

AN EFFIEICNT WINNER DETERMINATION ALGOLITHM FOR
COMBINATORIAL ASCENDING AUCIONS

Chihiro Ono Satoshi Nishiyama Hiroki Horiuchi

KDDI R&D Laboratories, Inc.

{ono, tomo, hiroki}@kddilabs.jp

Abstract

In this paper we study combinatorial auctions where bidders can quote for a combination of the
objects being sold. In a previous article we have proposed a combinatorial ascending auction where
the bidders can place a bit at an arbitrary timing via the Internet. For combinatorial auctions,
computational complexity increases exponentially as the number of possible combination increases.
Although some algorithms for reducing the complexity have been proposed, they are only suitable
for the one-shot auctions where bidders submit bids only once simultaneously. Thus, we can
improve the performance by making use of the previous valuation for doing next valuation. In this
paper we propose a method to reduce computational burden for combinatorial ascending auctions
and verify the effectiveness of the algorithm through the evaluation.

1. Introduction

Auctions are thought to be an efficient way of
allocating items and have been popular in
portals and e-marketplaces nowadays, such as
ebay[1] and yahoo[2]. In particular,
combinatorial auctions, where bidders can
quote for a combination of the items have been
studied in many places[3]. However, when we
try to apply existing mechanisms for
combinatorial auction to portal sites for
anonymous users, these mechanisms are
insufficient in terms of restrictions such as
one-shot sequence or activity rules, where
users must bid actively from the beginning of
the auction to the end.

In order to be effectively used on the internet,
in a previous article, we have proposed a

Combinatorial Ascending Auction (CAA) where
the bidders can place a bid at an arbitrary
timing on the Internet[4].

For combinatorial auctions, computational
complexity increases exponentially as the
number of possible combination increases.
Although some algorithms for reducing the
complexity have been proposed, they are only
suited for one-shot auctions where bidders
submit bids only once simultaneously[5][6][7]

Thus, we can improve the performance by
making use of previous valuation for doing next
valuation. In this paper we propose a method to
reduce computational burden for combinatorial
ascending auction.

Section 2, describes the overview of the
existing combinatorial auctions and

研究会Temp
マルチメディア通信と分散処理

研究会Temp
107－23

研究会Temp
（２００２． ３． ２９）

研究会Temp
－133－

combinatorial ascending auction. Section 3
discusses about the complexity issues. Then in
Section 4, proposed algorithm with an actual
example is described. Section 5 shows the
evaluation and Section 6 concludes the paper.

2. Overview of Combinatorial Auctions

and CAA
2.1 Combinatorial Auctions

Let 1 2{ , ,..., }nI i i i= be a collection of goods. Let
| |I n=

{G g=

 be the number of the goods. Let
be a set of combination of

elements of I. Then | | , where the

empty set is excluded.

1 2, ,...}g

2 1nG = −

 The auction system consists of the seller,
the bidders, and the auctioneer who determines
an allocation for the seller. First, the seller
sends the collection of heterogeneous goods I to
the auctioneer, and the auction begins. Then
the bidders send the price to an element of G,
specifically bj={g , pj jj(g)}, where pj(gj) is the bid
price in bj. The auctioneer valuates the bid and
sends the result to the seller. When valuating
the bids, the auctioneer chooses the allocation
A which maximizes the revenue. Let A={a1,
a2,,,} be an allocation where ai be an
combination of elements. This is a problem of
choosing the combination of goods which does
not overlap each other. Let . Then this
problem is expressed as:

S G∈

∑
∈XSi

i Sp
],[

)(max

such that }',,'|],{[XSSSSSiX ∈∀Φ=∩=

and the total revenue T(A), is the sum of
revenue of the elements in A, which is a bid
price.

