TIWFAF ¢ TEBEEHELE 92— 1

(1999. 2. 25)

 EPHEBONEICETS CRE T -8 - LT r -y e YR

4

y
ot
E

W mE /NEF

AABEEHEHRNEH
RS R BRI T ARAT 3-9-11

E-mail: yamasita@slab.ntt.jp ono@slab.ntt.jp

FRXTIR,)7 I34T7~ FHERUABFEURNOT~ 7 R RETHIEBLU2) 7 74T Y FAERR
B LT Y ORGEE Y, IAT Y MCBHTAZ L EERT LT FHMAEERET 5. FHEE, HIEHRY

BT — 5 icfTbhiz e &, BMEA o T, EHFFRR S AR BOSA RN 2 ER TRECHML TR L

K%ELt%@?b%oﬁmus7?477$ﬁ¥*?6&%‘£l§7§477bKﬂLT%%Kﬁméht?~yw
FRE % A B & % 12J\V 5 read data freshness (RDF) ¥ @%¥ 5, RDF i, 7947~ P BRIz E & ORERE
BERTO P~ § DREEERT bOTH b, FHEN update V= ¥ a ik, EHREERITAMELICTHER
FERSELIEICEoTH Yo read A RV=Vavid, 2747 Y FALERSNRDF CETE, TOEREH
FREOBN) — FEBRL, ChoOBM)~ FAL@LRAF~ 503 b, F5 SRS M 225 Y THPRFKOT—

5% 2547y MciRitT . RDF OREFEL LCE, ERCHE S nEFEROBERM OB RIHME b &

K\ﬁ&@ﬁﬂ/—F#B?w&%ﬁﬁbtk%@RDF%\Eﬁwﬁﬂﬁﬁuﬁﬁbﬁm/yﬂﬁi}Uvﬁ%@&ﬁ

:f’iﬁﬂb:lo'('ﬁ’)o
ST K Py R, F—E, BEE, BE, 32— 4 Y EYTA

A Statistical Data Replication Method
Based on the Difference of Update Paths
Takao Yamashita , Satoshi Ono

NTT Software Laboratories
9-11, Midori-Cho 3-Chome Musashino-Shi, T(Skyo 180 Japan

E-mail: yamasita@slab.ntt.jp ono@slab.ntt.jp

In this paper, we propose a data replication method that provides data with at least as much freshness
as required by a client and notifies the degree of the freshneyss of data provided to a client. This method is based on
an improvement of the probabilistic rate of updated replicas to all the replicas as time elapses after update starts.
We first define a metric, called read data freshriess (RDF), that represents the probabilistic freshness of read data

" from the client viewpoint. Our method uses RDF for specifying the client requirements about freshness and for
notifying the degree of the fresh‘néssrof’ read data to clients. The read operation of our method is done by acquiring
data from reﬁlicals and by selecting the latest data according to the associated timestamp. The number of read
re’pli‘cas is changed according to the RDF required by a client. We calculate RDF from measured samples of an
update delay using a non-parametric estimation method when a client reads data from multiple replicas. Using

a non-parametric estimation method makes our method independent of the probabilistic distribution function of

the update transmission delay when update requests propagate among replicas.’

Keywords: data replication, weak consistency, freshness, delay, quorum consensus

—1—

1 Introduction

With the growth of computer networks, many distributed
applications on widely spread computers in a network are
sharing various types of data such as those in data siores,
telecommunication, decision support, and information re-
trieval systems. The shared data in a network is kept in a
directory service or database systems, and so on. Applica-
tions receive services from them using update and read op-
erations. These operations require high availability, scala-
bility, throughput, and a short response time.

In addition, applications require freshness [1] and
knowledge of the degree of the freshness if it is insuffi-
cient for them. Freshness expresses the idea that an up-
dated value of a data object should be transmitted as soon
as possible to applications that read the object. Applica-
tions need to know the degree of freshness, because they
may change their operation accordingly or users may base
their actions on the difference between acquired data and
the present estimated data that is computed with freshness.
Freshness is a primary requirement for a variety of appli-
cations [1] and infrastructures in a distributed computing
environment with which they cooperate, such as directory
services.)

