
Large-Scale Group Communication in Heterogeneous

Network

Kojiro Taguchi and Makoto Takizawa
Tokyo Denki University, Japan

{tagu, taki}@takilab.k.dendai.ac.jp

We discuss a novel type of group protocol for a large number of processes which are distributed in
various types of networks. A group including a large number of processes implies large computation and
communication overheads for manipulating and transmitting vector clocks. In this paper, we propose a
hierarchical group to causally deliver messages to a large number of processes in a group.

異種ネットワーク間における大規模グループ通信

田口 幸次郎 滝沢 誠
東京電機大学理工学部

LANやWANなどの様々なネットワークに分散されたプロセスから構成されているグループでは、プロセ
スにメッセージを配送するために要する時間はそれぞれ異なる。また、多くのプロセスから構成されてい
るグループでは、事象の順序付けにベクター時刻を用いると、計算と通信の負荷が問題となる。そこで、こ
れらの負荷を軽減する方法として、グループを複数の副グループに分割する方法がある。本論文では、副
グループ毎にベクター時刻や物理時計などの異なる事象順序化方法を用いたグループで、グループ内のプ
ロセスにメッセージを因果配送するための方法を提案する。

1 Introduction

A group of multiple processes are cooperating
to achieve some objectives in distributed appli-
cations like teleconferences. In virtual universi-
ties, students in the world can admit courses. In
these applications, huge number of processes are
cooperating, which are distributed in various ar-
eas like not only local area but also wide area. A
large-scale group is a group which includes huge
number of processes, i.e. hundreds of processes.
A wide-area group is a group where processes are
distributed in wide-area networks like the Inter-
net. In a local-area group, processes are in a same
local area network. In a heterogeneous group,
processes are interconnected with various types
of networks and are realized in different types of
computers. Networks are characterized by Qual-
ity of Service (QoS) like delay time and packet
loss ratio. In the homogeneous group, a commu-
nication channel between every pair of processes
supports same QoS. In a heterogeneous group,
some pair of channels support different QoS. Sup-
pose there are three processes p1, p2 and p3 in a
group G. The processes p1 and p2 are connected
with a local area network (LAN) in a campus,

and the other process p3 is in another campus,
where the local area networks are interconnected
in the Internet. Here, the group is heterogeneous
and wide-area type. If p1, p2, and p3 are intercon-
nected in a same LAN, the group is homogeneous.

A group protocol supports a group of n (> 1)
processes with causally/totally ordered delivery of
messages [9]. In order to support the ordered de-
livery of messages, a vector clock [9] including n
elements is used. A header length is O(n). O(n2)
computation and communication overheads are
implied for number n of processes in a group.
Even if a group of about ten processes can be
realized by traditional group protocols, it is diffi-
cult, maybe impossible to support a group of hun-
dreds of processes due to large computation and
communication overheads. In order to reduce the
overheads, hierarchical groups are discussed.

In traditional group protocols [1, 2], every pro-
cess in a group uses a same mechanism to main-
tain the vector clock. We discuss a new type of
hierarchical group (HG) communication protocol
for a large-scale, wide-area, heterogeneous group
of processes in this paper. Here, processes in dif-
ferent local areas establish a subgroup where dif-

研究会Temp
マルチメディア通信と分散処理

研究会Temp
107－６

研究会Temp
（２００２． ３． ２８）

研究会Temp
－31－

ferent clocks are adopted. Subgroups are inter-
connected by the Internet to make a group.

In section 2, we present a system model. In sec-
tion 3, we present a hierarchical group. In section
4, we discuss a the HG protocol.

