INFAF 1 TBIEEHEBUNE 99— 2
(2000. 9. 22)

Quorum-based Locking Protocol for Replicated Objects

~ Katsuya Tanaka and Makoto Takizawa

Tokyo Denki University
Email {katsu, taki}@takilab.k.dendai.ac.jp

In object-based systems, objects are encapsulations of data and procedures named methods. We
discuss how to lock replicated objects, where objects support high-level methods and methods are invoked
in a nested manner, by extending the quorum-based scherne. If a pair of methods ¢ and u are compatible,
each method is surely performed on some replica but both of them may not be performed on a same
replica in our protocol. Compatible methods are exchanged between the replicas if both the methods are
not performed on any of the replicas. If 2 method ¢ is invoked on multiple replicas and each instance of
t invokes another method u, u is performed multiple times on an object, i.e. redundant invocation. In
addition, since each instance of ¢ issues a request u to its quorum, more number of the replicas are locked
than the quorum number of ¢. This is quorum explosion. We discuss how to resolve these redundant
invocations and quorum explosion.

ZESNEAT Oz FRO-BRZRIAT SV T UADOY I FE

B Bt IR W
RRBRRE
E-mail {katsu, taki}@takilab.k.dendai.ac.jp

ATl Mid, FoIHBEAY Y EDSHREN, F=FiE. AV RENLTHRIEIND, Ay
ROEFTEROZELCBNT, 77Px27 M, BERINEAY Y REREBL, #RERYT, 512, B
NEAY Y Ry OF T2 bOAY v FEBE;TIANTFRERD, VAT LASEOERECTRAED
FEEENELT, VATLARADEA TV 2o M3, BROL TV A (AE—) KSELIND, FHETII.
HEMOERMMRICEDL, LAY NMO-BEEZRET IOy IV FEERET D, 51, ANTFHEREC
SO THERISNDMEZHARICL, TOMRIERT,

1 Introduction

Distributed applications are realized in object-
based frameworks like CORBA [10]. In order to
increase the reliability, availability, and perfor-
mance, objects are replicated. In the two-phase
locking (2PL) protocol {1,3], one of the replicas
for read and all the replicas for write are locked.
In the quorum-based protocol. (5], quorum num-
bers N, and N, of the replicas are locked for read
and write, respectively. The subset of the repli-
cas is a quorum. Here, a constraint “N, + N,
> a” for the number a of the replicas has to be
satisfied. An object is manipulated only through
methods. A pair of methods ¢ and u of an object
o conflict if the result obtained by performing ¢
and u depends on the computation order. Before
performing %, a guorum number N, of the repli-
cas of an object o are locked. Suppose a pair of
methods ¢ and u are issued to the replicas. The
method ¢t may be performed on one replica o, and
v on the other o, if t and u are compatible. Here,
the state of o; is different from o, if ¢t or u is an
update method. o, and o, can be the same if each
method performed on a replica is performed on the
other replica, i.e. u and t are performed on o; and
o,, respectively. Thus, the newest version can be
constructed from replicas by exchanging methods
performed. Thus, “Ny + N, > a” only if ¢t and u
conflict on an object 0. Even if ¢t or w updates the
object o, i.e. write, Ny + N, < a if t and u are
compatible. The authors [11] discuss a version
vector to identify which methods are performed
on each replica. The method implies larger over-
head. In this paper, we discuss a simpler method
to exchange methods among replicas.

In the object-based system, methods are in-
voked in a nested manner. Suppose a method ¢
on an obJect z invokes a method u on another ob-
Ject y. =z is replicated in replicas ; and @5 and y is
replicated in y; and y,. A method ¢ is issued to z;
and z3. Then, the method ¢ invokes u on y; and
y2. Here, u is performed twice on each replica. If
w updates y, y is inconsistent. This is a redundant
invocation. The method u should be performed
just once on each of y; and yz. In addition, an
instance of ¢ on z; issues w to its own quorum,
say @1, and ¢ on z; issues to Q; where |@:| =
|@2] = Ny. The replicas in Q1 U @, are locked
by the method t. Since |Q; U Q2| is larger than
the quorum number N,,, more number of replicas
are locked than the quorum number N,,. Thisis a
quorum ezplosion. We discuss how to resolve the
redundant invocations and quorum explosions in
nested invocations of methods on replicas.