Data replication is an effective technique for attaining
high availability, scalability, throughput, and a short re-
sponse time to operations. It locates replicas in a network
that have the same data objects to process operations from
clients. There are some ways to maintain values of the
same data objects in replicas. These ways change the con-
sistency of replicated data. The consistency of replicated
data is classified as strict or weak consistency. Strict con-
sistency includes 1 copy serializability [2]. Examples of
weak consistency are epsilon serializability [3]; the con-
sistency by the causal, forced, and immediate operations
in lazy replication [4][5}; and the consistency by an asyn-
chronous update function that is implemented in many
commercial database management systems. Strict consis-
tency has such a large overhead that it is difficult to im-
prove those properties for update and read operations, On
the other hand, data replication with weak consistency en-
ables the properties to be achieved by deferred update at
the cost of lower consistency.

Deferred update gradually propagates into replicas af-
ter the update operation has been committed at the replica
that received it at first. The smaller delay leads to better
freshness of data in replicas. However, the increase in the
number of replicas worsens the freshness, because updates
are transmitted little by little into replicas or are hierarchi-
cally propagated in order to reduce the instantaneous load
of transmitting an update to many replicas from a replica.
Therefore, it is difficult to propagate an update to all the
replicas in a time that meets all the requirements of the
application. The difficulty of short propagation delay in-
creases the importance of knowing the degree of freshness
for some distributed applications.

In this paper, we propose a data replication method that

© client node
@ front-end node

\\\o replica node
A

read

Figure 1: Change in number of updated nodes and nodes
that we should access to read the updated data as time
elapses.

both provides data with at least as much freshness as re-
quired by a client with freshness and notifies the degree
of the freshness of data actually provided to a client as a
response of a read operation. This method is based on an
improvement of the probabilistic rate of updated replicas
to all the replicas as time elapses after an update starts. We
first define a metric, called read data freshness (RDF), that
represents the probabilistic freshness of read data from the
client viewpoint. Our method uses RDF to specify client
requirements about freshness and to notify the degree of
the freshness of read data to clients. Second, we propose
a way of performing the read operation. The read opera-
tion is done by acquiring data from replicas and by select-
ing the latest data according to the associated timestamp.
The number of read replicas is changed according to the
RDF required by a client. Third, we propose calculating
RDF using a non-parametric estimation method [6] when
a client selects the latest data from multiple replicas. This
calculates RDF from samples of an update delay measured
between replicas whose clocks are synchronized using var-
ious time synchronization methods [7][8].

The remainder of this paper is organized as follows.
Sec. 2 describes a data replication framework for improv-
ing RDF by the cooperation of update and read operations.
In section 3 we show how tocalculate RDF using a non-
parametric estimation method. Sec. 4 mentions remaining
problems.

2 Improving freshness by coopera-
tion of update and read operations

There are three types of nodes in our method: client,
front-end, and replica nodes. The operations requested by
clients are update and read.

First we explain a read operation that provides data with
freshness that meets the client requirement and notifies the
degree of the freshness of read data. A deferred update
modifies data on only some of the replicas when an update
operation starts. The number of replicas with the updated
data increases as time elapses. Figure 1 shows change in

-9 —

number of updated replicas. The replica nodes encircled
by black solid lines are updated at ¢ = 1,2, and 3, respec-
tively. The increase in number of updated replica nodes
with time causes a decrease in the number of replica nodes
that we should access in order to read the updated data.
These nodes are encircled by gray solid lines in the figure.
We can understand this decrease in number of replicas to
be read as an increase in the probabilistic intersection be-
tween read and write quorums in a probabilistic quorum
system [9] with elapsed time.

The formal definition of RDF is time T}, if all the up-
date operations ‘starting more than T, before somewhere
in a network are reflected in read data with probability p.
A read operation along with the RDF required by a client
is sent to a front-end node when the client requests a read
operation. The front-end node sends the read operation to
replicas in a set. We denote the set as a read replica set
and a replica in the set as a read replica. Replica nodes
keep data and a timestamp that shows when the last up-
date operation modifying the data was requested. When
read replicas receive the read operation, they return the
data along with the timestamp to the front-end node. The
front-end node returns the latest data determined using the
timestamp to the client. A front-end node manages the re-
lationship between a read replica set and the RDF of the
latest data in the set. When a front-end node receives a
read operation from a client, it selects a read replica set
whose RDF meets the client requirement. When a front-
end node réturns the latest data, it returns the RDF of the
selected read replica set along with the latest data.

