TNFAF 1 TEEEHBNE 98— 2
(2000. 6. 8)

Checkpointing Protocol for Object-Based Systems

Katsuya Tanaka and Makoto Takizawa

Tokyo Denki University
Email {katsu, taki}@takilab.k.dendai.ac.jp

Object-based checkpoints are consistent in the object-based system but may be inconsistent according
to the traditional message-based definition. We present a protocol for taking object-based checkpoints
among objects. An object to take a checkpoint in the traditional message-based protocol does not take
a checkpoint if the current checkpoint is object-based consistent with the other objects. The number of
checkpoints can be reduced by the object-based protocol.

PEA T MREBICSWTAO— /Ny 7RIBHK &b

Hr Bl I
HRERKT
E-mail {katsu, taki}@takilab.k.dendai.ac.jp

Van &l 7 MERECE, BERTHEERRINBEOA 7V PRy -V ORZEIZL VG
ﬁ{?%ﬁ")o dbzﬁw/‘w SADOLDERAY L=V ORELIBVT, 7V 2y MIBERENLAY Y F 7
REL., %2 /t—/’?;’i'é‘ X5 2, BEISHALAV Yy FPMBOF TV 27 b Ay e RET LBE
bHb, RHFLTWR, PEIAT V27 PV AFAEBTAERMIIELWREEZFZREL, ELWVIRETT 2 v
yHRL Y FMM%?N HOTT LN, RIT—NNy s OfoHO7H b3l %a‘%% b, F10 BRI
D, RFEIILD, BROFKIDOEBTHF = v 781 > MEPHIBENRS Z R

1 Introduction

Distributed applications are composed of mul-
tiple objects cooperating by exchanging messages
through networks. An object is an encapsulation
of data and methods for manipulating the data.
A method is invoked by a message passing mech-
anism. .On receipt of a request message with a
method op, op is performed on an object and a re-
sponse message with the result of op is sent back.
The method op may invoke methods on other ob-
jects, ie. invocation is nested. A conflicting rela-
tion among the methods is defined based on the
semantics of the object [3]. If a pair of methods
op; and op; conflict, a state of the object obtained
by performmg op1 and op, depends on the com-
putation order of op; and op;.

In order to increase the reliability and availabil-
ity, an object takes a checkpoint where the state
is saved in the log. A faulty object o is rolled
back to the checkpoint and then the computation
is restarted. Here, objects which have received
messages sent by the object rolled back also have
to be rolled back so that there is no orphan mes-
sage [2], i.e. messages sent by no object but re-
ceived by some object.

Papers [1,2,4-7,10] discuss how to take a glob-
ally consistent checkpoint for multiple objects.
The paper [4] presents synchronous protocols for
taking checkpoints and rolling back objects. The
paper [5] presents the concept of significant re-
quests, i.e. the state of an object is changed by
performing the request. If the object o is rolled
back, only objects which have received significant
requests sent by o are required to be rolled back.
Thus, the number of objects to be rolled back can
be reduced. However, in the object-based sys-
tems, different types of messages, i.e. request-and
response messages are exchanged among the ob-
jects and methods are invoked in

.._7_

various ways. In the paper [5], the transmissions
of requests and responses and types of invoca-

tions are not considered. Since the traditional
consistent checkpoints are defined in terms of mes-

sages exchanged among objects, the definition is
referred to as message-based.

We define objeci-based consistent (O-con-
sistent) checkpoints which can be taken based
on conflicting relations among methods in various
types of invocations like synchronous and asyn-
chronous ones in object-based systems. The O-
consistent checkpoint may be inconsistent with
the traditional message-based definition. In this
paper, we present a communication-induced pro-
tocol where O-consistent checkpoints are taken for
objects without suspending the computation of
methods. By taking only the O-consistent check-
points, the number of checkpoints taken by ob-
jects can be reduced.

In section 2, we discuss the object-based check-
points. In section 3, we show a protocol for taking
O-consistent checkpoints. In section 4, we present
how to restart the objects. In section 5, we evalu-
ate the protocol by comparing with the message-
based protocol.

