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Characteristics of Internet Traffic Data

TK Roy, D. Chakrabarty, A. Ashir, G. Mansfield, N. Shiratori

fResearch Institute of Electrical Communication
Tohoku University 980-8577, Sendai.

Abstract  The Internet traffic data have been found to possess extreme variability and bursty structures
~ in a wide range of time-scales, so that there is no definite period of busy or silent periods. However, there is
a self-similar feature which makes it possible to characterize the data. Self-similarity is expressed in terms of
the different statistics varying with the time scale of observation. We give a brief description of those we have.
calculated to determine the self-similarity of the Internet traffic data obtained in our laboratory ®. These are
i)Variance, the decrease of which with the time scale of observation gives a parameter (8) to specify the degree
of self-similarity, ii)Autocorrelation, with a very slow decay rate and itself showing: self-similar features and
m)Hurst parameter H, another independent measure from the rescaled range of the data. The similarity of the
data in a sub-period and its finer intervals leads to the possibility of the data to posses fractal characteristics
also. Although extensive works have been done on the self-similar features of Internet traffic data, there has
not been much on this aspect, which can exist in both the time and space scales. Here we attempt to provide
a description of the fractal characteristics associated with such a self-similarity.

key words  Internet traffic, self-similarity, Hurst parameter, autocorrelation, fractal dimension.
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1 Introduction

The self-similar nature of Internet traffic data was first
proposed by the Leland et alin 1993 [lela93] and sub-
sequently established by others in a flood of research
works on the subject [lelad4, paxs95, will94]. It was
then a new concept against the long believed idea of
the Poisson traffic. The main observations of the In-
ternet traffic were that the data were found to be highly
variable and bursty and did not seem to follow a steady
state. The traffic came in starts and fits with lulls in
between. The variability existed even in small time
scales. This was discovered when an attempt was made
to find a time scale of the bursts or lulls or the intervals
between them. ‘

The traditional Poison traffic model assumed the
variation of data flow to be finite around a mean but
the observations on the Internet traffic proved other-
wise. It is this large variance of data flow that leads to
the self-similar nature. The data show self-similarity al-
most at all scales of resolution. Such self-similar nature
is always associated with a fractal structure of the data.
The fractal characteristics can exist both in the tempo-
ral and spatial scales. This was indicated by Willinger
and Paxson [will98], as due to the extreme variability
and the long range dependence in the process.

Presently, one of the main research interests in the
field of Internet traffic is that of prediction of data.
Before preparing a model of prediction, one of the im-
portant tasks is to determine its statistics. Although
of stochastic nature, it is still guided by some charac-
teristics which do not or very slowly change with time.
Any model to predict the future values will have to
preserve these characteristics.. Therefore, it is impor-
tant that the characteristics of the network traffic are
determined for a good management and a satisfactory
quality of service.

We report in this paper on the nature of Internet
data obtained in our Laboratory, along with an attempt
to determine if there is any spatial fractal characteris-
tics. After a brief description of the different statistics
required to determine self-similarity in a data set, we
give a description of the spatial fractal characteristics
similar to the temporal, and a method to determine
the fractal dimension, similar to that used in nonlinear
dynamics. Finally, we conclude with the results.

2 Variance and Autocorrelation
in a Self-similar time series

The self-similarity is defined in terms of aggregates
from a time series. Experimentally we observe the rate
of data flow at an interface either inwards or outwards.
We assume that the nature of flow is stationary, i.e.
the statistics of the process under observation do not
change with time. Then if X; is the record at the ith
time resulting in a series

X = {X1, Xz, .0, Xn'}, )

the m-aggregated time series X ™) is defined as

xm = (xm™ x{™ LX) (2)
where,
km
X,(cm) = Z Xi/m (3)
i=m(k—1)+1

As we move towards higher m, the resolution decreases
from the highest that is obtained in experiment, to the
lowest. The m-aggregated series represents a compres-
sion of the data by m-times.

If the statistics (for example mean, variance, corre-
lation etc.) of a process is preserved with such a com-
pression then it is a self similar process. The degree of
self similarity is expressed by a parameter /3, if for all
m = 1,2,... we have the variance at the mth level of
aggregation Var[X(™)] related to the original variance
Var[X] as:

Var[X™)] = Var[X]/m?, (4)

The autocorrelation after & time steps defined as

N
R(k) = ZXiXH-k/N (5)

=1

(for N >> k) remains a constant at all levels, i.e.