In section 2, we present a system model. In sec-
tion 3, we extend the quorum concept on read and
write to the object-based system. In section 4, we

discuss how to resolve the redundant 1nvocatlon
and quorum explosion. In section 5, we present
the evaluation.

2 System Model
2.1 Replicas

A system is composed of replicas of objects.
The replicas are distributed in multiple comput-
ers.. Each object supports a collection: of meth-..
ods only by which the object is manipulated. A
transaction issues 2 method request op to an ob-
ject o. Then, op is performed on the object o and
the response of op is sent back to the transaction.

__7._.,

Here, op is referred to as invoked. A method op,
is compatible with op, iff the result obtained by
performing op; and op, on o is independent of
the computation order of op; and op,. Otherwise,
op, conflicts with op,, The conflicting relation
is symmetric but not transitive. The method op
performed on o may furthermore issue a request
to another object. Thus, methods are invoked on
objects in a nested manner. In this paper, we as-

sume each of transactions and methods invokes
one method at a time.

Suppose there are two objects z and y in the
system. There are three replicas, z1, z2, and z3
for the object z and two replicas y; and y; for
y. The object = supports a method ¢ which in-
vokes a method u on the object y. A transaction
issues a request ¢ to replicas of z. First, we con-
sider a quorum @, i.e. to which replica out of =,
z4, and z3 the request ¢ is issued. In the famous
two-phase locking (2PL) protocol, a transaction
T issues a write request to all the replicas, zi,
z3, and z3 but a read request to one replica, say
21. The read request does not change the state of
the object but the write request changes. In the
quorum-based protocol, T issues write and read
requests to some numbers N,, and N, of replicas
of z, respectively. Here, N, + N, > a where a is
the total number of the replicas of z, i.e. @ = 3.
For example, a write request is issued to a subset
{z1, z;} denoted a write quorum Q. and a read
request is issued to a subset {z3, z3} denoted a
read quorum Q,. Ny (= |Qu]) =N, (=1Q-) = 2.
The read and write methods are surely performed
on the replica z3 in @, M @y while only write and
read are performed on z; and z3, respectively. In
this paper, we discuss to which replicas each re-
quest is issued. An object supports procedures
as methods. We extend the traditional quorum-
based locking protocol which is used for read and
write on a simple object to objects which support
methods to be invoked in the nested manner.

2.2 Nested invocation

Methods are invoked in a nested manner. Sup-
pose a transaction 7 issues a request ¢ to a quorum
Q: = {z1, z2, za}. The method t is performed on
every replica in Q. In performing ¢ on each replica
of z, a request u is invoked on all the replicas y;
and yz. Bach of three method instances on 21, z3,
ard 3 invokes the method u on y; and y; [Figure
1]. Hence, the method u is performed three times
on each replica of y. If u updates y, the states of
the replicas y; and y, get inconsistent. For exam-
ple, u is 2 method which increments y by one. If
the object z is not replicated, the value of y is just
incremented by one. However, the value of y is in-
cremented by three since © and y are replicated as
presented here. Even if u does not update y, the
same computation which outputs the same result
is performed three times. It consumes computa-
tion resource. This is a redundant invocation.

In Figure 1, each instance of the method z is-
sues request u to the same quorum @, = {y1,
y2}. If each instance z; decides its own quorum
Qui, |Qu1 U Qu2 U QuSI 2]Qu| That iS, more
number of replicas of y are locked by the transac-
tion T than Q.. This is a guorum ezplosion. We
have to resolve the redundant invocation and quo-
rum explosion to occur in the nested invocation of
methods on replicas.

