RNF AT 4 TBIEESHNE 88— T
(1998. 4. 24)

Protocol for A Group of Objécts

Tomoya Enokido, Hiroaki Higaki, and Makoto Takizawa

Tokyo Denki University -
E-mail {eno, hig, taki}@takilab.k.dendai.ac.jp

In distributed applications, a group of multiple objects cooperate. In traditional group communication
protocols, messages are causally delivered at the network level. In order to reduce the protocol overhead,
only messages required to be causally delivered at the application level have to be ordered. The state
of the object depends on in what order the requests and responses are transmitted and the requests are
computed. In this paper, we define the significant precedence order of messages based on the conflicting
relation among the requests. We discuss a protocol which supports the significantly ordered delivery of
request and response messages.

FTT I T N=FTO RN

P At REEE EBR®
R ERAFETENEETEH

THEDOT 7V r—2ay T, BHOA 7V 2 PFEVICA v~V BL, BRABESLT R, EX
Ayt—DRRBELIAT Vs M, BEXERTL, v NI — 2B TOA vy~ VOREIERERS v
- VRN ECEERRIET AN -TEETO IS, CRETIHERIATVE, LIL, 7T
T=arTR, MERFITESNEREAy L=V d, RREEFBCEZSAIUEL Y, 77— avs
R 247V POREE, BERLSEDRSEMEF. 3612, TOERNLEDL S ZEETRESLL
PIRTET 5, KRN T, BEBOBEBEHRED LI, 77V 5~ a il oTERDHLA -0

TATRREERT 2, 010, Ay - JHTEROS 2 RTHREEIET 270 IV EIET 2,

1 Introduction

Distributed applications like teleconferences
are composed of multiple application objects. A
group of multiple application objects have to
be communicated in the distributed applications.
There are two types of group communication. One
type is multicast [2], where each object sends a
message to a group of objects. The other type
is intra-group communication [9-11] where mul-
tiple autonomous objects are cooperating. Here,
-the group is first defined among multiple objects.
Then, messages sent by an object are delivered
to the destination objects in the group. In this
paper, we discuss the intra-group communication
among multiple epplication objects.

Many papers [2,5,9-11] have discussed how to
support the causally ordered delivery of messages
at the network level in the presence of message
loss and stop faults of the objects. O(n?) pro-
cessing overhead and O(n) to O(n?) communica-
tion overhead are implied for number n of objects
in the group [9]. On the other hand, Cheriton
et al. [3] point out that it is meaningless at the
application level to support the causally ordered
delivery of all messages transmitted in the net-
work. Only messages required by the applications
have to be causally delivered in order to reduce

the overhead. Ravindran et al. discuss how to
support the ordered delivery of messages based on

the precedence relation among messages explicitly
specified by the application. Agrawal et al. [7] de-
fine significant messages, on receipt of which the
state of the object is changed.

An object o supports absiract operations for
manipulating 0. On receipt of a request message

with an operation op, o computes op and sends
back a response message with the result of op.
The states of the objects depend on in what or-
der the operations are computed. The conflicting
relation [1] among the operations is defined for
each object based on the semantics of the object.
If two operations sending and receiving messages
conflict in an object, the messages have to be re-
ceived in the computation order of the operations.
Thus, the significant precedence relation among
the request and response messages can be defined
based on the conflicting relation. In this paper,
we present an Objeci-based Group (OG) protocol
which supports the significantly preceded delivery
of messages where only messages to be ordered
are delivered to the application objects in the or-
der. Tachikawa and Takizawa [13] show a protocol
which uses the real time clock. However, it is not
easy to synchronize real time clocks in distributed
objects. In this paper, the messages are ordered
by object vectors.

In section 2, we present the system model. In
section 3, we discuss the significant precedency
among messages. In section 4, the protocol for
supporting the significantly ordered delivery of
messages in the group is discussed.

2 System Model

The distributed application is realized by co-
operation of multiple objects and by passing mes-
sages in the network. An object o can be manip-
ulated only through an operation supported by
o. Let op(s) denote a state obtained by applying
an operation op to a state s of 0. Two opera-
tions op, and op, of an object o are compatible iff

op,(0p4(s)) = op,(op,(s)) for every state s of o.
op, and op, conflict iff they are not compatible.
That is, the state obtained by applying op; and
opy too depends on the computation order of op,
and op,, i.e. op (op,(s)) # opy(op,(s)) for some
state s of o. The conflicting relation among the
operations is specified when o is defined. Suppose
that op, is issued to o while op, is being com-
puted in 0. If op, is compatible with op, in o,
op; can be computed. Otherwise, op, has to wait
until op, completes.

