RIWFAF 1 TilfE B 95— 8
(1999. 11. 19)

Response Time Reduction in Pseudof-Active Replication
7 Naokazu Nemoto, Hiroaki Higaki, Katsuya Tanaka, and Makoto Takizawa .

Dept. of Computers and Systems Engineering
: ‘ Tokyo Denki University
{nemoto, hig, katsu, taki}@takilab.k.dendai.ac.jp

Distributed applications are realized by cooperation of mulliple objects based on- client-server style
communication. Server objects are replicated on multiple computers for achieving faull-tolerance. In the
conventional active replication, all the replicated server objects (replicas) receive the same requests in the
same order from client objects, invoke the same operations (methods), and send back responses. These
‘replicas might be placed on different kinds of computers with different processing speeds. In addition, these
computers might be connected to different networks, that is, replicas might be distributed in WAN (wide
area network), e.g the Internet. For applying the active replication o such a heterogeneous environment,
this paper proposes a pseudo-active replication where a client object receives only the first response from
the replicas. In order to reduce the recovery time due io the difference of processing speeds among the
replicas, two technigues are introduced. One is to detect the fastest replica and the other is for the other
replicas, i.e. slower replicas, to catch up with ihe fasiest one. Here, requests for identity and idempotent
operations (methods) are not invoked in the slower replicas. Furthermore, in order to reduce the response
time for requests from client objects, requests for compatible operations (methods) are invoked in different
order in the replicas. The order is decided based on the round trip time (RTT) between client objects
and replicas for supporting WAN. environments. These are realized b% piggying back some additional

information with the conirol messages for the totally ordering protocol. That 13, no additional message is
required in the proposed protocol, :

W A - Ja 2~ “ i} J
BURENEZENIIBIIA VAR AY 4 LOEHEHE
RA E— oEEE HP B ER#®
{nemoto, hig, katsu, taki}@takilab.k.dendai.ac.jp
 OEREMAY BTN HH AT ATER

ST T - arid, BROA T2 7 POBRICL o TEREN TS, ZI T 2747 b
HF—NEOBEFHAVWSNREI LD SV, 74—V LT REERTLLDIL, 147727 b8
L. BREOEL23 a2y RETLZHEFHWSI TS, FEIEOFENH) b, HRIALH -
A7V M (LTI A) BTRCEETIRBNSEMETE, FLTIABIFATY A7 V27 05
BRESNAERA v - VAA—AFCTREL, BRELRT, JOHEEL, TTOL 7Y H A0 Ui 2
SEa=FICRBEN, NS0TV EaA—FHFE—DRy M T—FIERIN TS LI LHELBRETE
HECHEET S, LAL, BEORY I —ZREE, 70ty HORERENRLLIL a8y, K
DRy MT—ZICERESNLENELRETHEL, COLILRETTR, V7 hiilENRLs 7oLy
HEFEOI 2 —FIIRBEN, TARLOIVE2—IHRLEA Y T2 IIEBRENEZLFRETH
Bo TOER, /94T P OIBEBERILIIHITLIIBLLILIIh D, BRBIMBELTI, 754
FTYRATI2 b FTRTOL T IDGIBEA v -V FT Mo TR LD TEDRELZHT LI LM
TEb, CHICE-T, L7V IYORBAERL, L7 HIZEESEELLBATOIREN O OBEE A —
WAy FEIBEALFELZVWEVIFIEIBLRTHWE LIAH, 75947 b4+ 7 V20 PAOILERER
i, BRISESNAEEA v t—CnAFERBICL - THRESNEIEDS, VAR AY L LAHKELE
BEVHMENH B, KFLTIE, 77947 47927 VHFROOIBEEZBEATENEZHETL
EIZEoTUVRARY AY A L% EHT 2 RUBHNSELEIRET 5. RUBHNSELOERGMHIC L 5T
&L AEERFOBRIIOVWTE, 7347 437727 bRL0BRERBLLEDN S, 1)BLTYHE
BOLTUAEHRL, 2) BOL 7Y HRETTILEOLVERERBLAVWI LICE), BV TY A
BOECBBTEATL I LIZE o TRRT 5, /4, BRPLBLCERFZOLENEFIRELLVSO
ZonTiE, EL 7Y AN TELRITRLZZEFCRETHILIZLY, VAR RS LOEHEMS. &
L7 ARABIEFE 2 RETAOI Ay =V ERNENTHEILERET, 7F94AT 0 A7V bED
MOEEBEFMEL, LVFEVIZFATY ATV bPLOBERZFRICUBTLZHELAV L. KR
OREFTZ7OPINELIEFE 7T FIVOHHA v =T I20LOPOFREMZ ZETTERTHIE
HTE, AvE—VETHELTIER(EREND, U SO .