2 Object-Based Checkpoints
2.1 Objects

A distributed system is composed of multiple
objects 01, ..., on. Each object o; is an encap-
sulation of data and a collection of methods for
manipulating the data. In this paper, we assume
methods are synchronously or asynchronously in-
voked by using the remote procedure call. On
recezpt of a request message m with a method op,
op is performed on the object o;. Here, let op’
denote an instance of op, l.e. a thread of op on
0;. Then, the response message with the result of
op is sent back. The method op may furthermore
invoke another method ops, i.e. invocation of op is
nested. If op; is synchronously invoked, op blocks

until receiving the response of op;. In the asyn-
chronously invocation, op eventually receives the
response of op; but op is being performed without
blocking.

Let op(s) denote a state obtained by perform-
ing a method op on a state s of an object o;.
0p1.0p, shows that a method op; is performed af-
ter op; completes. A pair of methods op; and
opy of an object o are compatible iff opreopa(s) =
opy.opy(s) for every state s of o; [3]. op; and ops
conflict iff they are not compatible.

Each method op is performed on an object o; in
an atomic manner. Only if op commits, the change
of o; done by op can be viewed by other methods.
Each object supports some synchronization mech-
anism like locking to realize the atomicity.

An object supports two kinds of methods, i.e.
update method which changes the state of the ob-
ject and mon-update one which does not change
the state. For example, deposit of a Bank object

is an update method and check is a non-update
one.

A message m participates in a method op if m
is a request or response of op. Let Op(m) denote
a method in which a message m participates.

2.2 Object-based checkpoints

An object o; takes a local checkpoint ¢! where
the state of o; is stored in thelog I; (¢ = 1, ..., n).
If the object o; is faulty, o; is rolled back to the
local checkpoint ¢ by restoring the state stored in
the log !;. Then, other objects have to be rolled
back to the checkpoints if they had received mes-
sages sent by the object o;. A global checkpoint
cis a tuple (¢!, ..., ¢") of the local checkpoints.
From here, a term checkpoint means a global one.

Suppose an instance op} of an object o; invokes
a method op; in another object o;. Figure 1 shows
possible checkpoints to be taken in the objects o;
and o;. Here, no local checkpoint ¢} is taken if op}
is synchronously invoked because op} blocks after
invoking op}. Let m;(op’, ¢/) be a set of instances
performed on an object o; for a local checkpoint
¢, which

o precede op’ and

o succeed a local checkpoint ¢/ or are being per-

formed at ¢ in o;.

. opgl} in‘

For example, wj(op;, c]l) = {op’z'l, ..
Figure 1.

V time

Figure 1: Possible checkpoints.

A local checkpoint ¢* is complete if there is no
method bemg performed at ¢*. For example, c}
is incomplete in Figure 1. Suppose the object o;
is rolled back to a local checkpoint c’ If c’ is -
complete, the state of o, is just restOred from the

log. If (:;L is incomplete, every method being per-
formed at ¢, has to be aborted after the state is

restored. However, no method invoked by a non-
update method is required to be rolled back.

Table 7? summarizes the message-based incon-
sistent but O-consistent checkpoints in Figure 1,
where checkpoints marked * are incomplete if opg
is being performed. For example, a checkpoint (ch,
c,) is O-consistent if op}, is a non-update method.

If another object o; took a local checkpoint, o;

has to decide whether or not to take a new local
checkpoint. We define an influential message : such

that o; takes a local checkpoint only if o; receives
influential messages from o;.

[Definition] A message m is influential iff a
method instance op} of an object o; sends a mes-
sage m to another object o; and one of the follow-
ing conditions is satisfied:

1. op"i is an update type if m is a request mes-
sage, i.e. op} invokes op} in o;.

2. If m is a response message of op’Z‘Z opg is an
update type or conflicts with some instance in
m;{op}, ¢) where ¢ is a local checkpoint most
recently taken in o;. O

If an instance op® is aborted, only instances re-
ceiving influential messages from op* are required
to be aborted.

Based on the definition of influential messages,
O-consistent checkpoints are defined as follows.
[Definition] A global checkpoint ¢ = (c!, ..., c")
is object-based comsistent (O-consistent) iff there
is no influential orphan message at c. O

For detailed discussion about the definition of
O-consistent checkpoints, see [8,9]

3 Checkpointing Protocol
3.1 Communication-induced protocol

We briefly present a basic communication-
induced protocol for taking message-based consis-
tent checkpoints among objects where objects are
not suspended while checkpoints are being taken.
First, each object o; is assumed to initially take a
local checkpoint ¢ where the initial state of o; is
saved in the log ;. An initial checkpoint (c}, ...,
%) is assumed to be consistent. After sending and
receiving messages, the object o; takes a first local
checkpoint ¢i. Thus, o; takes the tth local check-
point ¢} after taking the (t—1)th local checkpoint
¢, (t > 0). The object o; sends and receives
messages after taking ci_; before ci. Here, ¢ de-
notes a checkpoint identifier of ¢i. The checkpoint
identifier is incremented by one each time a local
checkpoint is taken.