Each time o receives a request of op, a thread
for op is created for 0. In each thread for op,
actions of op are computed sequentially on 0. An
action is a primitive unit of computation in o. The
thread is an instance of op in o. Only if all the
actions computed in op complete successfully, op
completes successfully, i.e. commits. If some ac-
tion in op fails, no action in op is computed, i.e.
aborts. That is, op is atomically computed in o.
op may invoke another operation op;. op; may
further invoke operations. Thus, the computation
of op is nested.

A group G is a collection of objects o3, ...,
o, (n > 2) which are cooperating by sending re-
quests and responses through the network. We

assume that the network is less relieble and not
synchronous, 1.e. messages sent by each object

are delivered to the destinations with message loss
not in the sending order and the delay time among
objects is not bounded.

3 Significant Precedence

3.1 Precedence of operations

It is critical to consider in what order the opera-

tions are computed in the objects. Let op1 and oph
be instances of operations op; and op; in an object
o;, respectively. Here, opy precedes opg (op} =
oph) i in o; iff op2 is computed after op} completes.
If op} and op} are mutually exclusive, either one
of them has to precede the other. Otherwxse, they
can be interleaved. opj || op} shows interleaved
computation of op} and op}.

[Deﬁmtlon] op} precedes o;/2 (opt = op;) iff (1)
op; =>4 op2 for i = j, (2) op} mvokes op}, or (3)
for some op%, opi = ops = op}.

In Figure 1, op} => op} = op), and op} = op}, and
op || op}.

0; 0j

i
opy

op} | || 072 ol

3.2 Significant precedence

A message m causally precedes my if the send-
ing event of m; precedes the sending event of
my [2,6]. If m; is a question and m; is the answer
of my, my has to be received before mj. Inde-
pendent questions my and my can be received in
any order. Thus, it is important to consider what
messages are required to be ordered in the appli-
cation. We define a significant precedence relation
“—” among m; and m; based on the concept of
objects. There are the following cases as shown in
Figures 2 and 3.

S. o; sends my after my.
S1. m, and m, are sent by op’l

§2. m; and my are sent by op} and op}, respec-
tively:

§2.1. op} precedes op} (opi => op}).
§2.2. op} and op} are interleaved.
R. o; sends m; after receiving m;.
R1. m; and my are received and sent by op‘i.
R2. m; is received by op‘i and m; is sent by op‘é:
R2.1. op} = op}.
R2.2. op} and op} are interleaved.

05 04 0i
ot)
my my op3
I~ my
ma
e opz my
mz
L/ | ™2
time Y time'\ time \
(s1) (52.1) (52.2)
Figure 2: Send-send precedence
0; 04 0i
. : i
mi N\ opi mi NP my o :
~1] ~) 0P,
ma
\ » ap; ma
ma
time time \ time ¥V
(R1) (R2.2)

(R2.1) -

Figure 3: Receive-send precedence

In S1, mn; significantly precedes ma (mq — ma)
since m; and m; are sent by the same opi. In S2,
my and m; are sent by different instances op; and
op, ino;. In 52.1, opl and op} are not interleaved,

timey

{

v

Figure 1: Precedence of operations

38

i.e. op} precedes op; (op% = oph). Unless op’l and
op2 conflict, there is no relation between op} and
op;. Hence, neither my — mg nor mp —my (writ-
ten as my || m;y). Suppose op} and oph conflict.
If op} => oph, the output data carried by m; and

my may be different from op} = oph because the
state obtained by applying op’ and oph depends
on the computation order of op} and oph. Thus,
if opl and op} conflict, the messages sent by op}
have to be received before the messages sent by
op}, i.e. my — my. Otherwise, my || ma. In §2.2,
op} and op} are interleaved. Since op} and op} are
not related, my || ma.

In R1, my — mg since m; is received and my
is sent by opt. Here, m; is the request of op} or
a response of an operation invoked by opi. m; is
the response of op} or a request of an operation
invoked by opi. For example, suppose m; is a
response of op; invoked by op} and m; is a request
%{ op;. The input data of ops may be the input of

1.

In R2, m; is received by op} and -mj is sent by
oph (# opi). In R2.1, op! => oph. If op’ and op}
conflict, my — my. Unless op'i and op‘; conflict,
my “ my. In R2.2, my “ my.

