
QoS Control in Group Communication

Takuya Tojo and Makoto Takizawa

Tokyo Denki University
E-mail {tojo, taki}@takilab.k.dendai.ac.jp

This paper discusses how to exchange multimedia messages in a group of multiple processes. Quality of
Service (QoS) required by the applications has to be supported for multimedia applications. In traditional
communication protocols like TCP and RTP, a process can reliably deliver messages to one or more than
one process, i.e. one-way transmission. In the group communication, a process sends multimedia messages
to multiple processes while receiving multimedia messages from multiple processes in a group. We discuss
how to transmit multimedia messages to each destination process so as to satisfy QoS requirement among the
processes.

グループ通信におけるQoS制御

東條 琢也 滝沢 誠

東京電機大学理工学部情報システム工学科
E-mail {tojo, taki}@takilab.k.dendai.ac.jp

本論文では、複数のプロセスから構成されるグループ内のプロセス間で、マルチメディア・メッセージを通
信する方法について論じる。アプリケーションによって必要とされるサービス品質 (QoS)をグループ内の各プロ
セスに提供せねばならない。グループ通信では、プロセスは複数のプロセスからメッセージを受信し、かつ複数
のプロセスにメッセージを送信する。本論文では、グループ内のプロセス間に必要なQoSを満足するようにマル
チメディア・メッセージを送信する方法について論じる。

1 Introduction
In distributed applications like teleconferences, a

group of multiple processes are cooperating by ex-
changing messages. In group communication, a group
of multiple processes is first established. Then, mes-
sages transmitted by processes have to be causally de-
livered to multiple destination processes in the group
[3]. For example, a process p1 sends a question mes-
sage Q to a pair of processes p2 and p3. After re-
ceiving the question Q, the process p2 sends an an-
swer message A of the question Q to the processes p1
and p3. The message Q causally precedes the message
A [3, 7, 8]. Here, the process p3 is required to deliver
the message Q before A. Thus, a message m1 is re-
ferred to as causally precede another message m2 if
and only if (iff) a sending event of m1 happens be-
fore a sending event of m2 [3, 7, 8]. Various types of
the group communication protocols which support a
group of multiple processes with the causally ordered
delivery of messages have been so far discussed [3,11].

In distributed applications, multimedia data is
exchanged among processes in addition to tradi-
tional data in high-speed communication networks
[6]. High-speed transmission protocols like XTP [5],
and multimedia communication protocols like RTP
[12] and RSVP [4] are developed so far, by which
a large volume of multimedia data can be efficiently
transmitted to one or more than one process. In these
protocols, inter-message gap is controlled so that the
buffer of the receiver does not overrun. Protocols to
support Quality of Service (QoS) like delay time and
message loss ratio are discussed [2, 6]. They discuss

only one-to-one and one-to-many types of high-speed
communications. Let us consider a teleconference
which is composed of multiple remote sites. Video
and voice of each remote site are distributed to every
remote site in the teleconference. In one way, there is
one centralized controller site. Every site first sends
multimedia data to the controller. Then, the con-
troller forwards the data to every remote site. The
same video and voice data of every site is seen at every
site. This is a centralized approach. This approach
is simple and easy to implement the teleconference.
However, it takes two rounds to deliver a message
from a site to another site since every message is de-
livered through the centralized controller. The cen-
tralized way is not suited to realize real-time appli-
cations including multiple processes distributed in a
wide-area network. We take a distributed approach
where every process directly sends a message to des-
tination processes in a group of processes in order
to realize real-time constraints of multimedia data.
Each process receives messages from multiple sites.
Each process has to causally order messages received
from multiple processes by itself in order to causally
deliver the messages. In addition, a process is re-
quired to send a message to each destination process
so that QoS requirement is satisfied. In this paper, we
discuss a distributed group protocol for transmitting
multimedia messages.

In section 2, we present a system model. In section
3, we discuss a model for transmission and receipt
of multimedia messages in group communication. In
section 4, we discuss a group protocol.