Suppose o; a,utonornously takes a succeeding lo-
cal checkpoint ¢} after taking c_,. Then, only if

._..8_

there is a message m which o; sends to another ob-
ject oj, m is marked checkpointed. By sending m,
the object o; notifies the destination objects that
o; has taken c}. Thus, o; does not send any addi-
tional control message to require other objects to
take local checkpoints. Here, suppose that a local
checkpoint ¢),_, is taken in the object o; and a

checkpoint (¢_;, ¢/,_;) is consistent. On receipt

of the checkpointed message m from o;, the object
o; takes a local checkpoint ¢, at which o; saves a
state which is most recent before o; receives m.
The state saved here is referred to as checkpoint
state. In fact, a current state and the operation
rec(m) for receiving m are stored in the log l;. A
compensating operation ~rec(m) to remove every
effect done by rec(m) is assumed to be supported
for every object. If o; is rolled back to the local
checkpoint ¢, a following procedure is performed.
1. The state saved in the log is first restored.
2. The compensating operation ~rec(m) is per-
formed for rec(m) saved in the log.
Here, o; can be rolled back to a checkpoint
state. Each object takes a local checkpoint with-
out stopping the communication.

3.2 O-consistent checkpoints

A vector of checkpoint identifiers {cpy, ..., cpn}
is manipulated for an object o; to identify the tth
local checkpoint ¢! of o;. Each variable cpy is
initially 0. If the object o; takes a local check-
point, the checkpoint identifier cp; is incremented
by one, i.e. ¢p; := ¢p; + 1. A message m which
o; sends to o; after taking cicpi carries a vector of
checkpoint identifiers m.cp = (m.cpy, ..., m.cpg),
where m.cpi is cpy of 0; (k = 1, ..., n).

On receipt of a message m from another ob-
ject oj; cp; := m.cp; in an object o;. The vari-
able cp; shows a checkpoint identifier which o; has
most recently taken. Another variable cp, shows a
newest checkpoint identifier of an object o, which
o; knows (h =1,...,m,j #1). Thatis, (c{,,, ..
cip“) shows a current checkpoint which o; knows.
If m.cp; > cp; in o;, o; finds that o; has taken
a checkpoint ¢/, following Cf:p, where u = m.cp;.
A local checkpoint ¢t is identified by a checkpoint
identifier vector (cf.cpy, -+, ci.cp,) where each
ct.cp; shows a value of a variable cp; when c} is
taken in o;.

A local checkpoint ¢ has a bitmap ¢.BM =
by« - b, where each hth bit b, is used for an object
on (h =1, ..., n). Suppose an object o; initiates
a checkpointing procedure after taking ¢i_; and
then o; takes a local checkpoint ¢i. Here, ci.b; =
1andc§.bj =0forj=1,...,n,7 #1. Ifcﬁ.bj =0
and there is data to be sent to another object o;,
o; sends a checkpointed message m with the data
to o;. Here, m.BM := c;.BM.

On receipt of m from o;, an object o; takes a
local checkpoint c,. Here, ¢l by 1= m.by, (for kb =
L, .., n, k #7)and ¢].b; := 1 while the check-

point identifier vector is updated as presented .

here. Thus, “ci.by = 1" shows that o; knows that
an object oy, takes a local checkpoint by the check-

e

pointing protocol initiated by a same object.
[Definition] A pair of local checkpoints ¢ and
¢l are in the same generation if ¢..BM N ¢, .BM
¢ and ci.cpy, = dl.cpy, for every object oy such
that ¢t.by = by = 1. O

Since no orphan message is in the same gener-
ation checkpoint, the following theorem holds.
[Theorem]| A collection of same generation local
checkpoints are message-based consistent. O

