INFAF 1 TEEELHBUNE 98— 1
(2000. 6. 8)

Group Protocol for Supporting Object-based Ordered Delivery

Youhei Timura, Katsuya Tanaka, and Makoto Takizawa

Tokyo Denki University
Email {timura, katsu, taki}@takilab.k.dendai.ac.jp

Distributed applications are realized by cooperation of multiple objects. A state of an object depends
on in what order request and response messages are delivered in the object. In this paper, we newly define
an object-based precedent relation of messages based on a conflicting relation among requests to maintain
mutual consistency of the objects. Here, only the messages to be ordered in the object-based system are
causally delivered. We discuss a protocol which supports the object-based ordered delivery of messages.

DA T MREBICE TR Ay E—UDIEFEMT 7O K3

T EF, HE B, @R
REHRE

E-mail {timura, katsu, taki}@takilab.k.dendai.ac.jp
BAOHERY A7 LILBERIZL > THEESESNAEROA 7V 20 MY, A9 —-YDBEFEFEICLY
BRAHEETITRUEDOVATLELR STV h, RRALTRA TV 20 POBREZEL, LELZ A v L—-TVOD
HANEFE %A 5 7 v — 7@ 70 b 2L (OBG: Object-based Group Protocol) #82E T 5, TR0,

Ay -V ORBEEREBECAFTEHIET 5,

1 Introduction

In distributed systems, groups of multiple pro-
cesses are cooperating to achieve some objectives.
Many papers (2,3, 10-14] discuss how to support
a group of processes with the causally ordered
(CO) / totally ordered (TO) delivery of messages
at a network level. The group protocol implies
O(n?) computation and communication overheads
for the number n of the processes in the group.
Only messages required by the applications have
to be causally delivered in order to reduce the
overheads.

A distributed application is realized to be a col-
lection of cooperating objects based on the object-
based framework like CORBA [16]. An object is
an encapsulation of data and methods for manip-
ulating the data where the methods are invoked
by using message-passing mechanism. An appli-
cation sends an object o a request message with a
method op in order to invoke op. The method op
is performed on the object o and a response mes-
sage with the result of op is sent back. There are
types of invocations, synchronous, asynchronous,
and one-way ones depending on how the sender
walts for the response. In-addition, op may fur-
ther invoke other methods, i.e. nested invocation.

If a pair of methods op, and op; invoked by
different methods conflict in an object, the re-
quest messages op; and op; have to be delivered to
the object in the computation order of the meth-
ods. States of the objects depend on in what order
conflicting methods are performed on the objects.
Thus, the object-based ordered (OBO) relation
among request and response messages is defined
based on the conflicting relation presence of the
types of invocations, synchronous, asynchronous,
and one-way ones. The messages received are de-
livered to each object in the O BO order, which is
significant for object-based applications. A mes-
sage m; may not precede another message m; in
the OBO relation even if m; causally precedes

l

my. In this paper, we present an object-based
group (OBG) protocol which supports the OBO
delivery of messages.

We can reduce the number of messages to be or-
dered, i.e. can reduce the communication and
computation overheads in object- based systems.

2 Object-Based System

2.1 Invocation types

A group G is a collection of multiple objects
01,...,0n (n > 1) which are cooperating to
achieve some objectives by exchanging messages
in a network. We assume the network is asyn-
chronous, i.e. messages sent by an object are sent
to the destinations with message loss, not in the
sending order, and the delay time is not bounded.

Objects are distributed in servers. A. transac-
tion in a client issues a request to an object in a
server. On receipt of a request of a method opy,
op; is performed on an object 0; and then the re-
sponse is sent to the transaction. In fact, a thread
of op is created on o;. The thread is referred to
as tnstance of op on o;denoted by op*. While op;
is being performed on the object o1, op; may in-
voke a method op; on another object oy, i.e. op;
sends a request opz to 0z. op; is performed on o3
and the response of op; is sent to op;. Thus, the
invocation is nested.