研究会Temp
マルチメディア通信と分散処理

研究会Temp
107－28

研究会Temp
（２００２． ３． ２９）

研究会Temp
－163－

2 System Model

2.1 Channel
A group G of multiple processes p1, . . . , pn(n>1)

are interconnected with reliable high-speed commu-
nication networks. The network is modeled to be a
collection of reliable high-speed channels. Processes
communicate with each other by taking usage of chan-
nels. There is a high-speed channel Cij = 〈pi, pj〉 be-
tween every pair of processes pi and pj in the group
G. Each channel 〈pi, pj〉 satisfies the following char-
acteristics:

1. The channel is bidirectional, i.e. 〈pi, pj〉 exists if
〈pj, pi〉 exists.

2. The channel is reliable, i.e. any message is nei-
ther lost nor duplicated and messages are trans-
mitted in a sending order in every channel.

3. The channel is high-speed, i.e. transmission time
of a data unit is much shorter than the delay
time.

4. Each channel is synchronous [10], i.e. the maxi-
mum delay time is bounded.

A process pi sends a message m to one or more
than one destination process in a group G. Let dst(m)
denote a collection of destination processes of a mes-
sage m, which is a subset of a group G. Let src(m)
show a source process which sends a message m. A
message m is transmitted from a process pi to every
destination process pj in dst(m) via a channel 〈pi,
pj〉. Each channel 〈pi, pj〉 can be realized to be a
connection like one supported by TCP [9].

Pi Pj

channel <pi,pj>

...
tl t2 t1

mmessage

packet

Figure 1: Channel

A process pi sends a message m to destination pro-
cesses in dst(m) = {pi1, . . . , piki} (ki ≥ 1). The
message m is delivered to each destination process
pij through a channel Cij . A message is decomposed
into smaller units named packets which are units of
transmission in a channel. A sequence of packets are
transmitted in a channel. Suppose a message m is
decomposed into a sequence of packets t1, . . . , tl(l ≥
1)[Figure 1]. Let pkt(m) be a sequence of packets t1,
. . ., tl of a message m. The process pi transmits a
packet sequence to every destination process pik via
a channel Cik = 〈pi, pik〉. A destination process pik

receives packets sent by the process pi through the
channel Cik and assembles the packets into a mes-
sage. Then, the message is delivered to the process.

2.2 QoS
Each channel 〈pi, pj〉 supports Quality of Service

(QoS), which is denoted by Q(〈pi, pj〉) or Qij . There
are following QoS parameters for group communica-
tions among multiple processes:

1. bw:bandwidth [bps].
2. pk:packet loss ratio [%].
3. dl:delay [msec].

Each QoS instance is a tuple of values 〈v1, . . . ,
vm〉 where each vi is a value of QoS parameter qi

(i=1, . . . , m). Let Q be a set of QoS parameters q1,
. . . , qm. Let A and B be QoS instances 〈a1, . . . , am〉
and 〈b1, . . . , bm〉, respectively. Each QoS value ai of
the QoS instance A is shown by qi[A]. If ai is better
than bi (ai � bi) for every parameter qi, A precedes
B (A � B). A preference relation “→” is a partially
ordered relation on QoS parameters q1, . . . , qm, i.e.
→ ⊆ Q2. “qi → qj” shows that a parameter qi is pre-
ferred to qj by an application. The QoS parameters
in Q are partially ordered in the preference relation
“→”. For example, if bw is more significant than pl
for an application, bw → pl. For every pair of QoS
parameters qi and qj, qi ∪ qj and qi ∩ qj show least
upper bound (lub) and greatest lower bound (glb) of
qi and qj, respectively, with respect to the preference
relation “→”. Let P be a partially ordered set 〈Q,
→〉, named preference of an application. For exam-
ple, Q = {bw, pl, dl}. An application specifies its
precedent relation; bw → pl and dl → pl on Q. A
preference P for an application is 〈 Q, {bw → pl, dl
→ pl} 〉.

Let A and B be QoS instances 〈128[Mbps],
100[msec], 0.05[%]〉 and 〈64[Mbps], 50[msec], 0.1[%]〉,
respectively. Here, 64 � 128[Mbps], 100 � 50[msec],
and 0.05 � 0.1[%]. Since the bandwidth (bw) and de-
lay time (dl) are more significant than the packet loss
ratio (pl), bw → pl and dl → pl in a preference P .
The QoS instance A is more preferable than B with
respect to the preference P (A �P B) while the delay
time of B is better than A. Let Q(A) and Q(B) show
sets of QoS parameters of QoS instances A and B, re-
spectively. Here, let A and B be QoS instances where
Q(A) = Q(B). A relation “A �P B” is inductively
defined as follows:
[Definition] A QoS instance A is preferable to an-
other QoS instance B with respect to a preference P
(A 	P B) iff

1. if A={ai}, B={bi}, and Q={qi}, ai 	P bi.