Each time an object o; sends a message m, a
message sequence number sq is incremented by
one. In addition, a subsequence number ssg; is
incremented by one if m is sent to an object o; (j
=1, ..., n). The sequence number m.sq and a vec-
tor of the subsequence numbers m.ssq = (m.ssqy,
..., M.ssq,) are carried by m. Variables rsq,
..., 7Sgy and 78sqy, ..., 7$Sq, are manipulated in
o0; to receive messages in the sending order and
without message loss. On receipt of m from o,
o; accepts m if m.ssq; = rssq; + 1. That is, o;
delivers messages from each object in the send-
ing order. Then, rssg; := rssg; + 1 and rsq; :=
m.sq. The variables rssg; and rsq; show subse-
quence and sequence numbers of message which
o; has most recently received from o;. The mes-
sage m also carries a vector of the receipt sequence
numbers m.rq = (m.rqy, ..., M.rqg,) where m.rq;
= rsqy (k = 1, ..., n). Here, m.rqy shows a se-
quence number of message which o; has received
from o; just before taking the local checkpoint ¢!
and t = mep; (k=1,..., n).

On receipt of a message m from an object o,
an object o; collects a set M; of messages m;y,
<.« myr; which o; has sent to o; after taking the
current local checkpoint ¢/ _1 and o; has received
before taking ci. Here, mjj.5¢ < m.rg; [Figure
2]. Messages which o; sends after taking c/,_, are
stored in the sending log of ;. Suppose o; receives
a checkpointed message m from o;. If m.cp; > cp;,
o; knows that o; takes a new local checkpoint ;.
0; collects every message m’ which o; has sent

‘after ¢}, , and m’.sq < m.rq; in the set M;. It is

clear for the following theorem to hold from the
definition,

[Theorem] A message m;;, which o; sends to oy
after taking a local checkpoint ¢/ _y before ¢ is
influential if the following condition holds:

1. (()Drp(mj;,) is an update type if m;5 is a request,

2. Op(myr) is an update type or conflicts with
some update method in #;(Op(m;3), ¢, _,) if
myy is a response. O

. The condition of the theorem is referred to as

influential message (IM) condition. If some mes-

sage in M; is decided to be influential by the IM

condition, the object o; takes a local checkpoint

¢, showing a checkpoint state of o;. Otherwise,

o; does not take a local checkpoint even if M;

includes an orphan message.

3.3 . Cyclic checkpointing

[Example 1] Suppose there are three objects oy,
03, and o3 in each of which a checkpoint identifier

0 0j

Ci 1
i .
T ma Hien
7;)/1[1
i n_,_————-—-"_'—-_——‘
Ct
h

-_~__-—_._lﬂ;___~____:4 CL

time

Figure 2: Influential messages.

01 02 03
[aml C% (51 2, 7) ”

c3 (5,3, 7)

my L » 9
<5,2, 7> 3 (5,3, 8)
ma L 1 9y
<5, 3, 7>

m3a

/ <5, 3, 8>
(5,3, 8) -
time

Figure 3: Cyclic checkpointing.

vector is initially (4, 2, 7) [Figure 3]. First, the
object o; takes a local checkpoint cl. Here, the
checkpoint identifier vector is changed to (5, 2,
7). The object o1 sends a checkpointed message
my with (5, 2, 7) to o3 after taking ci. oy takes
a local checkpoint ¢2 on receipt of m; where c2.cp
= (5, 3, 7). Then, oy sends my with (5, 3, 7)

to 03. On receipt of m3, 03 takes ¢ and sends

mg with (5, 3, 8) to o;. o; takes c¢i. Then, o,
and o3 take new local checkpoints as presented
here. Thus, the checkpointing procedure cannot
be terminated in o, 03, and o3. This is cyclic
checkpointing. O

In this example, when o; receives mg, o0y is
not required to take a local checkpoint because a
checkpoint (¢}, c2, c3) taken already is consistent.
0; has to know a pair of checkpoints identified
by (5, 2, 7) and (5, 3, 8) are in the same genera-
tion. The cyclic checkpointing is resolved by using
the bitmap BM as shown in a following example.
Here, let a notation “(cpy, ..., €Ppn)s,...5,”" show cp
= {ep1, ..., cpn) and BM = by- - by,
[Example 2] In Figure 3, the object 01 sends oz a
checkpointed message my with (5, 2, T)1q0, i.€. cp
= (5,2, 7) and BM = 100 after taking c}. On re-
ceipt of m;, cp is changed to (5, 2, 7) in 0. Then,
o0, sends my with (5, 3, 7)116 to o3 after taking
cg. On receipt of my, o3 takes a local checkpoint
3 and then sends mg with (5, 3, 8)111 to 01. On
receipt of mg, 01 knows the checkpointing proce-
dure has been initiated by o; because checkpoints
identified by (5, 2, 7) and (5, 3, 8) are in the same
generation. O