Next, we explain the update operation. The number of
elements in a read replica set that satisfies the RDF pop-
ularly required by clients should be as fewer as possible
(ideally one). Therefore in our method we divide repli-
cas into one or more groups so that the maximum delay of
update propagation in every group should be less than the
popular requirement of clients. When a front-end node re-
ceives an update operation from a client, it sends it to one
of the replicas in every group. Then the update propagates
in every group and finally data objects in all the replicas
are updated.

3 Calculating read data freshness
3.1 System architecture '

In our method, a front-end node selects a read replica set
so that the RDF of the latest data among the replicas in
the set meets the client requirement.” Since RDF depends
on the way an update propagates among replicas in a net-
work, we first describe the system architecture of our data
replication method.

Figure 2 shows the system architecture used in our
method. As described in the previous section, we divide
replicas into one or more groups. Replicas in every group
are connected by logical links. The topology of the graph
composed of the logical links and the replica nodes in ev-
ery group is a tree. An update operation sent by a front-end

© client node
® front-end node
O replica node

|

\

& read
‘MMM-W%

Figure 2: System architecture used in our data replication
method

node propagates in the group through the links. We denote
a replica node that first receives an update operation from
a front-end node as an update starting replica. When a
replica receives an update operation, it forwards the up-
date to all the adjacent nodes except the replica node from
which the update operation came. The update operation
finally reaches all the replicas by iteration of the above up-
date forwarding. We denote the minimum subtree whose
root is an update starting replica and includes all the repli-
cas in a read replica set as an update subtree.

3.2 Overview of freshness calculation

Here, we describe an overview of our RDF calculation
method. First, we assign a delay time to a logical link
on which an update request propagates. Second, we mini-
mize the update subtree by deleting replicas that do not af-
fect RDF. Third, we calculate RDF when only one update
starting replica exists. Fourth, we calculate RDF when
multiple update starting replicas exist.

3.3 Assigning a delay time to an update link

When an update request comes to a replica, the request
is initially put into the input queue. Next, the replica re-
trieves the request from the queue, updates the data object,
and puts the request into the output queue for transmis-
sion to the next replicas. Finally, the request is transmitted
to the next replica. Therefore the following delays occur
when an update request propagates among replicas.

d; delay caused by a request waiting for the process to
update the data object in an input queue on a replica.

d,; delay caused by carrying out the update opération.

d, delay caused by a request waiting to be forwarded to
the next replica in an output queue on a replica.

d, delay for transmitting a request from one replica to the
next replica.

After an update operation modifies the data object in
replica rp, the request for the operation is transmitted to

—3

its children in the update subtree ¢, re,, - ,re,. Let Iy,
be the link from 7 to r,. Let Py (t) be the probablhty
that the delay on link [, is £. We assxgn a delay to a link
so that Py, (r) and Py, (¢) (i # j) are independent. For
example, we assign delay &, to link /g, in the following
two situations.

Situation 1: An update request propagates at the same
time from a replica to all its children.
= dl* 4 4 4 4 4 gl

Bse; (6]

Situation 2: An update request propagates randomly from
areplica.

83 5) +d(5“:) d(cx) +d(¢‘:) (2)

In the above two equations, di("), d?, a{”, and d"™™ are
d;, dy, d, at replica n, and d; on link /,,,. These delays de-
pend on the direction in which the update request is trans-
mitted on a logical link.

34 Mihimizing update subtree

As an update request propagates among replicas, it brings
an update event to a data object at each replica. Times
when events occur at replicas have a partial order relation
based on the topology of the update subtree used for prop-
agating an update request. We denote a happened-before
relation [10] as <. Let e, and e, be update events at a
. replica and its child caused by the same update operation.
The relation between e, and e. is e, < .. Let¢; and e;
be update events brought by the same update operation at
a replica and one of its descendants. Since the happened-
before relation is irreflective and transitive, the relation be-
tweene¢; andre ejise; < e;.