[Definition] m, significantly precedes my (m; —
my) iff one of the following conditions holds:
(1) my is sent before my by an object o; and
(1-1) m; and mg are sent by the same oper-
ation instance, or
(1-2) an operation sending m; conflicts with
an operation sending m; in o;.
(2) m;, is received before sending mz by o; and
(2-1) m, and m; are received and sent by the
same operation instance, or
(2-2) an operation receiving m; conflicts
. with an operation sending mg.
(3) my — m3 — my for some message mz. O
[Proposition] A message m; causally precedes
my if my — my. O
According to the causality theory [8], a message
m is preceded by all the messages which o; has re-
ceived and sent before o; sends m. However, m is
significantly preceded by only messages which are
related with m, not necessarily all the messages.

3.2 Ordered delivery

We discuss how a message is delivered to each
destination object o; in the group G. Suppose an
object o, sends m; to o; and o;, and o}, sends ma
to on, 0;, and o; [Figure 4]. o; and o; receive both
my and my. There are the following cases:
C1. m; and my are requests.
C2. One of my and m; is a request and the other

is a response.

C3. m; and my are responses.

In C1, suppose m; and m; are requests of op;
and op;, respectively, where op; and op, conflict
in o; and o0;. If my || m3, my may be delivered
before m; in o; and m; before m; in o;. That is,

oph = oph and opr; => op}. The state of o; obtained
by the computations may be inconsistent with o;
because op; and op; conflict in o; and o;. In order
to keep o; and 0; consistent, m; and m; have to be
delivered to o; and o; in the same order. For every
pair of common destinations o; and o; of requests
my of opy and mg of opy, my and my have to be
delivered in o; and o; in the same order if op; and

op; conflict in o; and 0;. In C2 and C3, m; and
my are allowed to be delivered in any order.

On o;] O
op} NJ™
&

opy opa

ops

time Y \ Y v

Figure 4: Receive-receive precedence

Suppose o; receives two messages m; and ma.
If my || ma and neither my nor my is a request
sent to multiple objects, o; can receive m; and
mz in any order. Suppose (1)-m; — my and (2)
my or'my is sent to multiple obJects in G. There
are the following cases as shown in Figure 5.

T1. my and m; are received by an instance op;

T2. my and my are received by op} and op}, re-
spectwely

T2.1. opy = op‘1
T2.2. op) and op), are interleaved.

0 [N 0

. . (1
m N Nevt m B
~ T~ opa
m2

. T2
™ ma N oph
\H

time V time Y time Y
~(T1). (T2.1) (T2.2)

Figure 5: Receive-receive precedence

In T1, m; has to be delivered o o; before my
since my — my. In T2, m; and m; are received by
different instances. If op} and op} are interleaved
in T2.2, m; and my can be independently dehv-
ered to op; and opj. In T2.1, first suppose op}
and op; conflict. If my or my is a request, m, has
to be delivered before my since m; — mj. Next,
suppose ™, and m; are responses. Unless m, is
delivered before mz, op} waits for my and op} is
not computed since op; does not complete. That
is, deadlock among opy and op2 occurs. Further-
more, suppose 7ng is sent to op} and my to op, and
my — mg. Even if op} precedes op (op} = oph).
and m, is delivered before my, the deadlock occurs
because m4 — mg. Thus, the messages destmed
to different instances cannot be delivered to o; in
the order — ‘unless at least one of the messages

is a request. Unless op1 and op} conflict, m; and
my can be delivered in any order.

[Significantly ordered delivery (SO)] m, is
delivered before my in a common destination o;
of m; and m; if
(1) if my — my,
(1-1) my and m; are received by the same
operation instance, or
(1-2) an operation instance op} receiving m;
conflicts with op} receiving m; in o;, and
my or my is a request,
(2) otherwise, if m; and m; are requests, m, is
delivered before m; in the common destina-
tions of my and m; by the S rule. O

The condition (1-2) means that op! = op}, because
op; and op, conflict and m; is delivered before m,.

[Theorem] No communication deadlock occurs if
every messages are delivered by the SO rule.
[Proof] Suppose m; is received by op} and m,
by op}. If op} and oph are compatible or m,; and
my are responses, m; and m; can be received in
any order. Next, suppose op} and op} conflict.
Suppose m; and m; are delivered by the SO rule
but deadlock occurs. Since the deadlock occurs,
op, = op; and m; — my. From (1-2) of the SO
rule, opi = oph. It contradicts the assumption. O
[Theorem] The system is consistent if messages
are delivered by the SO rule.