There are synchronous, asynchronous, and
one-way invocations of op; with respect to how
waits for the response of op; [Figure 1]. In the
synchronous invocation, the method op; waits for
a response of opy, i.e. op; blocks while op; is being
performed on o;. This shows a remote procedure
call (RPC). In the asynchronous one, op; is per-
formed without blocking while eventually receiv-
ing the response of op,. That is, op; and op; are
being concurrently performed on different objects
o and o while op; eventually receives the response

of opy. In the one-way invocation, op; does not
wait for the response of opy after op; is invoked.
op; and op, are being independently performed.

There are two ways to invoke multiple meth-
ods: serial and parallel invocations. Suppose a
method op invokes a pair of methods op; on an ob-
ject 0, and op; on oy. In the serial invocation, at
most one method is invoked by op at a time, e.g:
op invokes op, after invoking op:. If op; is syn-
chronously invoked, op invokes op, after receiving
the response of op;. On the other hand, multi-
ple methods can be simultaneously invoked in the
parallel invocation. The requests of op; and opz
are concurrently issued to the objects o; and o3,
respectively. Here, suppose op; and op; are syn-
chronously invoked. The method op waits for the
responses from op; and op;. There are and and or
ways to wait for the responses. In the and wait,
op blocks until both of the responses are received.
In the or wait, op starts to be performed only if
at least one response is received in asynchronous
and one-way invocations.

An instance can exchange data with other in-
stances. In this paper, we assume an instance op}

exchanges data with op), only if one of op} and o,
2 1 2

invokes the other in an asynchronous or one-way
manner.

op, opy
op, op,

time time

(3) One-way

(1) Synchronous

(2) Asyachronous

Figure 1: Types of invocation.

2.2 Conflicting methods

Let op(s) denote a state obtained by perform-
ing a method op on a state s of an object o.
Let [op(s)] be response data of op(s). A notation
“opyoop;” show that op; is serially performed af-
ter op, completes on an object 0. “op,||op;” shows
that op; and op; are concurrently performed on o,
i.e. interleaved. .

A method op is referred to as absorb an-
other method op; iff op; o op(s) = op(s) and
[oproop(s)for every state s of an object o. For
example, a write method absorbs another write
in a file object. op is referred to as identity iff
op(s) = s for every state s of o.

A pair of methods opi and ops of an
object o are compatible iff opjoopz(s) =
op200pi(s), [op1oopa(s)] = [opz(s)], and [opi(s)]
= [op;o0p;(s)] for every state s of o. That is,
the states and the outputs obtained by perform-
ing op; and op; are independent of the computa-
tion order. op; and op; conflict iff they are not
compatible. The conflicting relation among the
ronethods is specified in the definition of the object

The conflicting relation is assumed to be sym-

metric and transitive. For example, a counter
object supports methods increment, decrement,
and show for increasing, decreasing, and show-
ing the counter value, respectively. The method

increment conflicts with show and show in
turn conflicts with increment. The methods
increment and decrement are compatible. A pair

of request messages my of a method op; and m;
of opy conflicts iff op; and op; conflict.

Suppose a method op; is invoked on an object
0;. An instance op} is created on o; if any method
which conflicts with op, is neither being performed
nor waiting for computation on o;. Otherwise, op;
waits in the wait queue of o;.

Suppose a pair of requests op, and op; are is-
sued to an object o;. If op; and op; cannot be
concurrently performed on o;, opy and op; are
mutually ezclusive. The instances op} and oph
can be concurrent on the object o; if op; and op;
are not mutually exclusive. op; and op; are mu-
tually exclusive if they conflict.

Only if all the methods invoked by op complete
successfully, i.e. commit, op commits on an object
o. Otherwise, op aborts. Thus, each method is
atomically performed on an object.