2 System Model
2.1 System configuration

A system is composed of multiple processes
interconnected in communication networks. A
group of multiple processes are cooperating in or-
der to achieve some objectives. In the one-to-one
communication like one supported by TCP/IP [3]
and multicast communication [4], each message is
reliably delivered to one or more than one process,
i.e. in the sending order with neither loss nor du-
plication of message. On the other hand, in the
group communication, multiple processes first es-
tablish a group. Then a process sends a message
to one or more than one process while receiving
messages from one or more than one process in the
group. The membership of the group may be dy-
namically changed by members’ leaving and new
members’ joining the group [10]. In addition to
supporting the reliable delivery of messages to the
destination processes, messages are required to be
causally delivered to destination processes in the
group. Let si(m) and ri(m) denote sending and
receipt events of a message m in a process pi. By
using the happens-before relation [7], the causally
precedent relation among messages is defined: a
message m1 causally precedes another message m2

iff si(m1) happens before sj(m2). A process is re-
quired to deliver a message m1 before m2 if m1

causally precedes m2. In order to causally deliver
messages, the vector clock [9] is used.

Processes are interconnected in various
types of personal area network (PAN) and
IEEE802.11b [8], local area networks (LANs),
wide area networks (WANs) like the Internet.
Every pair of processes can communicate with
one another through a channel supported by the
network. For example, each channel is logical
and realized in a connection between a pair of
processes supported by TCP/IP [3]. A network
is modeled to be a collection of channels. There
are assumed to exist a channel Cij = 〈pi, pj〉
between a pair of processes pi and pj.

2.2 Types of groups
A group G is homogeneous iff every pair of

channels Cij and Ckl supports same QoS (Qij =
Qkl) in G. In the heterogeneous group G, Qij �=
Qkl for some pair of channels Cij and Ckl. If the

: LAN : WAN : process

Figure 1: Heterogeneous group.

processes are in a same LAN, the group is homo-
geneous since each channel supports QoS.

Computation and communication overheads in
group communication depend on number n (> 1)
of processes p1, . . . , pn in a group G. Here, n
shows size of the group G denoted by |G|. Groups
are classified into three categories, small-scale,
middle-scale, and large-scale ones with respect to
group size. The small-scale group includes about
ten processes, and the middle-scale group includes
about ten to hundred processes. The large-scale
group has more than one hundred processes.

Groups of processes are also classified into
wide-area and local-area groups. All the pro-
cesses in a local-area group are interconnected in
a same local area network. If some processes in
a group are interconnected with the Internet, the
group is a wide-area type. The delay time be-
tween processes is in an order of mili-seconds in
the local-area group and hundreds msec in the
wide-area group. Local-area groups are homoge-
neous. Wide-area groups are generally heteroge-
neous because processes are interconnected in var-
ious types of networks.

2.3 Types of group protocols
It is significant to discuss which process coordi-

nates communication among processes in a group.
One way is a centralized way [5, 6] where there
is one controller in a group. Every process first
sends a message to the controller and then the
controller delivers the message to all the destina-
tion processes in the group [Figure 2]. The deliv-
ery order of messages is decided by the controller,
e.g. the controller delivers messages according to
the receipt order of the messages. The controller
also atomically delivers messages to all the des-
tinations, e.g. the controller retransmits a mes-
sage to a destination if the destination fails to
receive the message. Here, the messages are to-
tally ordered. Another way is a distributed way
where there is no centralized controller. Every

研究会Temp
－32－

process directly sends messages to the destination
processes and directly receives messages from pro-
cesses in a group. Each process makes a decision
on delivery order and atomic receipt of messages
by itself.

In the network, messages may be lost due to
congestions and network failure. ISIS [2] takes
a decentralized way where every destination pro-
cess sends a receipt confirmation to the sender
of a message if the process successfully receives
the message. Takizawa et al. proposes a fully
distributed way where every destination process
sends a receipt confirmation to not only the sender
but also all the other destinations [Figure 3]. A
process can detect loss of a message on receipt
of messages including receipt confirmation from
other destinations. In order to reduce number
of messages transmitted in the network, receipt
confirmation of messages received is carried back
to the other processes. In addition, every pro-
cess takes delayed confirmation strategy. That is,
a process does not send a confirmation messages
as soon as the process receives a message unless
there is any message to send. The process sends
receipt confirmation of messages received only if
the process receives some number of messages or
it takes some time after most recently receiving
a message. Furthermore, the destination retrans-
mission is proposed [Figure 4]. Here, if a process
fails to receive a message, another destination, e.g.
nearest to the process, retransmits the message to
the process [12]. In the other protocols, only the
sender retransmits the message.