1 U
T Ty ¥1
. U yi

=3 D : replica

Figure 1: Redundant invocation.
display increment

ik

decrement
Figure 2: Quorum.

2.3 Extension of quorum

Let us consider a counter object ¢ which sup-
ports three methods increment (inc), decrement
(dec), and display (dsp). Suppose there are four
replicas cy, ¢z, €3, and c4 of the counter object, i.e.
R, = {cy, c3, €3, ca}. According to the traditional
quorum-based theory, increment and decrement
are considered to be update methods, i.e. write
ones. Hence, Nine + Ngee > 4, Nasp + Nine >
4, and Ny + Ngeo > 4. For example, Ny =
Ng.c = 3 and Ng,, = 2 [Figure 2]. The methods
display and increment conflict. Nysp + Nin is re-
quired to be larger than 4 [Figure 3]. That is, both
displey and increment are performed on at least
one replica. The methods increment and decre-
ment are compatible on the counter object be-
cause the state obtained by performing increment
and decrement is independent of the computation
order of the methods. Suppose increment is issued
to two replicas ¢y and ¢; and decrement is issued
to ¢z and ¢4. Since both tncrement and decrement
are performed not on any replica, i.e. either incre-
ment or decrement is performed, the states of ¢
and c3 are different. However; if decrement is per-
formed on c¢; and c; and éncrement is performed
on c3 and c4 here, the states of ¢y, ¢z, 3, and ¢4
can be the same. This is referred to as ezchang-
ing procedure where methods performed on one
replica is sent to other replicas where the methods
are not performed and only methods compatible
with the methods are performed. As long as only
increment and decrement are issued to the repli-
cas, the exchanging procedure is not required to

{nent increment
display

Figure 3: Object-based quorum.

be executed. Suppose a display method is issued
to three replicas ci, ¢z, and cs where Ny, = 3.
display conflicts with increment and decrement.
The method display cannot be performed on any
replica of ¢, ¢z, and c3,because only increment is
performed on ¢y and ¢3 and decrement on c3 [Fig-
ure 4]. Before performing display, decrement has
to be performed on ¢; and c; and increment on
c3. increment and decrement can be performed
in any order because they are compatible. Here,
c1, €2, and c3 get the same, ¢; = c; = ¢z because
both increment and decrement are performed on
every replica. Then, display can be performed on
c1, ¢z, and cg. We discuss a new quorum-based
locking protocol with the exchanging procedure.

............... [P —

|
<
i

Figure 4: Exchanging procedure.

A cluster R is a set of replicas o0, ..., 0, of an
object 0 (a > 1). Let Q; be a guorum, i.e. subset
of the replicas to be locked by a method ¢ (Q; C
R). Let Ny (= |Q:]) be the guorum number of
t. The quorums of methods ¢ and u of o have to
satisfy the following constraint in the object-based
systems.

[OBQ constraint]
o Ny + N, > aiff t conflicts with u. O

A transaction T invokes a method ¢ on an ob-
ject o. First, a quorum @ for ¢ is constructed by
selecting NV, replicas in the cluster R, for example
randomly selecting replicas. If every replica in @
is locked, the replicas in @, are manipulated by t.
In the quorum-based protocol, Ny + N, > a'ifa
pair of methods ¢ and u are update ones. On the
other hand, the OBQ constraint means that N, +
N, > a only if ¢t conflicts with u. It is noted that
N; + N, < aif t and u are compatible even if ¢
or u updates 0. The OBQ constraint implies the
following properties:

[Property] Every pair of conflicting methods ¢
and u of an object o are performed on at least k
(= Ny + N, — a) replicas in the same order. O

3 Exchanging Procedure

We discuss the exchanging procedure. Each
replica o), has a log Ly where a sequence of up-
date methods performed on o, are stored. We
discuss how to manipulate the log Lj. Initially,
Ly, is empty. Suppose that a method op is issued
to on. If op is an update method, op is stored in
Ly, i.e. Ly = (op]. Here, let L, be a sequence
of update methods (oppi, ..., 0prm]. Suppose a
method op is issued to 0. If op is compatible with
every method opy;, op is enqueued into Ly, i.e. Ly
= (0Phi, - -+, OPhm, op] and then op is performed
on op. Thus, every pair of methods in L are com-
patible. Suppose that op conflicts with a method

— 9 —

[inc inc dec dec ;
t | | R
2 dec ‘dec ine . inc!