i

1 Introduction

According to the advance of computer and
network technologies, network applications are
widely developed. These applications are realized
by multiple objects. An object is defined as a col-
lection of data and operations (methods) to ma-
nipulate the data. For example, C++ and Java
are used for programming objects, and CORBA
and Java RMI are getting to. be standards of a
platform of distributed objects The objects coo
erate by exchanging messages with each other. In
this paper, the communication in the system is
assumed to be in the client-server style. A client
object sends a request message to a server object,

‘the server object invokes a requested oﬁeration,

and sends back a response message to the client
object. Here, mission critical applications are also
implemented and these applications are required
to be executed fault-tolerantly.

There are two kinds of techniques. One is repli-

- cafion and the other is checkpoini-recovery. In the
replication technique, a server object is replicated
and these replicas are placed on multiple comput-
ers. Even if some of the replicas fail, the oth-
ers continue to process the requests from client
objects. On the other hand, in the checkpoint-
recovery technique, each object takes a checkpoint
by storing the local state information in the stable
storage during the execution of an application. If
a certain object fails, the recovery is realized by
restarting the objects from the checkpoints. This
paper discusses a novel method of the replication.

An active replication has been proposed where

all the replicated objects (replicas) are opera-
tional. Here, a client object sends request mes-
sages to all the replicas. Since all replicas have to
send back the same response to the client and be in
the same state after processing the required oper-
ation, the same operations are invoked in the same
order by all the replicas. Thus, the request mes-

sages are transmitted by using a totally ordering .

rotocol. After receiving the response messages

rom all the replicas, the client object accepts the
response and continues to exectite an application.
That is, replicas are synchronized each time a re-
sponse 1s accepted by a client object. An active
replication works well in a homogeneous environ-
ment where the processing speeds of the replicas
~are the same and the message transmission de-
lays between a client object and the replicas are
also the same. However, there are different kinds
of computers in the recent network environment
each replica may be placed on different kinds of
computers, That is, computation is realized by
different kinds of én'ocessors with different pro-
cessing speed and different reliability. Hence, the
response times of the replicas are different and a
client object accepts the response when it receives
the last response message from the replicas. That
is, much synchronization overhead is required. In
order to solve this })roblem, this paper proposes
a pseudo-active replication. Here, a client object
only waits for the first response from the replicas.
That is,’on receipt of the first response message,
-the client object accepts it and continues to ex-
ecute the application. The other response mes-
sages from the slow replicas are discarded. Here,
less synchronization overhead is required and the
response time for a request is reduced.)

“Since the processing speeds of the replicas are
different and the replicas are not synchronized, it
takes longer recovery time after the failure of the
fastest replica than ti'le active replication. Because

in order to catch up with the the failed fastest
replica s;, the operational replicas have to pro-
cess requests that s; processed before the failure.
In order to reduce the recovery time, the repli-
cas find the fastest replica, and if a replica is not
the fastest one, it invokes a procedure to catch
up with the fastest one. For detecting the fastest
replica, sequence numbers assigned to the most
recently processed requests by all the replicas are
used. -A slower replica removes requests waiting
to invoke an identity or idempotent operation. In
addition, if two requests are for compatible oper-
ations, replicas process these requests in different
orders for reducing the response time. In the pro-
posed protocol, round trip times between a client
object and the replicas are used as the metric for
deciding the processing order. The sequence num-
bers and the round trip times are piggied back to
the control messages of the totally ordering pro-
tocol. Hence, no additional message is required.
The rest of this paper is organized as follows: In
section 2, we review the conventional replication
including the active and passive replications. In
section 3, a pseudo-active replication is proposed.
Here, the method to detect the fastest replica and