3 Hierarchical Group
The header length of message is O(n) and the

computation and communication overheads are
O(n2) for number n of processes in a group. In
order to reduce the overheads, a group can be hier-
archically structured. For example, there are one
hundred processes p1, . . . , p100 in a group G. Sup-
pose a group G is decomposed into ten subgroups
G1, . . . , G10, each of which includes ten processes.
Each subgroup Gi supports one process named a
gateway wi (i = 1, . . . , 10). If a process in a sub-

Centralized Distributed

controller

Figure 2: Transmission of message.

DistributedDecentralized

: sender : message : confirmation

Figure 3: Confirmation.

Sender Destination

: retransmission

Figure 4: Retransmission.

group Gi sends messages to processes in the same
subgroup Gi, the messages are transmitted only
in Gi. If a process pi in Gi sends a message m
to a processes pj in another subgroup Gj (j �= i),
pi first sends the message m to a gateway pro-
cess wi in Gi. Then, wi forwards the message m
to a gateway wj of the subgroup Gj . The gate-
way wj delivers the message m to the destination
process pj in Gj. Here, the header length of mes-
sage exchanged in a subgroup is one tenth and the
overheads of each process can be also one tenth
of G. A group G is referred to as flat or one-
level iff every process directly delivers messages
to destination processes in G. A group G is hi-
erarchical iff G is partitioned into subgroups and
every process in a subgroup does not directly de-
liver messages to any process in another subgroup
[Figure 5]. The example presented here shows a
hierarchical group.

A group G is composed of subgroups
G1, . . . , Gk (k ≥ 1). Each subgroup Gi is com-
posed of processes pi1, . . . , pili (li ≥ 1) and one

Figure 5: Hierarchical group.

研究会Temp
－33－

Gi Gj

pi0

pi2

pi1

pj0

pj1

pj2

pili pjlj

Figure 6: Hierarchical group.

gateway process pi0. If Gi is a centralized (C)
group, pi0 is a controller process of Gi. A sub-
group of gateway processes pi0, . . . , pm0 is referred
to as main subgroup of the group G. In the main
subgroup, global messages are exchanged by gate-
way processes. If a global message m1 causally
precedes another one m2 in a main group of G,
m1 →G m2.

In each subgroup Gi, messages can be assumed
to be totally ordered by its ordering mechanism:
that is, either a message m1 precedes another mes-
sage m2 in Gi (m1 ⇒i m2) or m2 ⇒i m1 for every
pair of messages m1 and m2. The precedent rela-
tion “⇒i” satisfies the following property:

• m1 ⇒i m2 if m1 causally precedes m2 in Gi

(m1 →i m2).

Some messages transmitted in a subgroup Gi

are delivered to processes in other subgroups.
Messages exchanged among subgroups are re-
ferred to as global messages. On the other hand,
messages exchanged only in a subgroup are lo-
cal messages. A gateway process pi0 takes a lo-
cal message m sent by a process pij in a sub-
group Gi and then forwards a global message m
to destination gateways. Here, a global message
m is assigned a global sequence number gseq.
gseq is incremented by one each time pi0 for-
wards a local message in Gi as a global message
to other subgroups. Here, m1.gseq < m2.gseq if
m1 ⇒i m2. Each gateway process pi0 maintains
a vector V = 〈V1, . . . , Vk〉 for number k of sub-
groups. Here, Vi shows a global sequence number
gseq of a gateway process pi0 (i = 1, . . . , k).