Let e;(d;) be the event that is the arrival of an up-
date operation reaching replica i from an update start-
ing replica with delay d;. Generally, P(e;(d;) A ej{d;))
is equal to P(e;(d;)|e;(d;))P(ei(d;)). Let i be an ances-
tor of j. Since P(e;(d;)}e;(d;)) is equal to 1 when d; < dj,
P(e;(d;) Aej(d))) is equal to P(e;). Since P(ei(d;)|e;(d;))
is equal to O when d; > dj, P(ei(d;) A ej(d;)) is equal to
0. These mean that replica j does not work to improve
RDF. Therefore, we calculate RDF in an update subtree
that is minimized by excluding a replica whose ancestor is
included in the read replica set.

3.5 Estimation of read data freshness using
a non-parametric method

An update operation for the same data object can start from
multiple replicas. We divide the calculation of RDF into
two steps. The first step is to calculate RDF when there
is an update starting replica. The second step is to calcu-
late RDF when there are multiple update starting replicas.
The calculation of RDF is to estimate the freshness of the
latest data in a read replica set. In order to achieve wide
applicability of our method, we use an estimation method
of confidence interval using a non-parametric method, be-
cause a non-parametric estimation method is independent

of a probabilistic distribution function. The first step is
described in Sections 3.5.1 and 3.5.2. The second step is
described in Sections 3.5.3 and 3.5.4. Then sections 3.5.5
and 3.5.6 formally describe the algorithm of the RDF cal-
culation and its communication complexity, respectively:

3.5.1 Estimating a delay on a link

Let X be an old sample of a delay on a link from replica r,,
to re. Let X(1),X(2),X(3)" -, X(n) be order statistics of X.
Order statistics are statistics that are rearranged in ascend-
ing order [6]. Let ¥(1),¥(2),¥(3)," -, ¥y be order statistics
of new samples of the delay on the link from replica r,
to r.. When we rearrange the samples composed of the
old and new samples in ascending order, the number of

Yoy is ("), Al the

combinations have the same probability of occuring; it is
n + m ..

()~ 6]

Now we define two functions: lower delay function
(LDF) and upper delay function (UDF). The LDF repre-
sents the most lower bound of the probability that a new
sample is delay time ¢ based on the order statistics of old
samples. The UDF represents the least upper bound of the
probability that a new sample is time ¢ based on the or-

der statistics of old samples. Let 53 and 5"} be LDF and

combinations of ¥(;),Y(3),"-

UDF of the link from r,, to 7.
p,c(t) = oy 1 and 3)
b b+1 1
p,c(’)= @

respectively where 7 is the time and b is the number of
order statistics X(;) (1 <7< n) that is equal to or less than
.

3.5.2 Delay from a replica to a read replica set

As a result of minimizing an update subtree in the way
described in Section 3.4, the update subtree changes to a
tree whose root is an update starting replica and in which,
if and only if a node is a leaf of the tree, the node is a
replica included in a read replica set.

Let LY (#) and L (r) be LDF and UDF of the delay
from replica # to the replicas that are descendants of n and
are included in the read replica set. We use L,(¢) to explain

facts that are common to both L\ (#) and LY (#). Letcbe
a child node of # and L, () be the delay function (DF) of
the delay caused by L.(¢) and 8,,.(¢).-

Since we assign the delay to a link so that the delays
of the incoming link and outgoing links are independent,
L, (t) is apparently represented using 8,; and L; as fol-
lows, instead of LDF and UDE,

Ly,i(r) = /0 ; Sn,i(r)Li(t —17)dt

Strictly speaking, the delays on the incoming and out-
going links described in Section 3.3 are not completely

&)

_._4__

independent. However, a replica receives update requests
for different data objects from multiple points through all
the adjacent links. Therefore, we consider that these de-
lays are almost independent due to this mixture of update
requests to the replica.

Lemma 1 L,(¢) is represented using Ly ; instead of LDF
and UDF as .

i)=Y /O Lne ()t /t Lug, (v)dv
k=1
/: Lﬂ,ck_l(‘t)dT /t Ly (T)dT

. / Ly, (t)dedt,)
14

where my, is the number of children of replica n and cy is

the k% child of replica n.