_/

(1) Ly : (oph1, - - -
Ly : {opr1, ..« -./

(2) Lh : <0ph1"' sy *ophfr ey 0phm7 opkj1 Op]
Figure 5: Exchanging procedure.

ophy and op is compatible with every method opp,
(¢ > f) in L. There might be some replica oy,
whose log L includes some method op; which
is compatible with a method in Lj but conflicts
with op, and is not performed on o,. Such method
opy; is required to be performed on o, before op
is performed on o;,. Here, another replica o; has
alog Ly = (opk1, - .., opwi] and op is issued to
o. op conflicts with opy, and op is compatible
with every method opy, (9 > u). According to
the OBQ property, every pair of methods opy; in
Ly, and opg; in Ly are compatible. Here, a method
opy; in Ly is referred to as missing method for a
method op on o, iff opy; is not performed on oy,
and opy; conflicts with op [Figure 5(1)]. Here, ev-
ery missing method opy; for op in Ly is required to
be performed on o), before op is performed. Then,
op is performed on oy. All the methods conflicting
with op are marked (%) in L, and op is enqueued
into Ly [Figure 5(2)]. Every pair of unmarked
methods in a log are compatible. If an update
method op is marked in every log, op is performed
on every replica and some conflicting method is
performed after op. Hence, op is removed from
every log.

Let us consider four replicas ¢y, ¢z, ca, and ¢4
of the counter object which support methods inc
(increment), dec (decrement), and dsp (display).
Here, Nine = Ngee = 2 and Ny, = 3 accord-
ing to the OBQ constraint [Figure 3]. First, a
method increment (inc;) is issued to ¢; and c3.
Then, decrement (dec;) is issued to c3 and cq.
The methods are performed and enqueued into
the logs. Here, Ly = L; = (incy) and Lz = L4 =
(decy). Next, increment (incp) is issued to c; and
c3. Since increment and decrement are compati-
ble, inc; is performed on c; and ¢; and enqueued
into the logs Ly and Ls. Here, Ly = (iney), Ly =
(ine1, inca), Lz = (decy, incy], and Ly = (decy].
Next, a method display (dsp,) is issued to cy, cj,
andc4. dspy conflicts with 4ney, incs, and decy.
tncy and decy are missing methods for dsp; in cy.
Hence, incy and dec; are performed on ¢;. dec; is
performed on ¢; and inc, and inc, are performed
on cq. Here, c1, ¢y, and ¢4 are the same. Then,
dsp; is performed on ci, ¢z, and ¢4. The meth-
ods incy, incg, and decy are marked in the logs
Ly, L3, and L4 because they conflict with dsp;.
Since dsp; does not change the state, dsp; is not
enqueued into the logs, i.e. 'Ly = (¥inc,, *decy,
*inCZ], Lz = (*iTLCl, *incz, *decl], L4 = (*decl,
*incy, ¥incy], and Ly = (decy, incy]. Then, dis-
play(dspy) is issued to cy, cs, and c4. incy is not
performed on ¢z although inc; is performed on ¢,
and cq. Hence, inc; is performed on cz. Here,
¢z = ¢z = c4. Then, dsp, is performed on c;,
c3, and cq. Here, Ly = (¥incy, *incy, xdecy), L3
= (*decy, *incy, *incy], and Ly = (*decy, *ines,
*incy). incy, incy, and dec; are marked in every
log, i.e. some method conflicting with the meth-
ods are performed after the method. The method

incy, incy, and decy are removed from the logs.
Then, L; = Ly = Lz = L4 = (] [Figure 6].