2. if A′ = A - {ai}, B′ = B - {bi}, and Q′ = Q -
{qi} = Q(A′) = Q(B′),

• A′ 	P B′ if qi → q for some QoS parameter
q in Q′.

• A′ 	P B′ and ai 	P bi if qi � q for every
QoS parameter q in Q′.

研究会Temp
－164－

3 Data Communication Model

3.1 Transmission
A process pi sends a message m to every destina-

tion process in dst(m). The message m is decomposed
into a sequence of packets t1, . . . , tl (l ≥ 1). A packet
is a unit of data transmission in a network. There are
following ways to transmit a packet sequence pkt(m)
(=〈t1 , . . . , tl〉) to the destination processes [Figure
2]:

1. The process pi sends each packet th to every des-
tination process pij through a channel Cij . Here,
each packet th is sent in each channel Cij after
th−1 is sent in every channel (h=1, . . . , l). This is
referred to as synchronous transmission of mes-
sage m to multiple processes in dst(m).

2. The process pi sends a sequence pkt(m) of
the packets through each channel independently
of the other channel. This is referred to as
asynchronous transmission of m to multiple pro-
cesses.

The synchronous transmission means multicast of
each packet. Here, let snd (t, C) show a procedure
to send a packet t through a channel C. The syn-
chronous transmission can be realized by a following
procedure:

for h = 1, . . . , l

{ snd (th, Cij); . . . ; snd (th, Ciki);}
In the asynchronous transmission, a sequence of

packets are transmitted for each channel. Let Snd
(T , C) show a procedure to send a sequence T of
packets t1, . . . , tl through a channel C, i.e. for h =
1, . . . , l {snd (th, C);}. Here, a notation F1 ‖ F2

means that a pair of procedures F1 and F2 are con-
currently performed. For example, F1 ‖ F2 is realized
by creating a thread for each of F1 and F2. The asyn-
chronous transmission can be realized by performing
a following procedure:

Snd (T , Ci1) ‖ . . . ‖ Snd (T , Ciki);

Pi

Pi1

Piki

Pi

Pi1

Piki

1 Synchronous 2 Asynchronous

Figure 2: Transmission

Each destination process pij of a message m sent
by a process pi has some QoS requirement Qij . A
process pi has to deliver a message m to every desti-
nation process pij so as to satisfy the QoS requirement
Qij . Let Qij(tk) show QoS of a packet tk transmit-
ted in a channel Cij = 〈pi, pij〉. When a group G is
established among processes p1, . . . , pn , every pair
of processes pi and pij do negotiation on the prefer-

ence. Let Pij denote a preference to be used when
a process pi sends messages to pij . Let a preference
relation “�ij” denote “�Pij ”. Qij(tk) is required to
satisfy Qij(Qij(tk) �ij Qij). There are two cases:

1. For each packet th of a message m, Qij(th) =
. . .= Qiki(th). This is referred to as quality-
balanced transmission of message m to multiple
destination processes.

2. For some pair of channels Cij and Cih, Qij(th) �=
Qij(tk). This is referred to as quality-unbalanced
transmission of m to multiple destination pro-
cesses.

In the first case, each packet of a message m is sent
with a same QoS in every channel. That is, a same
packet is sent in every channel. In the second case,
QoS in each channel is not necessarily same. A same
packet is transmitted with different QoS instances in
different channels.

Let us consider a synchronous transmission of
a message m to multiple destination processes in
dst(m). If each channel supports enough QoS, a pro-
cess pi can synchronously send a same packet in every
channel. Here, since each channel supports the same
QoS, this is QoS-balanced transmission. The QoS-
balanced, synchronous transmission is referred to as
fully synchronous. If some channel Cij does not
support enough QoS, e.g. due to congestion, the pro-
cess pi sends a packet tk with less QoS in the channel
Cij than the others. That is, Qij(tk) ≺ij Qih(th) for
some channel Cik (h �= k). Next, suppose QoS is
more significant than the synchronous requirement in
an application. The process pi sends the packets in
the channel Cij more slowly than the other channels.
That is, the process pi asynchronously sends pack-

Asynchronous Synchronous

quality-balanced

quality-unbalanced

independent

fully

Figure 3: Types of transmission/receipt

ets of the message m. The QoS-unbalanced, asyn-
chronous transmission is referred to as independent.
Figure 3 summarizes types of transmission.