2.2 Characteristics of CAA
CAA is an ascending auction which accepts

combinatorial bids. In contrast with the
standard one-shot combinatorial auction or the
multi-round auction where all the bidders have
to be present at the beginning of the auction,
CAA has the following features:
1. Bidders can place bids at any timing.
2. Auctioneer valuates bids whenever new

bids are accepted, and determines a
provisional allocation

3. There are three provisional results for the
bid. The first possibility is winning (W),
where the bid wins the goods at this
moment. The second possibility is losing
(L), where the bid does not and will not win
the goods. The last possibility is pending
(P) where the bid is not winning at this
moment but it is possible to win in the
future with the help of bids for other
combinations.

4. The auctioneer keeps and updates the
combination table (CT) for storing
maximum bids b ={gj j

j j j

t

j t

t i

j, pj(g)}, and states
for each elements of combination G , and
allocation table (AT) for storing member of
the allocation, A until the auction ends.

Specifically, the valuation will be done in
following three steps.
1. For an incoming bid bj={g , p (g)}, compare

pj(gj) with p (gj) which is a price for gj in
CT. If pj(g) is smaller than p (gj), then we
set the state of bj to be L, and quit the
valuation process. Else, we overwrite CT
by bj and go to the next step. At this
moment, bj can take one of W or P.

2. We check the CT. If there exists {gi gx }
such that, pj(gi) + pt(gx) > p ({g gx})

研究会Temp
－134－

then{ g gi x } does not have a possibility of
being a winner. Thus we set the state of the
bid for {gi gx } in CT to be L.

3. In CT, we re-compute the revenue from the
new bid and compare with the revenue at
current AT. If the revenue from the new
bid is greater than the revenue from the
current allocation, we make the new
allocation a new provisional winning
allocation, and make a bid contained in
the new winning allocation a winner. We
set the states of other bids to be P.

3. Complexity Issues
3.1 Complexity issues for CA and existing
research

Combinatorial auction is computationally
expensive. Thus in order to solve the problem
in polynomial time, several methods have been
proposed. The first category is pruning and the
second category is obtaining an approximate
solution.
 As examples of algorithms in the first
category, Sandholm et al[6] proposed an
algorithm to search a best allocation based on
iterative deepening algorithm. Also, Fujishima
et al[5] proposed an algorithm to search for a
best allocation based on the algorithm in depth
first search. This algorithm is called CASS
(combinatorial auction structured search).
 As an example in the second category,
Sakurai et. al[7] used limited discrepancy
search (LDS) which limits the search effort to
the range where the optimal solution can lie in
high probability. This is good for any-time
characteristics and they can achieve high
quality for only short running time.

3.2 Complexity in CAA
In contrast with the previous combinatorial

auction, the characteristics of CAA are as
follows: Firstly, since the bids arrive over time,
the bid is processed immediately so that
feedback can be given, rather than being
processed all at once after the auction is closed.
Secondly, since it is an ascending auction, the
previous result can be used for valuation. As a
result, especially for CAA, there are still rooms
for improvement in traditional methods.

4. Algorithm
4.1 Our approach

Our approach is basically to make use of
existing CT and AT, while doing CASS or LDS
for search.

We have two improvements: Imp 1) to
determine an allocation for items which are not
used in the incoming bid then compared with a
current allocation, and Imp 2), pruning.
 Let Dk={dk1, dk2…} be an element of ak

which is a member of A. Let h(i) to be the
heuristic function which gives us the potential
highest value for item i. This is defined as
follows (see [6]):

∑
∈

=
Si

S
Sbih }||

)({max)(

 For Imp 1), we set Fh to be A minus the
elements of the incoming bid, bh. First,
determine the allocation for Fh (=T(Fh)) ,and
compare T(Fh)+p(gh) with T(A). If T(Fh) + p(gh)
is larger than T(A), we set the elements of Fh
and gh to be the winner, and replace the current
allocation. Otherwise, we set the state of the
element of gh to be P.