A transaction 7 issues a request op to the repli-
cas in a quorum Qo,. Bach log Ly is manipulated
as follows: :

1. A log Ly of a replica o, is searched. If every
method in Ly is compatible with op, op is
enqueued into Ly, and op is performed on o4.

2. If there is a some method in L, which con-
flicts with op, a log Ly is sent back to T'.

3. T collects the logs from the replicas, i.e. L =
U{Lx | on € Qr}. T sends a log Ly’ = {op’
| op’ € L — Ly, and op’ conflicts with op} to
the replica o5. A method in L’ is performed
on op. Then, op is performed on oy. Every
method conflicting with op in Lj is marked.

Each object has to decide whether or not each
marked method in the log is performed on every
other replica. Each method op brings information
dst showing on which replica op is performed. dst
is represented in a bit map b1+ - -b, where “by = 1?
means that op is performed on a replica ¢;. For
example, increment (inc;) is issued to the repli-
cas c; and c;. Here, dst of 4ncy is 1100. incit®
shows that inc; is performed on ¢; and c;. In
the exchanging procedure, the transaction T' re-
ceives incil®® from c¢; and c; after issuing display
(dspy) to ¢y, ¢, and cq. Then, T sends inci'®!
to c1, ¢g, and cg, i.e. 1101 shows c;, ¢3, and cq4.
¥incil®! is stored in the log. When a transaction
issues another display (dspz) to ¢y, ¢z, and ¢z, c3
sends inci®!! to the transaction T and ¢; and ¢;
send *incil®t. Here, 0011 U 1101 = 1111, Hence,
T sends incil!l to every replica. Then, xinc; is
removed from the log in every replica.

4 Nested Invocation

4.1 Redundant invocation

In the object-based system, methods are in-
voked in a nested manner. Suppose there are two
objects z and y and a method ¢ of z invokes a
method u of y. Suppose that there are replicas
Z1, ... &4 of the object z and replicas y1, ..., U3
of the object y.

A transaction T issues a method ¢ to replicas
in the quorum @y, say N; = 2. Suppose t is is-
sued to replicas ¢; and z3. Furthermore, ¢ issues
a request to replicas in the quorum of y to in-
voke a method u. Here, suppose N, = 2. Let t;
and t; be instances of the method ¢ performed on
replicas z; and z3, respectively. Each of {; and
t, issues a request of the method u to replicas in
a quorum of t. Here, let Qu; and Qu2 be quo-
rums of u for the instances ¢t; and ¢, respectively.
Suppose Qui = Quz = {¥1, Y2} t1 and t, issue
u to both y; and y;. Here, let u;; and u;p be
instances of the method u performed on replicas
y; and ya, which are issued by the instance ; (2
= 1, 2), respectively. If u updates y, a state of
y; is inconsistent because two instances uj; and
ugq of the method u from ¢1 and t; are performed
on y; [Figure 7). This is a redundant invocation,
i.e. a method on a replica is invoked by multiple
instances of a method invoked by a same instance.

In order to resolve the redundant invocation,
the following strategies are adopted:

Figure 7: Redundant invocation.

1. Bach transaction T is identified by a unique
transaction identifier tid. Each request issued
in T carries the tid of T.

2. If a method ¢ is performed on a replica z, ¢
and the response with ¢id of the transaction
issuing ¢ is logged into the log L.

3. Suppose a method ¢ is issued to z. If ¢ issued
by the same transaction T is found in the log
L, of z, the response of ¢ stored in the log is
sent back without performing t.