3.2 Receipt
A process pi receives messages from one or more

than one process in a group G of processes p1, . . . , pn.
There are following ways for a process pi to receive

研究会Temp
－165－

messages from multiple processes pi1, . . . , pikt (ki ≥
1) [Figure 4]:

1. Each process pij sends a sequence pkt(mj) of
packets tj1, . . . , tjlj (li ≥ 1) to a process pi (j=1,
. . . , ki). The process pi receives a packet tjh from
each process pij after receiving a packet tj,h−1

from every process pij (j=1, . . . , ki). This is
referred to as synchronous receipt of messages
from multiple processes.

2. A process pi receives packets from each process
pij independently of the other processes. That is
referred to as asynchronous receipt of messages
from multiple processes.

Pi

Pi1

Piki

Pi

Pi1

Piki

1 Synchronous 2 Asynchronous

.

.

.

.

.

.

Figure 4: Types of receipt

Let “t = rec (C)” show a procedure to receive one
packet through a channel C into a buffer t. Let Tj be
a sequence of buffers tj1, . . . , tjl, where each buffer
can admit one packet. Let “Tj = Rec(C)” show a
procedure to receive a sequence of packet into a buffer
Tj ; for h=1, . . . , l {t1h = rec(C)}. The synchronous
and asynchronous receipts of a sequence of packets
t1, . . . , tk are realized as follows:

1. Synchronous receipt:
for h = 1, . . . , l
{ t1h = rec (Ci1); . . . tkih = rec (Ciki);}

2. Asynchronous receipt:
T1 = Rec(Ci1) ‖ . . . ‖ Tl = Rec(Cel);

As transmission of messages, there are following
ways to receive messages from multiple processes:

1. A process pi receives packets with a same QoS
from each destination process pij . This is QoS-
balanced receipt.

2. A process pi receives packets with different
QoS from different destinations. This is QoS-
unbalanced receipt.

If a process synchronously receives messages in a
QoS-balanced way, the process is referred to as fully
receive messages. If a process asynchronously receives
messages in a QoS-unbalanced way, the process is re-
ferred to as independently receive messages. A rela-
tion among types of receipt is shown in a same figure
as Figure 3.

3.3 Communication
Each process sends messages to and receives mes-

sages from multiple processes in a group G. Much

computation resource is spent to send and receive
messages in each process. Since the computation re-
source is limited, each process may not send so many
messages as the process would like to send and may
not receive so many messages as the other processes
send to the process. If more number of packets than
a process can receive are arriving at the process, the
process loses the packets. If the process spends much
resource to receive messages, the process cannot syn-
chronously send messages. Let |t| show quantity of a
packet t [bit]. If Qij(t) is better than Qik(t) (Qij(t) �
Qik(t)), a packet t in a channel Cij is larger than one
in Cik. Let |t|j show size of a packet t transmitted
in a channel Cij . In the QoS-balanced transmission,
|t|j = |t|k for a packet in every pair of channels Cij

and Cik. Let MaxQi denote maximum quantity of
packets which a process pi can send and receive in a
second [bps]. For example, a pair of packets t1 and t2
are simultaneously sent to a process pi from diferrent
processes and the process pi at the same time sends
a packet t3. If |t1| + |t2| + |t3| ≤ MaxQi, pi can
send and receive all the packets. Otherwise, pi loses
packets, e.g. due to buffer overrun or cannot send t3
at a constant rate.

4 Protocol

4.1 Negotiation
A protocol is composed of two modules:

1. Negotiation
2. Transmission
First, every process in a group do negotiation on

the preference. Each process pi sends its preference
Pi to all the other processes. Then, each process pi
obtains a same preference P in the group G. After
negotiation, the processes start transmission of mes-
sages.