Suppose a group G includes a pair of subgroups
Gi and Gj . Processes pi0 and pj0 are gateway
processes of subgroups Gi and Gj, respectively.
A process pis in Gi sends a message m1 to pjt in
Gj. A process pjt sends a message m2 before re-
ceiving m1 and a message m3 after receiving m1

as shown in Figure 7. Here, m1 causally precedes
m2 (m1 → m2) but m1 and m2 are causally con-
current (m1 ‖ m2). In a main subgroup of G,
gateway processes exchange messages by taking

pis pi0 pj0 pjt

m1

m2

m3

time

Gi GjG

Figure 7: Causal delivery in hierarchical group.

usage of vector clock. The process pj0 sends m2

to pi0 after receiving m1. Hence, m1 causally pre-
cedes m2 (m1 →G m2) in the main group of G.
m1 →G m2 if m1 → m2. However, m1 → m2 does
not necessarily hold even if m1 →G m2. We have
to discuss a mechanism for not causally ordering
a pair of messages m1 and m2 in a main subgroup
of G unless m1 → m2.

4 Protocol
We discuss a hierarchical group (HG) proto-

col for a hierarchical group G composed of sub-
groups G1, . . . , Gn (n ≥ 1). Each subgroup Gi

includes a gateway process pi0 and local processes
pl1, . . . , pili (li ≥ 1). Each subgroup Gi is assigned
a unique subgroup identifier. Each global message
M exchanged among gateway processes includes
following fields:

M.SG = sender subgroup.
M.DG = set of destination subgroups.
M.V C = vector [V C1, . . . , V Cn].
M.DATA = data.

Each local message m exchanged among pro-
cesses in a subgroup Gi includes following fields:

m.sp = source process.
m.dp = set of destination processes.
m.SG = source subgroup Gi.
m.DG = set of destination subgroups.
m.vc = vector 〈vc1, . . . , vcn〉.
m.data = data.

Each gateway process pi0 of Gi is not only a
local process of Gi but also exchanges global mes-
sages with other gateway processes. pi0 manipu-
lates a global vector V C = [V C1, . . . , V Cn]. Each
local process pij in Gi manipulates a local vec-
tor vc = 〈vc1, . . . , vcn〉 (j = 0, 1, . . . , li). Here, n
shows the number of subgroups in G. Initially,
each value of V C and vc is 0 in each process.

First, suppose pis in a subgroup Gi sends a
local message m to pjt in another subgroup Gj .
Here, m.sp = pis, m.SG = Gi, pjt ∈ m.dp, and

研究会Temp
－34－

p2t p20 p30

time

G2 G
3

p3up3vp1s p10G1<0, 0, 0>

a

b1

c1

d1

c2

d2

A [1, 0, 0]<0, 0, 0>

[0, 0, 0]
<0, 0, 0>

[0, 0, 0]
<1, 0, 0>

[0, 0, 0]
<0, 0, 0>

[0, 0, 0]
<1, 0, 0>

[0, 0, 0]
<0, 0, 0>

[1, 0, 0]
<0, 0, 0>

<1, 0, 0>
 <1, 0, 0>

<1, 0, 0>
[1, 1, 0]
<1, 0, 0> <0, 0, 0>

 <1, 1, 0>
 <1, 1, 0>

[0, 0, 1]
<1, 1, 1>

[1, 0, 0]
<1, 1, 0>

<1, 1, 0>

[1, 0, 0]
<1, 1, 1>

[1, 1, 0]
<1, 1, 1>

<1, 1, 1><1, 1, 1>

 <1, 1, 0>

[1, 1, 2]
<1, 1, 2>

[1, 1, 0]
<1, 1, 2>

[1, 0, 0]
<1, 1, 2>

<1, 1, 2>

B [1, 1, 0] B [1, 1, 0]

C [0, 0, 1]

D [1, 1, 2]

<0, 0, 0>
 <0, 0, 0> <0, 0, 0>

c
b3

d

a3
a

2

b [0, 0, 0]
<1, 1, 0>

<1, 1, 2>

Figure 8: Communication among subgroups.

Gj ∈ m.DG. The process pis sends m to a gate-
way process pi0 where m.vc := vc. It is noted
that the local vector vc of pis is not updated on
sending a local message while the vector clock is
incremented on sending a message.