- the procedure for the slower replicas to catch up

with the fastest one is é)reseqted. In section 4,
the protocol of the pseudo-active replication with
high performance is designed. -

2 Conventional Replications
2.1 System Model

In most of the recent distributed applications,
the objects in a network system are classified into
client objects and server ones. A client object of

requests a server object of to invoke a specified

operation op by sending a request message. On

receipt of the request message, o] manipulates its

data through op and responds to of by sending
a response message. This type of communication
among the objects is called client-server style. In
this paper, the communication among the objects
is assumed to be the client-server style. In order
that the application programs are executed fault-
tolerantly in S, each server object of is replicated

. and located on multiple computers. Here, replicas

0j; (1 < k < n;) of o] are composed of the same
data and the same operations. . :

2.2 Passive and Active Replication

There are two main approaches for the repli-
cation techniques: a passive_ replication and an
active replication. In the passive replication, only
one replica o, is operational. A client object only
sends a request message to of;. Then, only of,

invokes a requested operation, changes its state,
and sends back a response message to the client

* object. Another replicas of, (2 < k <:n) are not

operational. The state of the passive replicas are
sometimes updated by receiving the newest state
information from the operational replica of,. This

is called a checkpoint. If o}, fails, one of the pas-
sive replicas, say 0j,, takes over it. o}, starts to ex-

ecute an application from the most recent check-
point. Here, the recovery procedure takes time
since of, becomes operational at the checkpoint

and re-invokes the operations that of, has already
finished in order to catch up with the failed oj;.

—44—

% g dp d; oG o) oy ds
S S
L
T .
] |
/

Passive replication Active replication

Figure 1: Passive and active replication.

In the active replication [1,4,10], all the replicas
are operational. A client object of sends copies of
a request message for an operation op to all the
replicas 0j; (1 < k < n;). In order to keep the

states of the replicas same, requested operations
are invoked in the same order by all the replicas.
It is realized by using a totally ordering protocol.
Every of, invokes op and sends back a response

message to of. After receiving all the response
messages, of accepts the response and delivers it
to the application. That is, the replicas o}, are

synchronized each time a client object accepts a
response. Since all the replicas are operational

and synchronized, even if a certain replica Of s

fails, the other replicas of, (k # k') can continue
to execute the application without the suspension
time. Hence, the Tecovery procedure in the active
replication requires less overhead than that in the
passive one.

3 Pseudo-Active Replication

In the conventional active replication, all the

replicas o}, (1 < k < n;) of a server object o} are

synchronized each time a client object of accepts
a response. It works well in a homogeneous en-
vironment where the computers on which o}, are

located are assumed to be the same kind ones with
the same processing speed and the same reliability
and to be connected to the same local area net-
work since of, are easily synchronized. That is, it

takes the same time to finish the requested oper-
ation and the same transmission delay is required
for the messages between a client object and the
replicas. Therefore, of can receive all the response
messages from of, at almost the same time. This

assumption is reasonable in a local-area network.

However, a wide-area network e.g. the Inter-
net, is usually heterogemeous. Various kinds of
computers are connected to various kinds of net-
works. That is, there are processors with different
processing speed, reliability and availability, and
there are networks with different transmission de-
lay, bandwidth and message loss ratio. Hence, the
response times from the replicas is different. In
the active replication, only when a client receives
all the responses from the replicas, it accepts the
response and delivers it to the application. There-
fore, the response time for the application is dom-
inated by the last response message, that is, the
client has to wait after it receives the first response
message. Especially in the wide-are network, the

-objects and the other replicas still ho

time overhead for the synchronization becomies a
serious problem. . .