Proof When the delay from » to ¢ is minimum and is ¢,
the delay fromnto ¢; G € {i:'1 <i< ny}\ {k})is larger
than ¢. Therefore, the probability that the delay from » to
¢ is minimum and is ¢ is represented as

 Lug () [Lug, (t)de
/' Lnyc,‘_l(t)dr[Ly, (Ddt

/ Luy, (v)dxd.)
!
Hence, L,(#) is represented using Eq. (6).]
We calculate L,(t) by iterating Egs. (5) and (6) from
the leaves to the root of the minimized update subtree.
Then we calculate the confidence interval of the minimum
value of the delay from an update starting replica n to ev-
ery replica in the read replica set R using LDF and UDFE.
Let Py r(2) be the probability that the minimum value of
the delay from n to R is ¢.
L (1) < Pug(0) S LY (1) ®
Therefore, when L,(.l)(Tp) = p, the RDF with probability p
is Ty, : i
3.5.3 Separation of common delay function among
update starting replicas

Here, we consider the calculation of LDF and UDF when
update operations propagate from multiple update starting
nodes to replicas in the same read replica set. All the up-
date subtrees have a least common ancestor (Ica) of a read
replica set. If the Icas of the update subtrees from differ-
ent update starting replicas are the same, then the subtree
from the Ica to the read replica set is the same. There-
fore, in our method, we reduce the amount of computation
by separating the delay function calculation into two parts:
calculating the delay from the update starting replica to the
Ica and calculating the delay from the lca to element nodes
in a read replica set.

Lemma 2 We denote the minimum subtree that-includes
all the elements in a read replica set as a read subtree. Let
u be an update starting replica. The lca of all the elements
in a read replica set in the update subtree is the nearest
replica node to u in the read subtree.

Proof From the definition of lca, there is one or more
pairs of elements in a read replica that satisfy the condition
that the lca exists on the path between a pair of replicas.
Therefore the Ica is in the read subtree. Let a be the nearest
replica node in the read replica set to u. Assume that the
Icais nota. Letcy,cy,- - - ¢ be adjacent replicas of @ in the
read subtree. Let s; be the subtree consists of ¢; and all the
descendants of ¢;. This s; includes one or more replicas
in the read replica set. The Ica is included in one of s;
(1 <i < m). Let i be the s; that includes the Ica. The
path from u to a read replica in s; (i # lca) consists of the
paths from « to a and the path from a to the read replica in
s;. However, the Ica does not exist on the path. Hence, the
Ica is the nearest replica node to u in the read subtree. O

3.5.4 Delay from multiple replicas to a read replica
set)

When update operations start at multiple replicas, we cal-
culate the RDF of every update subtree. In our method, we
use two types of RDF for multiple update starting replicas.
One is the weighted average of all the RDFs and the other
is the RDF that has the worst (i.e., biggest) value among
all the RDFs. The former aims at applications that need an
overall behavior of data update. The latter aims at applica-
tions that are sensitive to the worst case of freshness.

3.5.5 Algorithm

Here, we give an overview of the operation of a replica in
a read subtree as follows.

Step 1 Construct the minimum read subtree.

Step 2 Find c that is in the minimum read subtree and is
the nearest to u.

Step 3 Every leaf replica calculates DF using Eq. (5) and
sends it to the adjacent replica.

Step 4 If a replica receives DFs from all the adjacent
replicas except s, it calculates DF using Eq. (6) and
sends it to s.

Step 5 All the replicas except ¢ terminate this algorithm
when the replica sends DF to all the adjacent replicas.
Replica c calculates DF using (6) when it receives DF

- from all the adjacent replicas and then terminates this
_ algorithm.

We describe the above algorithm in a formal way as fol-
lows. : ' ’ ‘

R: a set of read nodes.

A: a set of adjacent nodes in the update subtree.

S: a set of adjacent nodes in the minimum read subtree, includ-

ing read nodes. The initial value is the empty set. ;

N: aset of nodes to which a message should be transmitted.
nexthop(node): this function returns an adjacent node along
the path to node.

front-end node
Vry € R : send(“makeReadSubtree’ ,R,R)ig ,,
(id: node id of front-end node)

replica node
States:
status € {out_of subtree, in_subtree,
subtree_done, calculation_done},
initial value is status = out_of subtree.
SCA
flagRoot € {True,False}, initial value is False.