[Proof] Let my and m; be messages.

(1) Suppose that m; || mp. If request messages
my and my are sent to multiple objects and
the operations of m; and m; conflict, the op-
erations are computed in the same order by
the SO rule.

(2) Suppose that m; — mg. By the SO rule, m;
is delivered before m; if m; or mg is a request
and the instances op! and op} receiving m;
and my conflict. Here, op'l = oph. O

4 Protocol

4.1 Object vector

The vector clock [8] V = (V1, ..., V) is used to
causally order messages received. Each V; shows a
logical clock of o; and is initially 0. o; increments
V; by one each time o; sends a message m. m
carries the vector clock m.V (= V). On receipt
of m, o; changes V as V; := max(V;, m.V;) for
j=1,..,nand j # i. my causally precedes my
iﬁnnJ’<1an.

Significant messages are defined in context of
operations instances supported by objects. That
is, a ‘group is considered to be composed of in-
stances.. The membership of the group changes if

instances are initiated and terminated. If the vec-
tor clock is used, the group has to be frequently

resynchronized.{2,3,6-8,13]. The vector clock can

be used to causally order messages sent by objects

but not by operation instances. In this paper, we

propose an object vector to causally order the sig-

nificant messages sent by the operation instances.
Each instance opi is given a unique identifier

t{op}) satisfying the following properties :

(1) Xf op} starts after op!, in an object o;, t(opi)

> t(opy,). :
{2) I o; initiates op} after receiving a request

message op; from opl,, t(op}) > t(opi).
t(op}) is given by the linear clock [6]. o; manipu-
lates a variable oid showing the linear clock :
(1) Initially, oid := 0.
(2) oid := oid + 1 if an operation instance op} is
initiated in 0;. oid(op}) := oid;
(3) On receipt of a message from opl, oid =
max(oid, oid(opl)).
When op} is initiated in o;, t(op}) is given a
concatenation of oid(op}) and the object number
ono(o;) of o;. oid(o}) > oid(opl) if (1) t(op})
> t{op}) or (2) t(op}) = t(op]) and omo(or) >
ono(o;).
Each action e occurring in o; is given an event
number no(e) as follows :
(1) Initially, no; = 0.
(2) no; := no; + 1 if e shows a changing action.
no(e) := no;;
Each action e in op} is given a global event number
ino(e) as the concatenation of t(op}) and no(e).
Each object ¢; has a vector of variables V* = (
Vi, ..., Vi) where each V}" is defined for an object
oj for j = 1, ... n. Each V; is initially 0. Each
time an operation instance op; is initiated in o;,
op; is given a vector V¥ = (Vi, ..., V) where
Vi; := V;. op; manipulates V; as follows :
(1) I op} sends a message m, m carries the vector
V} as m.V where m.V; := Viforj=1,..,
n and V}; := no;;
(2) If op} receives a message m from %4, Vt’] =

m.Vj;
(3) If op; commits, V := max(V}, V) for j =
1, .., m
% 9
<0,0 > <0,0>
i
opl
0,0 /
<6,0 > ap;

<0,0>

<1i0,0 >))

< 1i0, 0 >

time|

Figure 6: Object vector

Figure 6 shows two objects o; and o;, Initially,
the vectors V; and V; are (0, 0). An instance op}
is initiated in o; where V§ = (0, 0). After sending
m to opj, V; is changed to (130, 0) where 140 is-
the event number. of the sending of m as presented
before. m carries the vector { 150, 0) to op). On

receipt of m, op§ changes V.f to (130, 0). After
op), commits, V; of o; is changed to be { 140, 0).