By the redundant invocation resolution pre-
sented above, at most one instance of a method
op is surely performed on each replica even if in-
stances on multiple replicas invoke the method
op. Here, suppose that there is another object
z which supports a method v and that v invokes
the method u on the object y. Suppose the trans-
action T invokes the method v on the object z
in addition to invoking the method ¢ on the ob-
ject u. v also invokes u on y, say on a replica
yi. An instdance t; is already performed on y;.
Since the tid of v is the same as ¢, the method
« invoked by v is not performed according to the
protocol presented here. In order to resolve this
problem, each method instance op invoked on an
object o'has a unique identifier (<d(op)) in the sys-
tem. For example, id(op) can be composed of the
local identifier of op, e.g. thread identifier of op,
a method type of op, and the identifier of 0. Each
transaction 7' has a unique transaction identifier
1id(T) = tid of T. If T invokes a method op,
op is assigned a transaction identifier tid(op) =
1d(T"). Here, suppose a method op, on an object
0, is invoked by a method instance op; on o;. The
transaction identifier of ops, tid(op2), is given as a
concatination of id(op;) and tid(opy), i.e. tid{op;)
:= tid(op;):td(op1). The identifier tid(op) shows a
invocation sequence of method instances from the
transaction T to op. Suppose op is invoked on a
replica oy. op is performed on o, as follows:

1. If op is performed on o, {op, response of op,
tid(op)) is stored in the log Ly, of o,.

2. If a method instance op’ such that tid(op) =
tid(op’) is found in the log Ly, i.e. op and

i .

op' are instances of a same method and are
invoked by a same instance, the response of
op is sent back without performing op.

The redundant invocation is resolved by this
method.

4.2 Quorum explosion

Suppose Qui # Quz, say Qui = {y1, 2} and
Quz2 = {y2, ya} in the example of Figure 7. The
method u is performed on replicas in @ = Q1 U

Figure 6: Example.

Quz = {v1, ¥2, ¥3}. u is performed twice on the
replicas in Q1 N Qu2 = {y>} as presented here. If
another transaction manipulates the object y by
the method wu, u is issued to the replicas in the
quorum Qu, say {ys, ys}. |Qui U Qua| > |Qul.
This means that more replicas are locked than the
quorum number N,, of the method w if the method
u is invoked by a pair of the instances ¢; and t,.
Then, the instances of uw on the replicas in Q3
U Qu2 issue further requests to other replicas and
more replicas are locked. This problem is referred
to as quorum explosion.

Suppose that a method ¢ on an object z in-
vokes a method w on an object y. Let Qi show
a quorum of the method v invoked by an instance
ty of the method ¢t on a replica zx. In order to
resolve the quorum explosion, @y, and Qi have
to be the same for every pair of replicas z; and z;
where an instance of the method ¢ is performed.
If a quorum Qy; for t; is constructed by a replica
zp, independently of an instance ¢, on every other
replica z;, the quorum explosion cannot be re-
solved. If a quorum is identical for every instance
of a method ¢, i.e. Qur = Quk, only the same
replicas are manipulated. If some replica is faulty,
a quorum for every method including the faulty
replica is required to be changed. We take an
approach where a quorum is decided for each in-
stance of a method.

There is a following approach to resolving the
quorum explosion:

1. Each replica has a same function rand for
generating a sequence of random numbers.
That is, rend(4, n, a) gives n random num-
bers from 1 to a for a same initial value 7. For
every replica, rand(i, n, a) gives the same set
of random numbers.

2. For each replica z, I = rand(tid, Ny, a) is
obtained, where tid is a transaction identifier
of t, N}, is the quorum number of a method u,
and a is a total number of replicas, i.e. {yi,
.. Ya}. I is a'set of replica numbers. Then,
a quorum Q) is constructed as Qn = {y; | ¢

€I}

Every instance invoked by a same instance has
the same transaction identifier as presented in
the preceding subsection. An instance t; of the
method ¢ on every replica z; issues a request of
u to the same quorum Qup = Q. Hence, the
quorum explosion is-prevented [Figure 8].