In order to solve this problem, the authors have
proposed a pseudo-active replication [5-7, 11].
Here, a client object of only waits for the first
response message from the replicas of;,.. ., Ofn,-
On receipt of the first response message, of ac-
cepts and delivers it to the application and con-
tinues to execute the application. of only discards
the other response messages. Thus, the response
time for a request in a client object is reduced:

However, since o}, are placed on processors
with various processing speeds and are not syn-
chronized, it may occur that a certain replica [
finishes all the operations requested bir the client

ld some re-
quests where the requested operations are not yet
invoked since 0}y is placed on a fast processor and
the others are placed on slower processors. Now, if
o] fails, the recovery procedure takes time since
the other replicas have to finish the operations
that of,, has already finished before the failure.
If these operatfons are finished, the operational
replicas catch up with the failed fast replica and
receives requests that have not yet finished the

requested operations. This time overhead for re- .

covery is similar to that in the passive replication.
In order to reduce the recover time, the authors
introduce the following two mechanism in the pro-
posed protocol: :

o A client object tells the replicas which replica
is the fastest. This is realized without the
communication among the replicas.

e If a replica Of s finds to be slower, it omits

some request without invoking the requested
operation in order to catch up with the
fastest replica. i
In the papers [7, 11], the authors proposed the
method to find the fastest replica based on the
causal relationship between a response message
for a request and the successive request message.
Here, the faster replica is defined as follows:
[Faster.and slower replicas (Conventional)] -
Suppose a client object of receives response mes-
sages res; from a replica o), and sends a succes-
sive request message req. If res; — req, o, isa
faster replica. Otherwise, ofy is a slower one. O
Now, identity and idempotent operations are
defined as follows:
[Identity operation]
Let op(s) denote a state of a replica o), after an

operation op is invoked in oj at a state s. If
op(s) = s, op is an identity operation. O
[Idempotent operation]:
Let opoop’ denote a composition of two operations
op.and op’ and mean that op’ is invoked after op
is finished. Hence, op o op'(s) denotes a state of
replica of,, just after op and op' are invoked in this
order in of, at a state s. In addition, let [op(s)]
denote a response sent by a replica o}, when an
operation op is invoked at a state s andis finished.
If op o op'(s) = op/(s) and op'(op(s)) = op/(s), op
is an idempotent operation. O

In order for a slowet replica 05, to catch up with

a faster one oj;, 0] omits some requests with-
out invoking operations. Even if o}, omits some
requests, a state ‘of o}, after finishing each oper-
ation should be the same as that of of;, and a
response of of, should also be the same as that of

o};. Hence, the following requests can be omitted.

[Omissible request]

If an operation op requested by a request req is an
identity or an idempotent operation, op is omissi-
ble in a slower replica [7).

[Omission rule]

If the following conditions are satisfied, an opera-
tion op is omitted in a replica of;.

i
1. o} is a slower replica.

2. ? is an omissible, i.e. op is an identity or an
idempotent operation. .
3. Some o, (k' #yk’) has already finished op.

In [7] and [11], by using vector clocks [9], the
above rules 1 and 3 are checked in of,. In addition,
every request message is assumed to be transmit-
ted to all the replicas in the same order, i.e. to-
tally ordering protocol is assumed to work in the
lower protocol layer. In the protocols discussed
in {7] and [11], the requests are also accepted in
the total order and the requested operations are
invoked in the same order in an application of ev-
ery replica. However, a certain pair of operations
op and op’ can be invoked in different order in the
replicas.

[Compatible and conflict operations]

Let op and op* are operations required to be in-
voked at a state s in an object 0. These opera-
tions. are compatible iff op o op'(s) = op’ o op(s),
[op(s)] = [op(op/(s))], and [op/(op(s))] = [op(s)]

for every state s of 0. Otherwise, these operations
are conflict. O

If op and op’ are compatible, these operations

can be invoked in different order in each replica. .

Even if two replicas o}, and o], invokes op and

op in different order, both of them send back the
same responses to the clients and get the same
state when the operations are finished. By invok-
ing the compatible operations in different order
in each replica, less response times it takes than if
the operations are invoked in the same order in all
the replicas. For example in Figure 3, compatible
operations op and op’ are requested to be invoked
in replicas of and o ik’ by client objects of and
o5, respectively. Here, according to the totally
ordering protocol, op and op are invoked in this
order in both of, and o},,. The response times

of op and op' are T and 7", respectively. On the
other hand in Figure 77, o}, invokes op before op’
and of,, invokes op after op/, i.e. ol and 0}j in-
voke op and op’ in different orders. However, since

and op are compatible, the responses sent by
o} and 0f,, are the same and the state of, and

o}, are also the same. In addition, the response

times of op and op’ are T and T" < T, respec-
tively. Hence, less response time is required. This
intentional change of invocation order of requests
is seemed to work well in a wide-area network.

replicas and client objects are widely distributed,

the difference of message transmission delays gets
large. Hence, if each replica gives hiﬁher priority
to the operations requested by clients located near
the replica, the response times get shorter.