4.2 Message transmission and receipt

A message m is composed of the following
fields:)
m.src = sender object of m.
m.dst = set of destination objects.
m.type = message type, i.e. request, responce,
: commat, abort. B
m.op = operation.
m.ino = global event number (m.t, m.no), ie.
tno(m).
m.V = object vector { V1, ..., V,).
m.SQ = vector of sequence numbers (sqy, ...,
8Gn).
m.d = data.
If m is a response message of a request m', m.tno
= m/.tno, Here, m.op denotes an operation of m'.
o; manipulates variables sqy, ..., sg,. Each
time o; sends a message to o;, sg; is incremented
by one. Then, o; sends m to every destination o;
in m.dst. o; can detect a gap between messages
received from o; by checking the sequence number
8g;, i.e. messages lost or unexpectedly delayed.
o; manipulates variables rsq, ..., rsq, to receive
messages. On receipt of m from o;, there is no gap
between m and messages sent before m if m.sq;
= rsq;. If m.sq; > rsq;, there is a gap m' where
m.sg; > m'.sq; > rsg;. That is, 0; does not re-
ceive m’ which is sent by o;. m is correctly re-
ceived by o; if o; receives every message m’ where
m'.sq; < m.sg;. That is, o; receives every mes-
sage which o; sends to o; before m. o; enqueues
m in the receipt queue RQ);. :
Suppose an instance op} of o; sends a request
message m of op’. o; constructs m as follows :
m.sre = 0;; - m.dst := set of destinations;
m.iype := request; m.op = op’;
m.ino = (m.t, m.no) = (t(op}), na;));
mVi=Ve (1=1,...,n)
8g; = 3g; + 1 for every o; in m.dst;
™m.8q; 1= 8q; (] =1, ..,)
An additional vector RV = (RV, ..., RV,)

is given to each message m received from o; in the
receipt queue RQ; as follows : .

(1) m.RV; := m.tno; ‘
(2) mBVy :=mV,forh=1,..,n(h#1);

In Figure 7, op} sends a message m to o; where
m.ino = 10 and m.V = (0, 0). On receipt of
m, o; enqueues m into RQ;. Here, o; gives an
additional vector RV to m, i.e. m.RV = (140, 0
) while m.V is still { 0, 0).

4.3 Message delivery

A pair of messages m; and mj in a receipt
queue RQ); are ordered as mj => my according
to the following ordering rule.

[Ordering rule] m; = mg if (1) or (2) holds :
(1) m.V < my.V and my.RV < my.RV, and
(1.1) my.0p = my.0p, or
(1.2) my.op conflicts with m;.op.

.0 0;
<0,0> <0,0>
i
op; X
- <0,0> m.tno = li0
%
mino = 1i0
mV=<0,0>
mRV=<li00>
time | |

Figure 7: Receipt vector

(2) my.type = ma.type = request and m,.op con-
flicts with mg.0p and m,.tno < mg.tno. O

my and m;y are concurrent (my || my) if the or-
dering rule is not satisfied. Concurrent messages
are stored in RQ; in the receipt order. That is,
my precedes my (my => my) in RQ; if my arrives
at o; before mj. The messages received by o; are
ordered in RQ; according to the ordering rule.
[Stable operation] Let m be a message which o;
sends to o; and is stored in RQ;. m is stable iff
one of the following conditions holds :
(1) there exists such a message m, in RQ; that
m1.9¢; = m.8q; + 1 and m, is sent by o;.
(2) o; receives at least one message m; from ev-
ery object such that m — my. O

The top message m in RQ; can be delivered if
m is stable, because every message significantly
preceding m is surely delivered in RQ);.
[Definition] A message m in RQ); is ready in o;
if no operation conflicting with m.op is being com-
pited in oj. O ;
~ In addition, only significant messages in RQ;
are delivered by the following procedure in order
to reduce time for delivering messages.
[Delivery procedure] While each top message
in RQ); is stable and ready, {m is delivered from
RQ;; otherwise m is neglected}. O

If an object o; sends no message to o;, messages
in RQ; cannot be stable. In order to resolve this
problem, o; sends o; a message without data if o;
had sent no message to o; for some predetermined
& time units. § is defined to be proportional to
delay time between o; and o;. o, considers that
o; loses a message from o; if (1) o; receives no
message from o; for 6 or (2) o; detects a gap in
the receipt sequence of messages. Here, o, requires
o; to resend m. o; also considers that o; loses m
unless o; receives the receipt confirmation of m
from o; in 25 after o; sends m to 0j.
[Example] Figure 8 shows three objects o;, o,
and o;. op} is computed in o; and sends a request
message 7, to o; and 0. On receipt of m;, o;
computes op; and o, computes op§. opf sends a
request message ma to o and o;. o; and o; com-
pute opj and op} on receipt of mg, respectively.

opj and op} send response messages my and ms,
respectively. opf and op% are interleaved in of.
opf sends a response message my to 0;. Suppose

op, and op} conflict in 0j. Each message carries
m.ino, m.V, and m.RV as shown in Table 1.