For Imp 2), we have two pruning methods.
For the first pruning, if we find the subset of A,

研究会Temp
－135－

called A’, which has the same members with gh,
then we will determine the state by comparing
T(A’) and p(gh). For instance, when gh ={d, e}
and A={(a,b,c)(d)(e)} then A’ is {(d)(e)}. In this
case, if p(gh) is larger, bh will be W, and we set
it as a current allocation and delete A’ from the
current allocation. Otherwise, it becomes a
loser, and we set its state to be L.

For the second pruning, after calculating the
summation of heuristic function h() for the
member of Fh, called SUMH, we compare p(gh)
+ SUMH with T(A). If it is smaller than T(A),
then it becomes loser and the valuation ends.

4.2 Detailed Mechanism

Valuation is carried out as follows:
1) Initialization: As an initialization, we make

a dummy bid with value 0 for all items and
initial allocation, T(A) = 0.

2) Every time when the auctioneer accepts
incoming bids, bh, does the following:

3) Compare p(gh) with the price of gh in
CT ,and if it is larger than the price of gh in
CT, then the auctioneer updates CT and
recalculate h for the item of gh.

4) Check whether bh meets the condition of
pruning (1), and if it meets, then apply
pruning (1). If bh is a loser, valuation ends.
If bh becomes a winner, replace bh with A’
and update the state then valuation is
finished.

5) Calculate Fh.
6) Check whether bh meets the condition of

pruning 2 and if it meets, then apply
pruning 2. If bh becomes a loser, valuation
is finished.

7) Apply the Imp1). If bh becomes a loser,
valuation ends. If bh becomes a winner,

then replace gh with A’ and update the state
then valuation is finished.

8) Update all the states in CT according to
the valuation.

4.3 Examples

We explain how the valuation works by
showing actual example. Table 1 shows the CT
at a certain point. Here, h(i) for each good is
calculated.

Table1: CT at a certain point
g p(g) h(i) State

a 5 8.3 P

b 7 8.3 P

c 9 9 P

d 6 6 W

e 7 7.5 W

a,b 13 - P

a,e 15 - P

d,e 10 - L

a,b,c 25 - W

Here, A={(a,b,c), (d), (e)} and T(A) = 38. We
show three examples.

First, Let b1={(d,e), 14} be the incoming bid.
In this case, at step 3), A’={(d),(e)} is found and
T(A’)=13. As p(b1) is larger than T(A’), it wins
and new allocation becomes {(a,b,c), (d,e)}.

Second, Let b2={(c,d), 13} be the incoming bid.
In this case, at step 5), SUMH = h(a)+h(b)+h(e)
= 23.1. As p(b2) + SUMH (= 36.1) is smaller
than T(A), then b2 becomes a loser and
valuation ends.

Third, Let b3={(c,d), 20} be the incoming bid.
As p(b3)+SUMH (=43.1) is larger than T(A),
step 5) is skipped and move onto step 6). Here,
F3 = {a, b, e}. Next calculate the allocation and

研究会Temp
－136－

A’={(a,e), (b)} and T(A’) = 22. As p(b3)+T(A’)
(=42) is larger than T(A), b3 wins and new
allocation is {(a,e), (b), (c,d)}.

5. Evaluation

In this section, we evaluate our proposed
mechanism in terms of the performance and
quality by comparing with existing batch
methods.
5.1 Settings

Parameters for the evaluation are as follows:
 The number of items: M=32
 The number of biddings: N=30,60,90
 Bid distribution: Two patterns

 Random: For each bid, pick the
number of items randomly from 1 to M
and pick the prices from [0, 1]*(number
of items in the combination)

 Uniform: Draw the same number of
randomly chosen items for each bid.
The number is 3 and prices from [0, 3]

 New incoming bid for our model: Random
combination and price. We calculate the
average by trying 100 times.

 Target calculation methods:
 LDS
 CASS
 Incremental LDS: LDS with applying

proposed improvements.
 Incremental CASS: CASS with

applying proposed improvements.