R™ (k) = R(k), (6)

for all ¥ and all m, for a perfect self-similar series,
with R(™ (k) obtained from X(™ as in Eq. (5). In
other words the original time series and that after m-
aggregation are same in as far as the autocorrelation
is concerned. Experimentally we observe Eq. (4) and
Eq. (6) as m becomes large, and 8 ranging from 0 (for
full self-similarity) to 1 (for ordinary data). The auto-
correlation R(k) for a self-similar process is found to
be long-ranged:

R(k) = k~P(klarge), (n

For noisy data the autocorrelation is zero for £ > 0
with 8 = 1.

3 R/S Statistic

An equivalent characterization is given by a quantity
named by H.T.Hurst [hurst65] as the rescaled range
(R/S) of the data, defined as:

R(N) _ RescaledRange(X,N)

S(N) ~ Standard deviation(N)’

(8)

R(N) = mazimum of L; — minimum of L;, (9)



J

Z ,1<j<N (10)

and M(N) is the mean of the data of size N. S(N) is
the usual standard deviation.

For self-similarity, R/S follows a power law for large
N:

R/S ~ (N/2)F H > 0.5 (11)

where H is the Hurst parameter. It can be shown that
B is related to H as

H=1- —g (12)
so that for full similarity expressed by 8 = 0, the Hurst
parameter is 1.

4  Fractal Characteristics of In-
“ternet Data

The self similar nature of the Internet traffic data is
due to its high or extreme variability in both time and
space. Temporal high variability results from the long
range dependence which is described as the evolution
of a process depending on its state long before. The au-
tocorrelations fall off very slowly with time exhibiting a
power law behavior in contrast to the exponential decay
as in short range dependent systems. Again, extreme
spatial variability is also observed. The underlying dis-
tributions for this feature have been found to be those
with infinite variance, referred to in the literature as
heavy tailed distributions.

Processes with such features, the long range behav-
ior or power law dependence are expected to have frac-
tal characteristics. Indeed the Internet traffic data ex-
hibit the fractal like structure over a long range of time
scales. As discussed by Willinger and Paxson [will98]
we define a process to possess fractal characteristics, if
there exists a relationship of the form:

Q(7) x (D) (13)

where @ is a certain quantity depending on 7, a resolu-
tion in time or space and f(D), a simple, often linear,
function of the dimension D of the process, the. fractal
dimension, so defined.

In fact one of the measures of self-similarity is based
on such an equation. When @ is taken to be the vari-
ance of the data, then f(D) is a simple linear function
of the dimension D identified to be the Hurst parame-
ter H:

Var[X(m)} oxcm™# = m2H-? (14)

Thus equation Eq. (14) describes the fractal behavior
of the data in time. s

An equivalent description in space will be similar to
that of Eq. (14) with the resolution in space. This we

borrow from the field of nonlinear dynamical systems
[schus95]. Imagine the range of the data to be divided
into equal segments of size ¢, and we count, the number
of segments that contain the data. Let this be N(e).

Then @ then becomes the number of segments N(e) of
size € requxred to cover the data:

N(e) o &P (15)

so that a dimension D at resolution € can be expressed
by:

logN ()
loge

D(e) = — (16)
Then a log — log plot of N (e) vs. € is a straight line
with a slope, which gives a measure of D. It is to be
noted that Eq. (16) is expected to give the dimension
for some range of scales depending on the size of the
data. For coarse scales (large €) we do not expect to
find a description, rather at finer scales, i.e. for small
€. This was also the case for Eq. (14). Agdm at smaller
and smaller resolution since we always work with finite
size data, we shall find a limit upto which it is valid.