Transitions:
receive(“makeReadSubtree” ,R,N) j;
Precondition: status = out _of subtree

Effect:
ificRthenN:=N\i
§:=8U{j}
Va, € A\ S:
send(“makeReadSubtree” \R,Ng,)i 4,
(Ng, = {r|r € N Anexthop(r) = ar})
S:=SUu{ar}
status := in_subtree
become_lca
Precondition: status = in_subtree

Effect:
if nexthop(u) € S then flagRoot := True
status .= subtree.done
start_d f_calculation
Precondition: status = subtree.done
A the number of elements of § = 1

Effect:
calculate DF P using Eq. (5)
send(“DF" ,P); s (s € S)
status = calculation_done
receive(“DF",P}) ;;
Precondition: status = subtree.done
A the number of elements of § > 1

Effect:

Vsi € S: if received DFs of S\ {sz} then
calculate DF Py using Eq. (6)
send(“DF",Pk);,sk
if Py, sent to Vs € S then

* status = calculation_done

3.5.6 Communication complexity of algorithm

Let n, be the number of logical links in a read subtree.
In step 1, since every replica node sends a message for
constructing the read subtree, the number of messages in
step 1 is n,. In step 2, every replica node can decide if it
is ¢ without sending any messages. In steps 3 and 4, since
every replica node sends a message including DF on every
incident link, the number of messages in steps 3 and 4 is
2n.. Therefore, since the total number of messages used
in this algorithm is 3n, for one pair of an update starting

replica and a read replica set, the order of communication
complexity is O(n,).

4 Conclusion and remaining prob-
lems

In this paper, we proposed a data replication method that
both provides data with at least as much freshness as re-
quired by a client and notifies the degree of the freshness
of data actnally provided to a client. We defined a met-
ric, called read data freshness (RDF) for specifying the
client requirements about freshness and for notifying the
degree of the freshness of data read by clients. Qur RDF
calculation method has communication complexity O(n,),
when an update operation propagates among replicas that-
are connected as a tree.

Two problems still remain. One is how to select a read
replica set so that its RDF meets the client requirement.
The second is how to select an update starting replica so
that an update operation can propagate to frequently ac-
cessed replicas.

Acknowledgments

We thank Hirohide Mikami for his support and helpful
suggestions. We also thank Dr. Haruhisa Ichikawa for
his continuous support.

References

[1] E. Pacitti, E. Simon, and R. Melo, “Improving data fresh-
ness in lazy master schemes,” in Proc. IEEE 18th Inter-
national Conference on Distributed Computing Systems,
pp- 164-171, May 1998.

P. A. Bemnstein, V. Hadzilacos, and N, Goodman, Con-
currency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

C. Pu and A. Leff, “Replica control in distributed sys-
tems: An asynchronous approach,” in Proc. of the 1991
ACM SIGMOD International Conference on Management
of Data, pp. 377-386, May 1991,

R. Ladin and B. Liskov, “Lazy replication: Exploiting the
semantics of distributed services,” in Proc. of the Workshop
on Management of Replicated Data, pp. 31-34, 1990.

R. Ladin, B. Liskov, and S. Ghemawat, “Providing high
availability using lazy replication,” ACM Transactions on
Computer Systems, vol. 10, pp. 360-391, November 1992.

S. Shiba and H. Watanabe, Statistical Method IT Estimation.
Shinyosha, 1976.

D. L. Mills, “Precision synchronization of computer net-
work clocks,” Computer Communication Review, vol, 24,
pp. 28-43, Apr. 1994,

T. Yamashita and S. Ono, “A statistical method for
time synchronization of computer clocks with precisely
frequency-synchronized oscillators,” in Proc. IEEE 18th
International Conference on Distributed Computing Sys-
tems, pp. 32-39, 1998.

D. Malkhi, M. Reiter, and R. Wright, “Probabilistic quo-
rum systems,” in Proc. ACM Symposium on Principles of
Distributed Computing, pp. 267-273, 1997.

L. Lamport, “Time, clocks and the ordering of events in
distribued systems,” Communication of the ACM, vol. 21,
pp. 558-565, July 1978.

[2]

[3]

[4]

[5

[ot}

[6

—d

m

8

—

[91

[10]

__.6_