C C
& G g &

J%
rlop’) §
—
1/ -»-—-"‘/\
T op | op \
N O
op r !

1 ’ Y
Figure 2: Response time in total order.
c Iy
o; O}Yk fﬁc op
¥ ,
el | zyﬁ
op |
‘/0]7

op’
! /
[P
y

/

Figure 3: Response time reduction.

That is, the message transmission delay be-
tween a client objects and the replicas is reason-
able for deciding the computation order of com-
patible operations. The message transmission de-
lay is not constant but time-variant [12]. There-
fore, it is required to be measured each time an
operation is requested. In our protocol proposed
in the next section, it is measured in the first and
the second é;ha.se of total ordering protocol. Fi-
nally, in order to avoid that the computation of
some compatible operation is postponed infinitely,
the maximum number E,,,, of order exchange 1s
predetermined. If the order of an operation op
1s exchanged FE,,; times, op becomes a conflict
operation with any other requests.

4 Protocol

In this section, a protocol for the pseudo-active
replication protocol is discussed. This protocol is
based on.the three phase totally ordering proto-
col. Two sequence numbers and one time value
are piggied back to control messages of the to-
tally ordering protocol, One sequence number is
used for the totally ordering delivery of messages
and the other sequence number is for finding faster
and slower replicas. The time value is a round trip
time (RTT) between a client object and a replica.
This is used for a metric of intentional change of
invocation order of compatible messages.

4.1 Totally ordering protocol

- This subsection shows a totally ordering pro-
tocol which is a base of the proposed pseudo-
active replication protocol. Here, suppose that

each replica of, (1 < k < n;) of of manipulates
the following variables. B

e The last sequence number lseg;; that is as-
signed to the most recently received request
message from a client object.

e A request buffer RBUFj; which holds re-
guest's whose invocation order has not yet
decided,

e An application queue APQ@;; which holds re-

uests whose invocation order is decided but
that has not yet invoked. An application
takes a request out of APQ;; and invokes an
operation whose identifier is carried by the
request.

Each control message m transmitted for the
totally ordering protocol [3] carries the following
variables. . :

e A request sequence number seq,,.

o A replica identifier 71D,.

Each replica is assumed to be assigned an iden-

tifier which is comparable with each other. An

operator for comparing two identifies is <.

[Totally ordering protocol]

1. A client object of sends copies of a reser-
vation message m” which carries a request
r(op) of an operation op to all the replicas
0f, (1 <k <ny). ‘

2. On receipt of m”, of, increments Iseq;; by
one and stores r(op) into RBUF;; with a
temporal sequence number lseg;;. Then, o
sends back a confirmation message m° where
5€qme = Iseqjx and rIDy- is an identifier of
[

3. Ajfter receiving m® from every replica o,

(1 < k < nj), of sends copies of a final mes-

sage m/ where seg,,s = max; segms where
mj is a confirmation message from oj, and
rID,.+ = rIDpe.

4. On receipt of m/, 0}, takes r(op) out of
RBUF;; and assigns a final sequence num-
ber seq,,s to r(op). r(op) is sorted in APQ;
in the order of the final sequence numbers.
If there are multiple requests with the same

final sequence number, these requests are
sorted by using 7ID.

4.2 Metric of Processing Speéd

In the pseudo-active replication, if a replica
finds that it is slower, it invokes a procedure to
catch up with faster ones. For this purpose, in [7]
and [11], causal relationship between a response
message for a request and the successive request
message is used. It can supiort replicas which
are located on computers with different process-
ing speeds only if these computers are connected
to the same network. In this case, since the mes-
sage transmission delay from the replicas to the
client object is almost the same, the causal rela-
tionship represents the processing speeds of the
computers.

