGT certifier, such a
cycle is not formed and T} is not aborted. Therefore, it
may be concluded that the usual SGT certifier has an
advantage over SGT-WD in this case. However, under
the usual SGT certifier, the commit operation of T is
deferred until T} is committed. This means that a trans-
action waits another transaction. That is, the merit of
certifiers, they aggressively schedule operations, is dam-
aged. On the other hand, no transactions wait other
transactions in SGT-WD. In this case, it depends on
the circumstance whether SGT-WD is preferable to the

Table 2 Edge addition procedure
procedure add-read-edge(T, z)
(add edges for read(z) of transaction T)

1 for any transaction T}

2 if z € writeset(T;) then
3 add an edge T; — T'

4 add z to readset(T)

procedure add-write-edge(T, z)
(add edges for write(z) of transaction T)

1 for any transaction T;

2 if z € readset(T;) U writeset(T;) then
3 add anedge T; » T

4 add z to writeset(T)

usual SGT certifier.

6. Variants

In this section, we describe some variants of SGT-
WD.

6.1 Additional graph checking

SGT scheduler (not certifier) checks the serialization
graph every time it receives an operation. In basic SGT-
WD, as in SGT certifier, the graph is checked only once
during an execution of a transaction. A disadvantage of
this method is that conflicts are not detected until the
validation phase. We can improve SGT-WD by checking
the serialization graph during the read phase as well as
the validation phase. The aim of this additional graph
checking is not to make sure that an operation can be
scheduled immediately but to detect conflicts as soon as
possible. Therefore, the scheduler needs not check the
graph every time it receives an operation. It is possible
that the check is executed once for several operations.
Nevertheless, the graph check takes long time as men-
tioned in section 2.2. If an operation waits for the check
to complete, an execution of transaction is suspended
for a long time. Practically, the graph check should not
even be synchronized with an execution of a transaction
except from the check in the validation phase. That is,
we can introduce concurrent subprocesses which we call
graph checking processes (GCP). There exists one GCP
for each transaction. When a cycle is detected, the GCP
notifies the transaction of the occurrence of the cycle.
In this way, a transaction execution is hardly affected by
the time needed for the checking. Of course, the check-
ing in the validation phase must be completed before
the transaction enters the write phase.

6.2 Adding write edges in read phase

The edge addition procedure of SGT is shown in table
2. For each transaction T, readset(T) and writeset(T),
defined in section 3.2, are maintained to add edges to
the serialization graph.

In SGT-WD, if an edge T; — T is caused by a write
operation write(z) of a transaction T, procedure add-
write-edge(T, z) is executed. Suppose that it is executed

immediately—in the read phase. By line 4 of add-write-
edge(T,z), = is added to writeset(T"). If an operation
read(z) of T; are executed later, an edge T — T; will
be added by add-read-edge(Tj,z). However this edge
is not true because write(z) of T is deferred until the
write phase of T. To avoid this, add-write-edge(T, z) is
executed in the validation phase.

However, the order of conflicting operations of T; and
T does not change even if write(z) of T is deferred.
Therefore, the edge T; — T must be added to the graph
unless T or T; is aborted. To detect a cycle in the seri-
alization graph as soon as possible, it is desirable that
such edges are added in the read phase. Practically, it is
possible to execute the procedure add-write-edge(T, z)
in the read phase with a little modification.

In procedure add-write-edge(T, z) in table 2, x is added
to writeset(T) in line 4. If the procedure is executed in
the read phase, This step should be skipped. The data
item z should be added to writeset(T) later in the val-
idation phase.

6.3 Shadow transactions

One variant of OCC, called speculative concurrency
control (SCC), is proposed by Bestavros[3]. Instead of
waiting for the validation of a transaction to fail and
then restarting the transaction, the SCC algorithm uses
additional {or redundant) resources to start on spec-
ulative corrective measure, Such measures are called
shadow transactions. Shadow transactions are subpro-
cesses forked by uncommitted transactions. A shadow
transaction is forked when a transaction conflicts with
other transaction and the conflict may cause inconsis-
tency. Forked shadows are blocked until the transaction
is aborted or committed. If the transaction is aborted,
one of blocked shadows of it replaces the transaction
and resumes executions, while other shadows are still
blocked. If the transaction is committed, all blocked
shadows of it are aborted. More details of SCC are de-
scribed in [3].

This SCC approach can be applied to SGT-WD. It
contributes to reducing the time needed to restart trans-
actions. A shadow transaction T;-shadow(o) is forked
when an operation o of a transaction T} is executed. T;-
shadow(o) is blocked before executing o. If T; fails the
validation, there is a cycle in the serialization graph. T;
must be aborted and restarted. However, it is not nec-
essary that to restart T; from the start. T; have only to
redo from the operation ocycte Which causes an outgoing
edge in the cycle, whereby the cycle disappears. There-
fore, T;-shadow(ocycie) replaces T; and resumes the exe-
cution from ocycte. An example of an execution is shown
in figure 6. In the figure, T3 fails the validation by a
cycle formed by T and T3. In this case, R(x) of T cor-
responds to oy, because it causes outgoing edge from
Ty (T2 — T1). Therefore, Ty-shadow(R(x)) replaces Tz
and resumes the execution from R(x).

7. Conclusions
In this paper, we proposed the scheduling algorithm
which we call Serialization Graph Testing with Write

T
T2
T2 Blocked
T2-shadow(W(x)) Biocked A
time
Figure 6 An execution of SGT-WD with shadows

Deferring (SGT-WD).

SGT-WD, as OCC does, divides an execution of a
transaction into three phases, read phase, validation
phase, and write phase. In the read phase, all read
operations can be executed, write operations are exe-
cuted into internal copies which cannot be accessed by
any other transactions. That is, write operations are de-
ferred. In the validation phase, the serialization graph is
checked its acyclicity. Write operations to real database
are executed in the write phase which follows the valida-
tion phase. The advantages of SGT-WD are as follows:

1. Operations can be executed immediately.
2. Only recoverable executions are produced.

We compared SGT-WD with OCC and the usual SGT
certifier and showed that SGT-WD is more useful than
these algorithms.

The major disadvantage of SGT-WD is common to
all certifiers. That is, transaction conflicts are detected
later than noncertifiers. We showed that it is improved
at the expense of additional graph checking and this ad-
ditional checking can be implemented without affecting
executions of transactions. Additionally, we described
some other variants of SGT-WD. It is our future work
to evaluate effectiveness of SGT-WD and its variants
quantitatively.

References

[1] Bernstein, P.A., Shipman, D.W. and Wong, W.S.,
Concurrency Conitrol and Recovery in Database
Systems. Addison-Wesley, 1987.

[2] Kung, H.T., Robinson, J.T., "On Optimistic
Methods for Concurrency Control”, ACM Trans.
Database Systems Vol.6, No.2, pp.213-226, June
1981.

[3] Bestavros, A. and- Braoudakis, S., ”Value-
cognizant Speculative Concurrency Control”, in
Proc. 21st Intl. Conf. on Very Large Data Bases,
Zurich, Swizerland pp.122-133, September 1995.

[4] Tada, H., Terasaki, Y, Higuchi, M. and Fu-
jii, M., ”A Scheduling Algorithm using Serializa-
tion Graph Testing for Distributed Database Sys-
tem”, The Technical Report of the IEICE, S594-41,
November 1994.