Table 1: Object vectors

m.ino | m.V m. RV
my 120 {0, 0, 0) 110, 0, 0}
™y 250 (140, 0, 0) 140, 20, 0}
™3 2k0 1i0, 0, 0) 140, 0, 2k0)
™My 3k0 0, 0, 0} 0, 0, 3k0)
ms 370 130, 0, 2k0) 140, 350, 2k0)
[s. . Q q‘
—
opg op;‘
. o
/
"lj
/’
ap"; ‘/
a
”‘4
T
4 time

Figure 8: Example.

In the traditional group protocols, ms causally
precedes m4. o; has to receive mz before my.
In this paper, the messages received in a receipt
queue RQ); are ordered by using the ordering rule.
Since m3.V(=(140, 0, 0)) > m,.V (=(0, 0, 0)) but
ma. RV (= (140, 0, 2k0}) and m4.RV(=(0, 0, 3k0
)) are not compared, m3 || mq in o;. Therefore,
if o; receives my before mg3, o; delivers my to the
application object without waiting for mz. O

5 Concluding Remarks

In this paper, we have discussed how to support
the causally ordered delivery of messages from
the application point of view named the signif
icant precedence while most group protocols are
discussed at the network level. Only messages to

- be causally ordered at the application level are
delivered in the significant precedence order. The
system is modeled to be a collection of objects.
Based on'the conflicting relation among abstract
operations, we have defined the significant prece-
dence among request and response messages. We
have presented a protocol for a group of objects
which supports the significantly ordered delivery
of messages by using the object vector.

References : :
[1] Bernstein, P. A., Hadzilacos, V., Goodman,
N., “Concurrency Control and Recovery in

Database Systems,” Addison-Wesley Pub-
lishing Company, 1987.

[2] Birman, K., Schiper, A., and Stephenson,
P., “Lightweight Causal and Atomic Group
Muilticast,” ACM Trans. Computer Sysiems,
Vol.9, No.3, 1991, pp.272-314.

[3] Cheriton, D. R. and Skeen, D., “Understand-
ing the Limitations of Causally and Totally
Ordered Communication,” Proc. of the ACM
SIGOPS’93, 1993, pp.44-5T.

Enokido, T., Tachikawa, T., and Takizawa,
M., “Transaction-Based Causally Ordered
Protocol for Distributed Replicated Objects”
Proc. of IEEE ICPADS’97, 1997, pp.210~
215

—
o

[5] Garcia-Molina, H. and Spauster, A., “Or-

dered and Reliable Multicast Communi-
cation,” Trans. Computer Systems,

Vol.9, No.3, 1991, pp.242-271.

[6] Lamport, L., “Time, Clocks, and the Or-
dering of Events in a Distributed System,”
Comm. ACM, Vol.21, No.7, 1978, pp.558-
565.

[7] Leong, H. V. and Agrawal, D., “Using Mes-
sage Semantics to Reduce Rollback in Opti-
mistic Message Logging Recovery Schemes,”
Proc. of IEEE ICDCS-14, 1994, pp.227-234.

{8] Mattern, F., “Virtual Time and Global
States of Distributed Systems,” Parallel and
Distributed Algorithms (Cosnard, M. and
Quinton, P. eds.), North-Holland, 1989,
Pp-215-226.

[9] Nakamura, A. and Takizawa, M., “Reliable
Broadcast Protocol for Selectively Ordering
PDUs,” Proc. of IEEE ICDCS-11, 1991,
pp.239-246.

[10] Nakamura, A. and Takizawa, M., “Priority-
Based Total and Semi-Total Ordering Broad-
cast Protocols,” Proc. of IEEE ICDCS-12,
1992, pp.178-185. ‘

[11] Nakamura, A. and Takizawa, M., “Causally
Ordering Broadcast Protocol,” Proc. of
IEEE ICDCS-14, 1994, pp.48-55.

{12] Tachikawa, T. and Takizawa, M., “Dis-
tributed Protocol for Selective Intra-group
Communication,” Proc. of IEEE ICNP-95,
1995, pp.234—241;

[13] Tachikawa, T. and Takizawa, M., “Signif-
icantly Ordered Delivery of Messages in
Group Communication,” Computer Commu-
nications Journal, Vol. 20, 724-731, 1997.

[14] Tachikawa, T., Higaki, H., and Takizawa,
M., “Group Communication Protocol for Re-
altime Applications,” to appear in IEEE
ICDCS—-18, 1998,