However, if the replicas are located on comput-
ers connected to different networks, that is, the
replicas are distributed in a wide-area network,
the causal relationship represents the difference
of sum of the processing speed and the message
transmission delay. Hence, it is not a good metric

for invocation of the catch-up procedure.

c s ~S c
Oi Ojk Ojk, Oi ’
-
/’/// \\\ \\\
il ;'\ >N~

slower -
— 1

~
slower™.
SSCT| |messag
faster \ faster

Figure 4: Metric for processing speed in WAN.?7

For example, in Figure 77, all the replicas may
find it is slower. Consider that a client object of
and a replica of, are in Japan and another client
object of, and another replica o}, are in Europe.
For simplicity, o}, and oj. are located on com-
puters with the same processing speed. Here, of

sends a request after receiving a response for the
previous request from o}, and before receiving it

from of,. On the other hand, of sends a request

after receiving a response for the previous re':(lluest
from of;, an before receiving it from of,. Thus,
both o}, and oj,, find that it is slower on receipt of
the request messages from of, and of, respectively.

In order to solve this Froblem, a metric_of pro-
cessing speed of each replica should be used for in-
vocation of the catch-up procedure. Here, the pro-
posed. protocol uses the sequence number fseq;;

of the request that has been most recently finished
in a replica Oy At the second step of the totally
ordering protocol, o], sends back a confirmation
message m° to a client object of. Here, fseq;; is
iggied back to mS. Then, on receipt of confirma-
ion messages from all the replicas, of computes

mfseq = maxy, fseg;; and sends a final message
mf with mfseq. On receipt of the m/, o}, com-

- pares fsegjx with mfseq. If fseq;x = mfseq, oj;

is a faster replica. Otherwise o}, is a slower one.
In order to get a tradeoff between the efficienc
and overhead of the catch-up procedure, the fol-
lowing rule is applied:

[Invocation of catch-up procedure]

If mfseq — fseg;r > L where L is predetermined
threshold, of, invokes a catch-up procedure. O

In the catch-up procure, of, searches identity

and idempotent requests in APQ;; from the head
to the tail and takes them out of APQ)j:.

4.3 Metric of transmission delay

" As discussed in Section 3, a pair of compati-
ble requests can be invoked in any order in each
replica. In order to reduce the response times of
requests, each replica gives a higher priority to re-

uests issued by client objects located nearer to
the replica. Hence, the message transmission de-
lay between client objects and. a replica can be
used for a metric.for deciding the processing order
of the compatible requests. In the proposed proto-
col, a round trip time (RTT) between a client ob-
ject of and replicas o}, are measured in of. That

is, of measures the time T since it sends a reserva-
tion message to a replica 0;), till it receives a con-
firmation message from 0j;. T'is an RTT between
of and o} T is piggied back to a final message to
o};. If there is a pair of compatible requests r(op)
and r(op') in an application queue APQ; of 0%,
o}, compares the RTTs piggied back to these re-
quests. The request with a shorter RT'T is ordered
before the other in APQ;y.

Finally, the pseudo-active replication protocol
is as follows.
[Pseudo-Active Replication Protocol]

1. A client object of sends copies of a reser-
vation message m” which carries a request
r(op) of an operation op to all the replicas
0}, (1< k < my). of starts a timer to mea-
sure RTTs T;;.

2." On receipt of m", 05, increments lseg;; by
one and stores r(op) into RBUF;; with a
temporal sequence number lseg;z. Then, o}
sends back a confirmation message m° where
seqme = lseqjr and I D, is an identifier of
0} In addition m® carries fseg;g.