2.3 Precedent relation on methods
We discuss how instances are related in pres-
ence of the invocation types of methods. Suppose
an instance op* is performed on an object o; and
then completes. The response of op® is sent back
if op' is synchronously or asynchronously invoked.
Let s(op*) and e(op*) be events for invoking op on
an object o; and receiving the response of opt, re-
spectively. In the one-way invocation of op*, e(op)
does not exist. The precedent relation of instances
is defined on the basis of the happen-before re-

lation [8]. Hence, opi precedes oph (opi=roph)
iff e(op’) happens before s(oph) and op; conflicts
with op} [Figure 2(1)]. op} and op} are concurrent
(opt||oph) iff neither opi => op} nor oph = op}.
Next, suppose a pair of methods op; and op;
are performed on different objects o; and o, re-
spectively. Suppose op; and op; are invoked by
an instance op* of an object o;. If pp* invokes opf
after receiving the response of op], the result of
opk may depend on the result of op}. Hence, op,

precedes opt (op) = opk) iff e(op) happens before

o; o; o; O

; op
0, .
Pi op)

*
i o,
opy P2

fime time

() (2)

Figure 2: Invocation of op; and opz

s(opk) [Figure 2(2)]. In the one-way and parallel
invocations, opt|loph, i.e. s(op}) happens before

—_— -

e(opt) and s(opt) happens before e(op)).

Now, we define the precedent relation = of
methods as follows.
[Definition] An instance op] precedes another
instance opg (op{:>opé) iff one of the following
conditions holds:

1. op) is performed before opi on an object o;
(7=1), and opt and opé conflict.

2. opt and opg (i#7) are invoked by an instance
op", op is synchronously or asynchronously
invoked, and opé is performed after op® re-
ceives the response of opri‘

3. op =>opk=>op) for some instance op§. O

3 Object-Based Ordered Delivery

3.1 Message precedency

In the object-based system, request, response,
and data messages are exchanged among the ob-
jects. A message my causally precedes another
message my if the sending event of m; happens
before the sending event of m; [3,8]. A message
m; totally precedes another message m; iff every
pair of common destinations of m; and my deliver
my and m; in the same order. Suppose an object
o; sends a message m; to a pair of objects o; and
or, and o; sends m3 to o}, after receiving my. Since
m; causally precedes mjy, o; has to receive m; be-
fore mgy. For example, if m; is a question and m;
is the answer for m, in a teleconference, my has to
be delivered before my. Otherwise, o cannot un-
derstand what is discussed by o; and o;. However,
if m; and m;, are independent questions, o; can
receive my and m; in any order. Next, suppose
o; sends a message m; to o; and o and o; sends
my to o; and o;. Thus, applications do not re-
quire all the messages transmitted in the network
be causally and totally delivered.

We consider a significantly precedent relation
“—” among on a pair of messages m; and mj
in this section, where “m;—m,;” is meaningful
for object-based applications by considering what
instances send and receive m; and my. Tablel
shows cases for a pair of messages my and m,
which instance op} and op) in an object o; send
and receive

S. An object o; sends m; after m;.
S1. m; and m; are sent by a same instance op}.
52. my is sent by opi and my is sent by oph
(op1#0p3): o
S2.1. op} precedes op} (opi=>op}).
$2.2. op} and op} are concurrent (opt||op}).
R. o; sends m; after receiving m;,.
R1. m; and m; are received and sent by op"l.
R2. m; is received by op! and mj is sent by oph:
R2.1. opi=>op;. R2.2. op}||op}.
T. o; receives m, after m;.
T1. m; and m; are received by an instance opt.
T2. op} receives my and op) receives mj.

T2.1. opi=opy. T2.2. op||op}.

.

The message m; significantly precedes my
(m1— mg2) as shown in Tablel. For example, in

— 3 —

Table 1: significant precedency

P i i 7 i
0 = o 9P = %, op; || o}
G o % o
Py op,; opl J op}
]] m,
i, is sent
! m
beforem, 2 op; m,
\IQ
time time time
(S1) (S2.1) (82.2)
ny—-m, "y m, m, || m,
% %
”ll opl ﬂp,
m,}
~
m, is sent after my o
m, is received P2
m,
time time
(RT) (R2.1)
my—m, m, —m,
o; o % .
n ! m; 21
m,
i
m, is received op,
m
beforem, 2
time time
(T1) (T2.1) (T2.2)
ny—m, ny—-m, m, u m,