Another approach is that each instance ¢, on a
replica z; decides a quorum @y in order to in-
voke a method u on an object y. There are two
cases, l.e. whether or not u conflicts with itself.
First, suppose that u conflicts with itself. That
is, Nyn + Nyr > a for every pair of instances 2,
and t; where a is the total number of the repli-

ncy decy incy dspy dspsy
Ly | (ine] {xincy, *incy, *dec, | {]
Ly | (inci) (incy, inca] | (¥incy, xincy, *deci) (1
Ly " {deci] | (decy, inca) (xdecy, wincy, *inei] | (]
Ls (decy) (vdecy, ¥incs, vines) 0

Quh

®

Figure 8: Resolution of quorum explosion.

cas of y. Since Qur N Quk # @, ty and t; issues
u to some replica o; in Qua N Qux. The replica
o decides which quorum Qup or Qui takes over
the other. If Qu is taken over, the instance ¢y
stops issuing u to Qu and issues u to the repli-
cas in Qyun. Thus, every instance ¢), can issue the
method u to the same quorum. The other case is
that u is compatible with itself, i.e. Quu N Qui
can be empty. If Qun N Qur = ¢, no replica re-
ceives requests from both ¢; and t,. Hence, each
of ¢, and t; has to issue a request u to all the
replicas in the quorum Q) and Qu;, respectively.
Then, suppose that u invokes another method v
on an object z and v conflicts with itself. Each
instance uyp; In' Qun issues a request z to a quo-
rum Quri. Quii N Quij # ¢ and Quins = Qumt #
¢. A common replica in a pair of Qu; and Qutj
can decide which quorum Qyz; and Quz; is taken,
say Quni is taken if id(up;) < id(up;): Then, this
decision is distributed to every replica in Qup; U
Qur;. Suppose a replica z, knows some decision,
ie. Q.. If a request z with a quorum Q is issued
to z,. If Q. # Q, one of @, and Q is taken by the
same decision logic. Thus, if a method conflicting
with itself is invoked, the quorum is convergent to
the proper size of the quorum. However, as long
as a method compatible with itself is invoked, the
quorum can be exploded. Hence, we adopt the
protocol presented here.

5 Evaluation
We evaluate the protocol to resolve the redun-

dant invocation and quorum explosion in terms of
number of replicas locked and number of requests
issued. The following three protocols R, Q, and N
are considered: .

1. Protocol R: without redundant invocation

and quorum explosion.
2. Protocol Q: without redundant invocation.
3. Protocol N:

The protocol N supports no resolution of the
redundant invocation and guorum explosion. In
the protocol Q, the redundant invocation is pre-
vented. In the protocol R, neither redundant invo-

cation nor quorum explosion occur. The protocol
R shows our protocol discussed in this paper.

We consider a simple invocation model where a
transaction first invokes a method ¢; on an object
z1, then £; invokes a method ¢ on an object z3,

. Here, let n; be the number of replicas of an
object z; (¢ = 1, 2, ...). Let r; be the quorum
number of a method ¢; (r; < n;). The number ¢
shows a level of invocation. In the protocol, the
transaction T first issues r; requests of ¢; to the
replicas of z;. Then, each instance of ¢; on a
replica issues r; requests of {5 to the replicas of
z3. In the protocol N, a method ¢, invoked by
each instance of t; is performed. Here, totally r;
times r; requests are performed. In the protocol
@, at most one instance of t5 is performed on each
replica of z, by the resolution procedure of the re-
dundant invocation. Since the quorum explosion
is not resolved, the expected number QF; of repli-
cas where t; is performed is na[l — (1 — Z2)™].
Then, each instance of t, issues requests of t3 to
r3 replicas of 03. Here, ng[l — (1 — :-;’3-)’1’2} repli-
cas are locked in the protocol N and QE3 = n3[l
-(1- %)Q&‘] replicas in the protocol Q. In the
protocol R, t; is performed on only 7, replicas of
the object z,.