On receipt of a checkpointed message m from
another object o;, an object o; does not take a
local checkpoint if m.cp denotes a same genera-
tion checkpoint as the local checkpoint c¢,; most

recently taken by o;. Hence, the checkpoint iden-
tifier vector ep = {cpy, ..., cpn) and the bitmap
BM = by b, are manipulated in o; on receipt of
m as follows:

e cpy = max(cpr, m.cpg) if m.by = 1 for every

k (#1).

o BM := BM Um.BM.)
The checkpoint identifier vector cp and the bitmap
BM are saved in the checkpoint log cim of o; only
if they are changed. For example, on receipt of
the message mg from the object o3, the object
o1 updates cp and BM to be (5, 3, 8) and 111,
respectively, in Example 2. Then, o; saves cp and
BM in the log c! since they are changed. Here,
ci.cp=(5,3,8) and c..BM = 111. After receiving
m3, suppose o1 sends a message mg4 to 03. ™My
carries (5, 3, 8)111. On receipt of my, o, updates
cp and BM. Here, ci.cp = (5, 3, 8) and c2.BM
= 111. cp and BM are saved in the log c3. Here,
8, c%, and cg have the same cp and BM.

3.4 Merge of checkpoints

[Example 3] In Figure 4, every object has a
checkpoint identifier vector {4, 3, 7, 2). Suppose
o; and o4 independently initiate the checkpoint-
ing procedure. o; sends a checkpointed message
m; after taking a local checkpoint ¢} with (5, 3, 7,
1)1000, 1.6. cp = (5, 3, 7, 1) and BM = 1000. On
receipt of my, o; takes a local checkpoint ¢ and
then sends a checkpointed message m; with (5, 4,
7, 1)1100- On the other hand, o4 takes ¢} with (4,
3, 7, 2)o001 and then sends my4 to 03. The object
o3 takes c3 with (4, 3, 8, 2)op11 and then sends
ma to 0. The object o, receives mg with (4, 3,
8, 2)o011 from o3 after taking ¢ with cp = (5, 4,
7, 1). o3 receives my with (5, 4, 7, 1)1100 after
taking c3 with ep = (4, 3, 8, 2). One way is that
oz and o3 take ¢ with (4, 5, 8, 2)011; and ¢ with
(5,4, 9, 3)1110, respectively. Here, the objects oy,
03, 03, and 04 take two checkpoints (ci, c2, c5, c3)
and (¢4, c2, c3, o).

Suppose that o4 is faulty and is rolled back to
ci. Then, o3 is rolled back to ¢3 and then oy is
rolled back to ¢Z. Here, o3 is required to be fur-
thermore rolled back to ¢§ and o3 is also rolled
back to ¢}. In the worst case every object ini-
tiates the checkpointing procedure at the same
time, each object is rolled back to the local check-
points n times for the number 7 of objects. O

In order to prevent such a cascading rollback,
we take an approach to merging multiple check-
points to one. In Figure 4, o, receives a check-
pointed message mgy after taking the local check-
point c3. Here, a pair of checkpoints (c}, c2) with
BM = 1100 and {c3, c) with BM = 0011 are
merged into one checkpoint (ci, ¢2, c3, ¢3) with
BM = 1111.

[Merge of checkpoints] After taking a local

checkpoint ¢}, an object o; receives a checkpointed
message m.

1. If a checkpoint ¢, denoted by m.cp is not
in the same generation as ¢}, i.e. ¢,.BM N

m.BM # ¢, A
o ci.cpy, = m.cpy if L.by = 0 and m.by =

1 for every &k (# 1).
e ct.BM = c¢t.BM Um.BM.
2. Otherwise, c’;'.BlMsz ¢&.BM U m.BM and
¢;.cpy 1= max(c}.cpk, m.cpy) for every k (#

1). O
0 02 03 o4
1
% 1y 2 & HA %2
e '-:'/m/"/
ma 4,3,7, 2>
<5,3,7,1> 25 4,7, 1> | 43T
2,
! 4
. (4
3
X o HH
cg IR
A
time

Figure 4: Checkpoints.