S$2.1, the instances op! and op} are serially per-
formed on the object o;. If every method is syn-
chronously or asynchronously invoked, the mes-
sage m; is sent after op} completes. Hence, it is
sure that m; is received after my. If m; is a re-
quest to invoke a method in the one-way manner,
there is possibility that my is received before m;.
As shown in Tablel, m; and m; have to be ordered
in these cases. Next, suppose op} and op} conflict
in T2.1. If my or my is a request message, m; has
to be delivered before m; since my; — my. Sine
op}, is performed after op} completes, o} is started
to be performed after receiving m;. Hence, we do
not consider a case neither my nor m; is a request.
Following the discussions on Tablel, we define
the significantly precedent relation any messages
as follows.
[Definition] A message m; significantly precedes
another message my (m; — mgy) iff one of the
following conditions holds:
1. An object o; sends m; before my; and
a. a same instance sends m; and mg, or
b. an instance sending m; conflicts with
another instance sending m; in o;.
2. o; receives my before sending my and
a. m; and m; are received and sent by a
same instance, or
b. an instance receiving m; conflicts with
another instance sending ma.
3. my — m3 — m;y for some message mz. O

[Definition] A message m; object-based precedes
(OB-precedes) another message my (my < my) iff
the following condition holds :

1. my significantly precedes my (my — my).

2. if mlllmg,

o my and my are conflicting requests and
m; < mg in every other common desti-
nation of my and m,.0
A message m; is referred to as significant for a
message my if my <X ma.
[OBO delivery] A distributed system supports
the object-based ordered (OBO) delivery of mes-
sages iff every message my is delivered before an-
other message m; in every common destination of
my and my if my < my.0
[Theorem 1] A message m; totally precedes an-
other message my if my < ma.
[Proof] According to Theorem??, m; causally
precedes my if m; — my. If my || ma, m; and
my are totally preceded only if m; and mgy are
conflicting requests. O
In the OBO delivery, only messages to be or-
dered in the object-based system are delivered in
the OB-precedent order <.

4 Object-Based Group Protocol

4.1 Instance identifier

In order to consider the OB-precedent relation
= of messages, it is critical to make clear which op}
= op, oph = opl, or op} || op), holds for every pair
of instances op} and op; Each instance op} has
two types of identifiers, starting identifier sid(opt)
and compatibility identifier cid(op}), which satisfy
the following properties.

e sid(opt) < sid(op}) if a starting event 3(opt)

happens before s(opl,).

o cid(op}) < cid(op),) if sid(op}) < sid(op},) and

s{op]) happens before e(op).

Here, “cid(opl) = cid(opl,)” means that op} and
opi, are compatible and they are considered to be
concurrently performed on an object o;.

A variable oid, which is initially 0 and shows
the linear clock [8] are manipulated for an object
o; as follows:

e If an instance opi is initiated on o;, oid :=

oid + 1 and oid(op}) := oid.

e On receipt of a message from an instance opi,,

oid := maz(oid, oid(op},)).
When opi is initiated, sid(op}) is a concatena-
tion of oid and the object number ono(o,) of o;,
sid(op;) > sid(opl,) if 1) oid(opt) > oid(opl,) or 2)
oid(opt) = oid(opl,) and ono(o;) > ono(o;).

An object vector V = (vy,...,v,) is manip-
ulated in an object o;, where initially v; = 0 for
j=1,...,n, Each time an instance opi is initiated
in o;, a vector V; is created. V; is manipulated as
follows:

e If op! sends a message m, no; := no; + 1 and
vy = sid{opt):no; (=oid(op): ono(o;): no;).
m carries the vector m.V where m.y; 1= vy
(7 = 1,...,n). Here, vy is referred to as a
global identifier of the sending operate of m
in opi. Let m.id and m.sid show a global
identifier and start identifier carried by m.
If op! receives a message m from o;, vy :
maz (v, mv;) (F=1,...,n).

@

i

o If opi commits, v;
Lo, n).
o If opt aborts, V' is not changed.

= maz(vj,v) (5

< 0>

<0 >

time

Figure 3: Object vector.