3. On receipt of m* from a replica oy, of stops
a timer for Tj;;. After receiving m* from ev-

~ ery replica 0§, (1 < k < n;), of sends copies
of a final message m/ which carries seq,,; =
max; segm: and mfseq,s = max fseqms
where m, is a confirmation message from o}y
and rID,,s = rIDp-. T;j is also carried by
m’ to Of-

4. On receipt of m/, of, takes r(op) out of
RBU Fj; and assigns a final sequence num-
ber seq,,s to r(op). r(op) is sorted in
APQji in the order of the final sequence
numbers. If there are multiple requests with
the same final sequence number, these re-

uests are sorted by using rID. _ff mfseq —
}seqj & > L where L is predetermined thresh-
old, o invokes a catch-up procedure. Iden-
tity and idemf)otent re?uests are removed
form APQj. If a pair of successive requests
in APQ);; are compatible, these requests are
ordered in their RTT between oj; and the
client objects.

5 Concluding Remarks

In order to realize a high performance active
replication in a wide area network, this paper
has proposed a pseudo-active replication. Here,
a client only waits for the first response from a set

of replicas. In order to reduce the recovery time

from a failure of the fastest replica; a procedure -

for omitting identity and idempotent requests is
invoked. For the invocation, each replica finds it
is slower by using the sequence number assigned
to the most recently finished in the replica. In ad-
dition, for reducing the response time, some com-
patible requests are processed in different order in
a set of replicas. The order is decided based on an
RTT between client objects and a replica. These
additional information, is carried by control mes-
sages of the totally ordering protocol.” Hence, no

additional control message is transmitted in the
proposed protocol. i

References’

[1] Ahamad, M., Dasgupta, P., LeBlanc R.
and Wilkes, C., “Fault Tolerant Comput-
ing in Object Based Distributed Operat-
ing Systems,” Proceeding of the 6th IEEE
Symposium on Reliable Distributed Systems,
pp. 115-125 (1987).

Barrett, P.A., Hilborne, A.M., Bond, P.G
and Seaton D.T., “The Delta-4 Extra Perfor-
mance Architecture,” Proceeding of the 20th
International Symposium on Fault-Tolerant
Computing Systems, pp. 481-488 (1990).

Birman, K.P. and Joseph, T.A., “Reliable
Communication in the Presence of Failures,”
ACM Transaction on Computer Systems,
Vol. 5, No. 1, pp. 47-76 (1987).

[4] Higaki, H. and Soneoka, T., “Group-to-
Group Communications for Fault-Tolerance
in Distributed Systems,” IEICE Transaction
on Information and Systems, Vol. E76-D,
No. 11, pp. 1348-1357 (1993).

(5] Higaki, H., Morishita, N. and Takizawa,
M., “Active Replication in Wide-Area Net-
works,” IPSJ Technical Report, vol. 98,
No. 84, pp. 93-98 (1998).

Higaki, H., Morishita, N. and Takizawa, M.,
“Protocol for Pseudo-Active Replication -in
Wide-Area Network” IPST Technical Report,
vol. 99, No. 4, pp. 85-90 (1999).

Ishida, T., Higaki, H. and Takizawa, M.,
“Pseudo-Active Replication of Objects in
Heterogeneous Processors,” IPSJ Technical
Report, vol. 98, No. 15, pp. 67-72 (1998).

Lamport; L., “Time, Clocks, and the Or-
dering of Events in a Distributed System,”
Communications of the ACM, Vol. 21, No. 7,
pp. 558-565 (1978). v '

Mattern, F., “Virtual Time and Global
States of Distributed Systems,” Parallel
and Distributed Algorithms, North~Holland,
Pp- 215-226 (1989). .

Powell, D., Chereque, M. and Drackley, D.,
“Fault-Tolerance in Delta~4,” ACM Operat-
ing System Review, Vol. 25, No. 2, pp. 122-
125 (1991). '

Shima, K., Higaki, H. and Takizawa, M.,
“Pseudo-Active Replication in Heteroge-
neous Clusters,” IPSJ. Transaction, Vol. 39,
No. 2, pp. 379-387 (1998).

Tachikawa, T., Higaki, H., Takizawa, M.,
Liu, M., Gerla, M. and Deen, M., “Flexible
Wide-area Group Communication Protocols
~ International Experiments,” Proceedings of
the 27th International Conference on Parallel
Processing, pp. 570-577 (1998). :

2

sl

3

—

—_—
(=2
=

[7

—_—

8

—

[9

—

(10]

[11]

(12]