[Theorem] A set of local checkpoints which be-
long to the same generation with the merge pro-
cedure are O-consistent.

4 Restarting Protocol

If an object o; is faulty, o; is rolled back to the
local checkpoint ¢i which has been most recently
taken. Other objects which have received influ-
ential messages sent by o; after taking ¢} are also
required to be rolled back. In this paper, messages
which o; sends are assumed to be recorded in the
sending log. The object o; has to send a rollback
request message R-Reg to every object o; which
o; has sent influential messages after taking ci. In
order to decide to which objects R-Reg is sent,
each object o; manipulates a log SL; as follows:

e When o; takes a local checkpoint ¢f, SL! is
initiated to be empty.

e Each time o; sends an influential message m
to another object o; after ci, SL; = SL: U
{oj}.

Here, m is decided to be influential according
to the influential message (IM) condition. In or-
der to reduce the overhead to write the log, SL;
is written to the log only if SL; is changed. If o;
is rolled back to ci, o; sends R-Req to every ob-
ject 0; in SL;. Here, R-Req contains the following
information:

e A checkpoint identifier vector cp = (epy, ...,
cpn) of the local checkpoint ¢t to which o; is
rolled back.

e A rollback vector rv = (rvy, ..., rv,) where
each rvg is 1 if o; knows oy is rolled back to a
same generation checkpoint as ¢!, otherwise,
rvg = 0.

On receipt of R-Reg from o;, an-object o; dis-
cards R-Req if R-Req.rv; = 1 since o; has been
already rolled back in this generation. Otherwise,
g := max(rvy, R-Regrve) (k= 1, ..., n). o

looks for an oldest local checkpoint ¢ where cp;
= R-Req.cp;. If o; finds such alocal checkpoint
¢, o, is referred to as rollback point of o0j. Oth-
erwise, the most recent checkpoint where cp; <
R-Reg.cp; becomes a rollback point. Then, o; col-
lects a set RL7 of messages which o; has received
from o; after taking ¢J,. If there is some influential
message in RL’, o; is rolled back to the rollback
point ¢}, Then, o; sends R-Reg to every o in SLi,
with rv; = 1 and rv, = 1. If 0; has not received
any influential message from o;, o; discards R-Reg
since o; is not required to be rolled back.

5 Evaluation

We evaluate the protocol by comparing with
the message-based, asynchronous protocol in
terms of the number of checkpoints taken. We
make the simulation on the following client-server
environment:

1. There are n (> 1) objects oy, ..
servers.

2. Transactions are initiated in a client, pos-
sibly concurrently. Each transaction issues:
randomly one method to the server object.

., 0n in the

3. Bach method invokes randomly methods in
other objects. The maximum level of invoca-
tion is three. The level is randomly decided
when a transaction invokes the method.

4. Every pair of non-update methods are com-
patible but every update method conflicts
with every method.

5. One server object, say o, initiates the check-
point procedure every time some number cn
of methods are performed.

Here, let P, denote a probability that a method
invoked is a non-update type. Let Cn(n, P;, cn)
and Co(n, Py, cn) be the numbers of local check-
points taken in the traditional way and in the O-
consistent checkpoint, respectively, for n, P,, and
cn. Let My(n, P,, cn) and Mo(n, Py, cn) be
the numbers of messages transmitted in the tra-
ditional way and the O-consistent checkpoint, re-
spectively, for n, P;, and cn.

In the simulation, the client initiates 800 trans-
actions, i.e. issues 800 methods to the objects in
the servers. In Figure 5, the straight line shows
the ratios Co(n, 0.5, 2)/Cn(n, 0.5, 2) and the
dotted line indicates Mo(n, 0.5, 2)/ My(n, 0.5, 2)
for n given P, = 0.5 and cn = 2. That is, 50% of
methods invoked are non-update type. The check-
point procedure is initiated each time every two
methods are invoked in o;. Figure 5 shows that
the number of checkpoints to be taken can be re-
duced by taking only the object-based consistent
(O-consistent) checkpoints. For example, only
60% of traditional checkpoints are taken in the
O-consistent checkpoint if there are seven server
objects, i.e. n = T.

In Figure 6, the straight line shows Co(5, P,
2)/Cn (5, Py, 2) and the dotted line shows Mo (5,
P, 2)/My(5, P, 2) for P, n = 5, and en = 2.
The more non-update methods are invoked, the
fewer number of influential messages are transmit-
ted and the fewer number of checkpoints are taken
in the O-consistent checkpoint. .