The object vectors V* and V7 of objects o; and
o; are initially (0, 0) in Figure 3. An instance op}
is initiated in an obJect o2 where a vector V} is
assigned to opl, ie. Vi =V*=(0,0). The identi-
fier szd(opl) is “12” Wthh shows a concatenation
1:i. op} sends a request m to invoke another in-
stance op; on an object o;. The sending event
of m is identified by “1i0”. m; carries the vec-
tor Vl'(_- (0,0)) to the object oj. After sending
my, Vi is changed to (1:0,0). On receipt of my,
op’2 is initiated where sid(op}) = “2j”. Here, VJ

is (140,0). If opé commits, the vector V7 of o;
is changed to Vj (= (1i0,0)). Then o; sends a
message ™Mg. Thls event is identified by “1i1”.
[Theorem 2] A message m; causally precedes an-
other message mg if m;.V < my.V.

Let us consider three objects o;, 0, and o [Fig-
ure 4]. An instance op} on o; sends a message m;
to 0; and og. Instances opz and op} are concur-
rent in o;, i.e. op!||oph. op} sends mg to 0. op’3
sends m; to o after receiving m;. Here, m; sig-

mﬁcantly precedes my (m; — mg). o has to
receive m; before my. However, m; and m3 are

significantly concurrent (m1||m3) since op}|joph.
Similarly m;][m;; However, since 017.35 is initiated
after receiving my from op} and opi|lops, m1.V =
ms. V. Hence, m.V > ma.V. Although o canre-
ceive my and mg in any order since ma|lms, “mz
precedes m3” because mz.V > ma.V. In Figure 4,
since op} and op} are concurrent, i.e. compatxble,
my || my. However, m;.V < m,.V. In order to
resolve this problem, compatibility zdentzﬁer cid is
introduced. A variable cid, 1mt1ally 0, is manip-
ulated as follows if an instance op® is 1n1t1ated on
an object o; :

e If no instance is being performed on o;,

cid(op') := sid(op')-

e Otherwise, cid(op') := cid.
If cid(opt) = cid{op}), op} and op} are compatible.
In Figure 4, suppose cid = 0 before opj is initiated
in o;. czd(opl) = sid(opl) = “1i” and cid(op}) =
“14" while sid(op}) < sid(oph).

_4__

. X
'3

7

rimne

Figure 4: Message ordering.

4.2 Message ordering

In Figure 4, the instances op} and opf are in-
voked by a request my, op¥ by m, and opf by ma.
Table2 shows values of id, cid, and V of the mes-
sages. sid(op}) < sid(oph) because op} is invoked
after op}. Hence, m;.id < ma.id. op} sends m; to
0; and 0. m1.V = (0,0,0) since my.id = “1:0”.
On receipt of my, m; is enqueued into a receipt
queue RQ; of 0;. m1.V < my.V, and my.id <
my.vy and mi.vy < ma.id. On the other hand,
my.V > ma.V but my.id > my.vy and ma.vz <

A pair of messages m; and m; are ordered by
the following rule. ~
[Ordering rule] A message m; precedes another
message iy (my = my) in a common destination
of m; and m, if the following condition holds:

1. [my and my are sent by an object o;]

e the same instance sends m; and my, and
my.id < my.id.

e the sender instances of m; and my con-
flict, i.e. my.cid # my.cid and my.id <
mg.id,

e m; or m; is not a request, or
e m; is an asynchronous request.
2. [m; is sent by o; and m; is sent by o;]

o myid < ma.v;, myv; < ma.id, and
myvr < mave (B = 1,...,n, k # 4,
k # 3), and

e m; and my are conflicting requests,
i.e, my.op and my.op conflict. O

Table 1: Object vectors.

m m.id | m.cid | m.V

m:. | 140 17| (0,0,0
mz | 250 27 (110, 0, 0)
ms | 210 1t (0,0, 0)

In Figure 4, opil sends a fequest m; to o; and o
where op), and op} are invoked. Then, op) sends a
request my to og. Here, my.V < my.V and m,.id
< mp.v; and my.vp < my.id. Suppose opf con-
flicts with opf. m; => m; since m;.op conflicts
with mg.0p. Next, suppose opf receives a data
message mq after opf is initiated by my. Here,
my => my since my.0p = ma.op = op. On the

other hand, m;.V = m3.V but my.id > m3.v; and
my.vz < mg.id. Accordingly, we check if my.op
and mg.op conflict. Since op} and op} are com-
patible, m;.cid = my.cid.