1
£ ! [EX ZEERE FEREE RREERK TSR B

5

< 09 Protocol N —X—
C Protacol Q "9
.:; 08 Protocal R -©-
H

Z o7

3

£

306

2

=

Zs05

3%

Z=o4

£ 00O O DD @D
%

3 o2

S oo

3 Oy 2 3 4 5 3 7 8 9 10

Figure 9: The ratio of replicas to be locked (n =
10 and » = 3).

- @ 2 B \ 3 &
Protocol N =X
Protocol @ ~®-
Protocol R ~©-

1 2 3 4 5 8 7 8 9 10
i

Ratio of replicas to be locked to the total number of replicas

Figure 10: The ratio of replicas to be locked (n =
10 and r = 52.

In the evaluation, we assume that ny = ny =

.=n=10and r; = r; = ... = r. Figure 9 and
10 show that a ratio of replicas where a method
is performed to the number n of the replicas at
each invocation level for » = 3 and r = 5, respec-
tively. The dotted line with white circles shows
the protocol R. The straight line indicates the pro-

tocol N and the other dotted line with black circles
shows the protocol Q. If the methods are invoked

at deeper level than two or three, all the replicas
are locked.

6 Concluding Remarks

This paper discussed how multiple transactions
invoke methods on replicas of objects. The object
supports a more abstract level of method. In ad-
dition, methods are invoked in a nested manner.
It is not required to perform every update method
instance on the replica which has been computed
on the other replicas if the instance is compati-
ble with the instances performed. We discussed
how to resolve redundant invocations and quo-
rum explosions to occur in systems where methods
are invoked on multiple replicas in a nested man-
ner. By using the quorum-based locking protocol
with the exchanging procedure and resolution of
redundant invocations and quorum explosions, an
object-based system including replicas of objects
can be efficiently realized.

References
[1] Bernstein, P. A., Hadzilacos, V., and Good-
man, N., “Concurrency Control and Recov-
eg}é;n Database Systems,” Addison- Wesley,
1987.
[2] Bernstein, P. A., and Goodman, N., “The
Failure and Recovery Problem for Replicated

Databases,” Proc. 2nd ACM POCS, 1983,
pp. 114-122.

[3] Carey, J. M. and Livny, M., “Conflict De-
tection Tradeoffs for Replicated Data,” ACM
TODS, Vol.16, No.4, 1991, pp. 703-746.

[4] Chevalier, P. -Y., “A Replicated Object
Server for a Distributed Object-Oriented Sys-
tem,” Proc. of IEEE SRDS, 1992, pp.4-11.

Garcia-Molina, H. and Barbara, D., “How
to Assign Votes in a Distributed System,”
JACM, Vol 32, No.4, 1985, pp. 841-860.

[6] Hasegawa, K. and Takizawa, M., “Opti-
mistic Concurrency Control for Replicated
Objects”, Proc. of Int’l Symp. on Commu-
nications (ISCOM’97), 1997, pp. 149-152.

[7) Hasegawa, K., Higaki, H., and Takizawa, M.,
“Object Rephcatlon Usmg Version Vector”
Proc. of the 6th IEEE Int’l Conf. on Par!
allel and Disiributed Systems (ICPADS-98),
1998, pp. 147-154.

[8] Jing, J., Bukhres, O., and Elmagarmid, A.,
“Distributed Lock Management for Mobile
Transactions,” Proc. of IEEE ICDCS-15,
1995, pp. 118-125.

[9] Korth, H. F., “Locking Primitives in a
Database System,” JACM, Vol. 30, No. 1,
1983, pp. 55-79.

{10} Silvano, M. and Douglas, C. S.; “Construct-
ing Reliable Distributed Communication Sys-
tems with CORBA,” IEEE Comm. Maga-
zine, Vol.35, No.2, 1997, pp.56-60.

[11] Tanaka, K., Hasegawa, K., and Takizawa, M.,
“Quorum-Based Replication in Object-Based
Systems,” Journal of Information Science
and Engineering (JISE), Vol. 16, 2000, pp.
317-331.

[5