5 Results

Calculations were done with the data ! from na-
tori.cysol and swan.shiratori of our Laboratory to test
the self-similar nature of Internet traffic. Four sets of
data were considered. They are:

1. 2000/2/[1-29]/shiratori/swan/ifInOctets.2
(SSI02) and

2. 2000/2/[1-29]/shiratori/swan/ifOutOctets.2
(SSO02), the ingoing and outgoing octets per
- minute during February 1-29, 2000 at the inter-
" face no.2 of swan.shiratori, each of datasize 41415
and,

3. 2000/2/{1-21]/IB/natori.cysol.co.jp/ifInOctets.2
(JBNIOZ2) and

4. 2000/2/(1-21]/IB/natori.cysol.co.jp/
ifOutOctets.2 (JBNOO2), the ingoing and outgo-
ing octets per minute during February 1-21, 2000
at the interface no.2 of natori.cysol; each of data-
size 29759.

A d;escription of the data sets is provided in the follow-
ing Table:

Table-I (a)

Name Duration Type Size
JBNIO2 | 2000/2/[1-21}] | InOctets | 29759
JBNOOZ2 | 2000/2/[1-21] | OutOctets | 29759
SS002 | 2000/2/[1-29] | OutOctets | 41415

SS102 " | 2000/2/(1-29] | InOctets | 41415

Tavailable on request




Table-I (b)

{ Min Mean Max Variance
512 3954.8 2323200 5.2677TES8
256 55103.7 | 93903360 | 5.7358K11

0 159020.9 | 60619648 | 1.0765E12
14336 | '31230.3 | 12975872 | 4.7012E9
Table-11

| Data B Ji§ D

SSO02 | 043 10.75 | 0.50

SS102 | 0.95 | 0.62 | 0.50
JBNIO2 | 0.35 | 0.80 | 0.63
JBNOO2 | 0.35 | 0.81 | 0.71

Except for the first set, the InOctets
of swan.shiratori, all the data sets though very much
limited in size, show clear signs of self-similarity. This
is illustrated by the attached figures and the table be-
low. The slow change of variance with the size of the
aggregation (m) gives an estimate of 8 = 2 ~ 2H from
a log —log plot. The rescaled range also shows a power
law dependence with N, the size of the data, the power
given by H (> 0.5 for self-similarity).

The autocorrelation also shows self-similarity by
scaling with the size m of the block. Since the data
sizes were finite and not large as in the experiments of
Leland et al [lela94], it is difficult to see Eq. (6). A real
measure of R(k) can be found only if k¥ << N for a
long range process. However, we find Eq. (7 to be valid
for k ~ N/100 [Fig.4], for the original series.

The similar nature of the auto-correlation plots gives
evidence that the aggregated time series X (™ is just
similar to the previous one, which in turn is similar
to its former in previous level, and so on down to the
original series at highest resolution. Here, instead of
Eq. (6), we have a different indication of self-similarity
useful for a small data set, namely, the auto-correlation
plots at all levels of aggregation look similar. -

We also have an indication that the same features
are preserved when we work with some less amount of
data (say by 10 — 15 per cent). This may be of help in
a prediction process.

All the data sets show fractal like behavior. The frac-
tal dimension is found to be a constant over an appre-
ciable range of precision in all the cases, as discussed in
the previous section. Because the data are self-similar,
it is found to give similar results in the respective ag-
gregated series also, though with some smaller ranges.
One particular case is interesting, that of SSIO2, which
has a convincing fractal characteristic, but there is very
less temporal self-similarity (8 ~ 0.95). It seems that
temporal and spatial fractal behavior are two aspects of
Internet traffic data which may be independent of each
other. However, this also needs to be tested over many
other sets of data obtained from other experiments.

Figure 1: A typical plot of log Var[X{™)] vs. log(m),
for data SSOO2, with a least square fit line with 8 =
0.43
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Figure 2: A typical plot of H (Hurst parameter) vs. N
(data size)
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Figure 3: Auto-correlation for different m-aggregates,
for data SSO02

§8002: Autocorretation for different m-aggregates
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Figure 4: Auto-correlation at large &
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Figure 5: Log—Log plot of N(€) us. ¢, for data JBNIO2,
with a least square line, the slope of which gives the
fractal dimension D = 0.63
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Figure 6: Same as in Fig. (5), for data SSIO2, with
D =10.50
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Figure 7: Same as in Fig. (5), for data JBNOO2, with
D =0.71
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Figure 8: Same as in Fig. (5), for data SSO02, with
D =0.50
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