Suppose oy receives messages m; and mg from
o; as shown in Figure 4. Here m,.sid < mg.sid
and m;.cid = mg.cid. Hence, m; and mg are not
preceded in the ordering rule.
[Theorem 3] If a message m; OB-precedes an-
other my (my < ma), my = my. O

4.3 Message transmission and receipt

A message m includes the following fields:

m.src: sender object of m.

m.dst: set of destination objects.

m.typ € {s, q, 0,7, commit, abort}

m.op: method. m.dat: data.

m.id: global identifier..

m.cid: compatibility identifier.

m.V = (Vi,...,Va): object vector.

m.5Q = (sq1,..., 8.} sequence numbers,
If m is a request message, m.id is a global iden-
tifier of the sending event of m. m.cid is a com-
patibility identifier of the sender instance. m.sid

shows the identifier of the instance which sends
m and m.no indicates the event number in the
instance. If m is a response of a request m/,

m.id = m'.id and m.op = m’.op. s, a, and o in
m.type indicate synchronous, asynchronous, and
one-way requests, respectively. r shows response.
Variables sqy,...,sq, are manipulated for an
object o; to detect a message gap, i.e. messages
lost or unexpectedly delayed. Each time o; sends a
message to another object o;, sg; is incremented
by one. Then, o; sends a message m to every
destination in m.dst. o; manipulates variables
r$q¢1,...,75¢,. TSQ; shows a sequence number of
a message which o; expects to receive next from
0;. On receipt of m from o;, there is no gap, i.e.
o0; receives every message which o; sends to o; be-
fore m if m.sq; = rsq;. If m.sq; > rsq;, thereisa
gap message m' where m.sq; > m'.sq; > rsg;.
That is, o; has not yet received m'/ which o;
sends to. o;. o; correctly receives m if o; re-
ceives every message m' where m'.sq; < m.sg;
and m'.src = m.sre(= ¢;). That is, o; receives
every message which o; sends to o; before m. If
o; does not receive a gap message m in some time
units after the gap is detected, o0; requires o; to
send m again. The object o; enqueues m in a
receipt queue RQ; even if a gap is detected on
receipt of m.
When an instance op! in an object o; invokes

a method op in some type t of invocation, o; con-
structs a message m as follows:

m.sre = o;;

m.dst := set of destination objects;

m.typ := request(t);

™.op = op;

m.id = (m.sid, m.no) := (sid(opl), no;};

m.cid := cid;

mu; = véj forj=1,...,n;

sqn 1= sqn + 1 for every object op € m.dst;

m.sq; ;= sq; for y=1,...,n; ’

4.4 Message delivery
The messages in a receipt queue RQ); are or-

dered in the precedent order =.
[Stable message] Let m be a message which an
object o; sends to another object o; and is stored
in the receipt queue RQ;. The message m is stable
in o; iff one of the following conditions holds:

1. There exists such a message m; in RQ; that
my.sg;=m.sq; + 1 and m, is sent by o;.
o; receives at least one message m; from ev-
ery object, where m = m,. O

2.

The top message m in RQ; can be delivered if m
is stable because every message preceding m in =
is surely delivered.

" [Ready message] A message m in a receipt
queue RQ; is ready if no method instance con-
flicting with m.op is being performed on o;. O

The messages in RQ; are delivered by the fol-
lowing procedure. -
[Delivery procedure] If the top message m in
RQ); is stable and ready, m is delivered. O

[Theorem 4] The OBG protocol delivers m; be-
fore my if my < ma.
[Proof} We assume that m; < mg but m; is de-
livered before my. By the delivery procedure, my
is delivered only if m; is stable and ready. That is,
every message m; < mg is delivered. It contradict
the assumption. O

If an object o; sends no message to another
one o;, messages in RQ; cannot be stable. In or-
der to resolve this problem, o; sends every object
oj a message without data if o; had sent no mes-
sage to o; for some predetermined § time units. 6
is proportional to delay time between o; and o;.
o; considers that o; loses a message from o; if o;
receives no message from o; for § or o; detects a
message gap. o; also considers that o; loses a mes-
sage m unless o; receives a receipt confirmation of
m from o; in 26 after o; sends m to o;. Here, o;
resends m.