Figure 7 shows Co(10, 0.8, cn)/Cn (10, 0.8, cn)
and Mo(10, 0.8, cn)/My(10, 0.8, cn) for cn given
n = 10 and P, = 0.8. That is, 80% of the meth-
ods are non-update type. Figure 7 shows that the
number of checkpoints taken by the server objects
are not increased even if the checkpoint procedure
is more often initiated. This means the objects
which are required to be more available can often
initiate the checkpointing procedure.

100

Porcantage of O-checkpoints —
Parcentage of influantial mossagas - -

d 0.

a0

20}

5 6
Number n of server objects

Figure 5: O-consistent checkpoints.

100

Parcentaga of O-chackpoints ===
Parcentage of influential messagas ~¢= -

80

60

40

Parcentages of infiental massages and O-chackpoints

20

°
01 02

03 04 05 06 07
Probability Ps of stable oparations

Figure 6: O-consistent checkpoints for P, (n = 5).

6 Concluding Remarks

We discussed how to take object-based consis-
tent (O-consistent)- checkpoints of multiple ob-
jects, which can be taken from the application
point of view but may be inconsistent with the
traditional message-based definition. We defined
influential messages on the basis of the conflicting
relation of requests and responses where the meth-
ods are synchronously or asynchronously invoked
in the nested manner. Only objects receiving in-
fluential messages are rolled back if the senders
of the influential messages are rolled back. The
O-consistent checkpoint is one where there is no
orphan influential message. We presented the pro-
tocol for taking O-consistent checkpoints where no
object is suspended in taking checkpoints. The
number of local checkpoints can be reduced by
the O-checkpoints.

100

. Percantago of O-chockpaints ~o—
Porcentage of influential messages -+

8o |

6

Percantagas of infiuential massages and O-checkpomts

Figure 7: O-consistent checkpoints for en (n =
10).

References
[1] Bhargava, B. and Lian, S. R., “Independent
Checkpointing and Concurrent Rollback for
Recovery in Distributed Systems — An Op-
timistic Approach,” Proc. of IEEE SRDS-7,
pp. 3-12, 1988.

[2] Chandy, K. M. and Lamport, L., “Dis-
tributed Snapshots : Determining Global
States of Distributed Systems,” ACM
TOCS, Vol. 3, No. 1, pp. 63-75, 1985.

[3] Garcia-Molina, H., “Using Semantics Knowl-
edge for Transaction Processing in a Dis-
tributed Database,” Proc. of ACM SIGMOD,
Vol. 8, No. 2, pp. 188-213, 1983.

[4] Koo, R. and Toueg, S., “Checkpointing and
Rollback-Recovery for Distributed Systems,”
{gsE7E TOCS, Vol. C-13, No. 1, pp. 23-31,

[5] Leong, H. V. and Agrawal, D., “Using Mes-
sage Semantics to Reduce Rollback in Opti-
mistic Message Logging Recovery Schemes,”
Proc. of IEEE ICDCS-14, pp.227-234, 1994.

[6] Manivannan, D. and Singhal, M., “A Low-
Overhead Recovery Technique Using Quasi-
Synchronous Checkpointing,” Proc. of IEEE
ICDCS-16, pp.100~107, 1996.

[7] Ramanathan, P. and Shin K. G., “Check-
pointing and Rollback Recovery in a Dis-
tributed System Using Common Tirmne Base,”
Proc. of IEEE SRDS-7, pp. 13-21, 1988.

(8] Tanaka, K., Higaki, H., and Takizawa, M.,
“Object-Based Checkpoints in Distributed
Systems,” Journal of Computer Systems Sci-
ence and Engineering, Vol. 13, No.3, pp. 125-
131, 1998.

[9] Tanaka, K. and Takizawa, M., “Asyn-
chronous Checkpointing Protocol for Dis- -
tributed Object-Based Checkpoints,” Proc.
of IEEE Int’l Symp. on Object-oriented Real-
time Computing (ISORC’2000), pp. 218-
225, 2000.

(10] Wang, Y. M. and Fuchs, W. K., “Op-
timistic Message Logging for Independent
Checkpointing in Message-Passing Systems,”
Proc. of IEEE SRDS-11, pp. 147-154, 1992.