5.2 Results

The number of calculation steps and the total
revenue for each calculation method for two bid
distributions are shown in the following
figures.

Figure 1 depicts the calculation steps

required for each method in the case of
Random distribution. For CASS, 360354 for
N=60 and 637681 for N=90, which are too large
to be presented in the figure. Here, both
incremental methods using the proposed
technique are effective and the step decreases
about 10 times less than original methods.

0

5000

10000

15000

20000

25000

30 60 90

Number of bids
C

al
c
u
la

ti
o
n
 s

te
ps

CASS CASS Incr LDS LDS Incr

Figure 1 Calculation steps for Random bids

Figure 2 shows the calculation steps required

for each method in the case of Uniform
distribution. For CASS, 233273 for N=30,
535793 for N=60, and 819724 for N=90, which
are large to be presented in the figure. Both
incremental methods using the proposed
technique are effective and the step decreases
about 2 to 3 times for LDS and 10 times for
CASS less than original methods

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

30 60 90

Number of bids

C
al

c
u
la

ti
o
n
 s

te
ps

CASS Incr LDS LDS Incr

Figure 2 Calculation steps for Uniform bids

Figure 3 and 4 show the comparison between

LDS and Incremental LDS in terms of the total

研究会Temp
－137－

revenue. Incremental LDS can have as much
revenue as LDS for both bid distributions.

0

1000000

2000000

3000000

4000000

5000000

6000000

30 60 90

Number of bids

T
o
ta

l
re

ve
n
u
e

LDS LDS Incr

Figure 3 Efficiency for Random bids

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000

30 60 90

Number of bids

T
o
ta

l
re

ve
n
u
e

LDS LDS Incr

Figure 4 Efficiency for Uniform bids

As a result, we can say that our proposed
mechanism is effective when incoming bids
arrive sequentially or at most less than 10 bids
at the same time.

 To be practical, in general, since ascending
auctions have a tendency of having last-minute
bidding behavior, it can be a good way to have
our incremental algorithm from the beginning
of the auction to a certain period of time to get
quick feedback, and switch the algorithm to the
normal method at the very last moment when
many bidders give up getting prompt feedback.

6. Conclusion

In this paper, we proposed an efficient
winner determination algorithm for
combinatorial ascending auction with two

improvements against existing methods. Then
we demonstrated the effectiveness of our
algorithm through evaluation.
 We now have several further studies for
improving our algorithm. First, as we know the
characteristics of the ascending auctions that
same bidder may repeat the bids, we may have
another technique by using this tendency.
Second, we may have approximate reduction
method for incremental search though, this
time, we do not use approximate method for
improvement but for original method. Third,
we may make use of the history of bids from the
beginning of the auction to the middle to
dynamically change the strategy.

Acknowledgement

The authors wish to thank, Mr. Tohru Asami,
Director of KDDI R&D Laboratories, Inc. for
his continuous guidance for this study.

Reference
[1] http://www.ebay.com

[2] http://www.yahoo.com

[3] Sven de Vries, Rakesh Vohra, “Combinatorial

Auctions: A Survey”, 2000

[4] C. Ono, et al, “Proposal of Combinatorial Ascending

Auction”, Proc. of DPS , 105-10, p53-58, 2001(in

Japanese)

[5] Y. Fujishjima, et al “Taming the Computational

Complexity of Combinatorial Auctions: Optimal and

Approximate Approaches”, Proc. of IJCAI 1999

[6] Tuomas Sandholm, “An Algorithm for Optimal

Winner Determination in Combinatorial Auctions, Proc.

of IJCAI, 1999

[7] Y. Sakurai et al, “An Efficient Approximate

Algorithm for Winner Determination in Combinatorial

Auctions”, Proc of EC-00, 2000

http://www.ebay.com/
http://www.yahoo.com/
研究会Temp
－138－