5 Concluding Remarks

In this paper, we discussed how to support the
object-based ordered (OBO) delivery of messages.
While all messages transmitted in a network are
causally or totally ordered in most group proto-
cols, only messages to be causally ordered at the
application level are ordered to reduce the delay
time. Based on the conflicting relation among
methods, we defined the object-based (OB) prece-
dent relation among request and response mes-
sages. We discussed the object vector to order
messages in the object-based systems.

References

[1] Ahamad, M., Raynal, M., and Thia-Kime,
G., “An Adaptive Protocol for Implementing
Causally Consistent Distributed Services,”
Proc. of IEEE ICDCS-18, 1998, pp.86-93.

[2] Bernstein, P. A., Hadzilacos, V., Goodman,
N., “Concurrency Control and Recovery in
Database Systems,” Addison- Wesley, 1987.

[3] Birman, K.,FSchiper, A., and Stephenson, P.,
“Lightweight Causal and Atomic Group Mul-

(4

—
—
[

—

(13]

(18]

ticast,” ACM Trans. on Computer Systems,
Vol.9, No.3, 1991, pp.272-314.

Enokido, T., Tachikawa, T., and Takizawa,
M., “Transaction-Based Causally Ordered
Protocol for Distributed Replicated Ob-
jects,” Quinton Proc. of IEEE ICPADS’97,
1997, pp.210-215.

Enokido, T., Higaki, H., and Takizawa, M.,
“Group Protocol for Distributed Replicated
Objects,” Proc. of ICPP’38, 1998, pp.570-
577.

Enokido, T., Higaki, H., and Takizawa, M.,
“Protocol for Group of Objects,” Proc. of
DEXA’98, 1998, pp.470-479.

Enokido, T., Higaki, H., and Takizawa, M.,
“Object-Based Ordered Delivery of Messages
in Object-Based Systems,” Proc of ICPP’39,
1999, pp.380-387.

Lamport, L., “Time, Clocks, and the Or-
dering of Events in a Distributed System,”
CACM, Vol.21, No.7, 1978, pp.558~565.

Mattern, F., “Virtual Time and Global
States of Distributed Systems,” Parallel and
Distributed Algorithms (Cosnard, M. and , P.
eds.), North-Holland, 1989, pp.215-226.

Nakamura, A. and Takizawa, M., “Causally
Ordering Broadcast Protocol,” Proc. of IEEE
ICDCS-14, 1994, pp.48-55.

Ravindran, K. and Shah, K., “Causal
Broadcasting and Consistency of Distributed
Shared Data,” Proc. of IEEE ICDCS-14,
1994, pp.40-47.

Tachikawa, T., Higaki, H., and Takizawa, M.,
“Significantly Ordered Delivery of Messages
in Group Communication,” Computer Com-
munications Journel, Vol. 20, No.9, 1997, pp.
724-731.

Tachikawa, T., Higaki, H., and Takizawa, M.,
“Group Communication Protocol for Real-
time Applications,” Proc. of IEEE ICDCS-
18, 1998, pp.40-47.

Takizawa, M. and Deen, S. M., “Lock-
mode Based Resolution of Uncompensatable
Deadlock in Compensating Nested Transac-
tion,” Proc. of Fareast Workshop on Future
Database Systems, 168—175, 1992.

Tanaka, K., Higaki, H., and Takizawa, M.,
“Object-Based Checkpoints in Distributed
Systems,” Journal of Computer Systems Sci-
ence and Engineering, Vol. 13, No.3, 1998,
pp-125-131.

Object Management Group Inc., “The Com-
mon Object Request Broker : Architecture
and Specification,” Rev.2.1,1997.