An application is assumed to be realized by coop-
eration of multiple processes p1, . . . , pn in a group G.
We make following assumptions on communication in
a group:

1. Every process sends a message to all the pro-
cesses in the group G.

2. Every process is free from fault.

There are types of transmission and receipt of mes-
sages in a group, i.e. synchronous or asynchronous,
QoS-balanced, or QoS-unbalanced ones. There are fol-
lowing cases depending on which types of transmis-
sion and receipt ways each process takes as shown
in Table 1. For example, every process fully trans-
mits messages and fully receives messages in case
1. Every process fully sends messages and asyn-
chronously receives messages in case 4. Every pro-
cess asynchronously sends messages and fully receives
messages in case 13. Every process asynchronously
sends messages and asynchronously receives messages
in case 16.

4.2 Data transmission
We take a slow start strategy as taken in many

protocols [5, 9]. In addition, we newly take a notifi-
cation approach, where each process pi notifies other

研究会Temp
－166－

Table 1: Types of communication.
transmission receipt
synch QoS synch QoS

1 © © © ©
2 © © © ×
3 © © × ©
4 © © × ×
5 © × © ©
6 © × © ×
7 © × × ©
8 © × × ×
9 × © © ©
10 × © © ×
11 × © × ©
12 × © × ×
13 × × © ©
14 × × © ×
15 × × × ©
16 × × × ×

synch
© : synchronous × : asynchronous

QoS
© : QoS-balanced × : QoS-unbalanced

processes of its QoS.
Let 〈t1, . . . , tl〉 be a sequence of packets sent by

a process ps. For each packet ti, R(ti) shows QoS
required to receive a packet ti. Q(ti) stands for QoS
of a packet ti. Each packet ti carries QoS information
ti.R, ti.Q, and ti.NR. Here, ti.Q and ti.R indicate
Q(ti) and R(ti), respectively. ti.NR shows R(ti+k),
QoS of a packet ti+k. ti+k shows a packet to be sent
k packets after ti. On receipt of a packet ti from a
process ps, ps get QoS information on ti+k to be sent
by ps, R(ti+k) = ti.NR.

Before receiving a packet ti+k, a process ps starts
receiving ti+k on receipt of ti. The process ps may
negotiate with other processes. That ps can receive
ti+k in order to receive ti+k so that QoS requirement
ti.NR is satisfied.

5 Concluding Remarks
This paper discusses how to exchange messages

among multiple processes in a group so as to satisfy
QoS required. We are now designing the protocol for
exchanging multimedia data in a group of processes.

References
[1] Ahamad, M., Raynal, M., and Thia-Kime,

G., “An Adaptive Protocol for Implementing
Causally Consistent Distributed Services,” in
Proc. of IEEE ICDCS-18, 1998, pp.86–93.

[2] ATM Forum, “Traffic Management Specification
Version4.0,” 1996.

[3] Birman, K., “Lightweight Causal and Atomic
Group Multicast,” ACM Trans. on Computer
Systems, Vol.9, No.3, 1991, pp.272–290.

[4] Braden, R., ed., “Resource ReSerVation Proto-
col,” RFC2205 , 1997.

[5] Chesson, G., “XTP/PE Overview,” Proc. of the
IEEE 13th Conf. on Local Computer Networks ,
1988, pp.292–296.

[6] ITU-T I.361, “B-ISDN ATM Layer Specifica-
tion,” 1990.

[7] Lamport, L., “Time, Clocks, and the Ordering of
Events in a Distributed System,” Comm. ACM ,
Vol.21, No.7, 1978, pp.558–565.

[8] Mattern, F., “Virtual Time and Global States of
Distributed Systems,” Parallel and Distributed
Algorithms (Cosnard, M. and , P. eds.), North-
Holland, 1989, pp.215–226.

[9] Marina del, R., “Transmission Control Proto-
col,” RFC793 , 1981.

[10] Michael, F., Nancy, L., and Michael, P., “Impos-
sibility of distributed consensus with one faulty
process,” Journal of the ACM (JACM), Vol.32,
1985.

[11] Moser, L., Melliar-Smith, P. M., Koch, R., and
Berket, K., “A Group Communication Protocol
for CORBA,” Proc. of IEEE ICPP’99 Work-
shops, 1999, pp.30–36.

[12] Schulzrinne, H., Casner, S., Frederick, R. and V.
Jacobson, ”RTP: A Transport Protocol for Real
Time Applications”, RFC 1889, January 1996.

[13] Tachikawa, T., Higaki, H., and Takizawa, M.,
“Group Communication Protocol for Realtime
Applications,” Proc. of IEEE ICDCS-18, 1998.

研究会Temp
－167－