Then, the gateway process pi0 receives the local
message m. The global vector V C in pi0 is ma-
nipulated as V Ci := V Ci +1; V Ck := m.vck (k =
1, . . . , n, k �= i). Then, a global message M is
created for the local message m where M.V C :=
V C, M.SG := m.SG, M.DG := m.DG, and
M.DATA = m. The gateway process pi0 sends
the global message M to each destination gateway
pj0 where Gj ∈ M.DG.

Next, a gateway process pj0 receives a global
message M from Gi. Here, the global vector V C
in pj0 is manipulated as vcj := V Cj; vck :=
max(vck, M.V Ck) (k = 1, . . . , n, k �= j). pj0

creates a local message m from the global message
M and then forwards m to destination processes
in Gj. Here, m := M.DATA and m.vc := vc.
Each gateway process has a pair of local vector vc
and global vector V C while a local process only
manipulates a local vector vc.

A local process pjt receives a local message
m from the gateway process pj0. Here, the lo-
cal vector vc in pjt is manipulated as vck :=
max(vck, m.vck) (k = 1, . . . , n, k �= j). A lo-
cal process pis sends a local message m to not
only processes in other subgroups but also pro-
cesses in a same subgroup Gi. Suppose that pit

receives a local message m from pis. The lo-
cal vector vc in pit is manipulated as vck :=
max(vck, m.vck) (k = 1, . . . , n, k �= i).

Figure 8 shows a group composed of three
subgroups G1, G2, and G3. p10, p20, and p30

show gateway processes of the subgroups G1, G2,
and G3, respectively. [V C1, V C2, V C3] and
〈vc1, vc2, vc3〉 indicate instances of global and lo-
cal vectors, respectively, in each process. Initially
all the values in the vectors are 0. First, a process
p1s in the subgroup G1 sends a local message a to
a pair of processes p2t and p3u in subgroups G2

and G3, respectively. Here, a.vc = 〈0, 0, 0〉. The
local message a is sent to the gateway process p10.
p10 creates a global message A from a. Here, V C1

is incremented by one and A.V C = [1, 0, 0]. The
gateway process p10 sends A to a pair of gateway
processes p20 and p30.

The local vectors vc in the gateway process
p20 and p30 are changed to 〈1, 0, 0〉. The gate-
way process p20 sends a local message a2 for the
global message A to a local destination process
p2t. On receipt of a2, vc is changed to 〈1, 0, 0〉
in p2t. Then, p2t sends a local message b with
vc = 〈1, 0, 0〉 to the gateway process p20. The
second element of V C is incremented by one, i.e.
V C = [0, 1, 0] in p20. V C is changed to [1, 1, 0]
by taking max([0, 1, 0], b.vc = 〈1, 0, 0〉). The
gateway process p20 creates a global message B
and then sends B to p10 and p30. p10 forwards
a local message b1 of a global message B for the

研究会Temp
－35－

local message b with b.vc = 〈1, 1, 0〉. Here, since
a.vc < b1.vc, a causally precedes b.

In the subgroup G3, a process p3v sends a local
message c with c.vc = 〈0, 0, 0〉 before receiving a
local message b3 with b3.vc = 〈1, 1, 0〉. The gate-
way process p30 sends a global message C for the
local message c after receiving the global message
B. According to the traditional definition of the
causality, B causally precedes C since p30 sends C
after receiving B. However, since c is sent before
b3 is received by p3v, a pair of global messages B
and C must be causally concurrent. The global
message B carries a global vector V C = [1, 1, 0]
while the global message C carries [0, 0, 1]. A
destination process p1s receives a local message c1

of C where c1.vc = 〈1, 1, 1〉. The local message
b1 of B carries the local vector b1.vc = 〈1, 1, 0〉.
Here, local vectors 〈1, 1, 1〉 and 〈1, 1, 0〉 are not
comparable. Here, b1 and c1 are causally concur-
rent in the process p1s.

A pair of messages m1 and m2 received are
causally ordered in a local process pit in a sub-
group Gi according to a following ordering rule:

[Ordering rule] A message m1 causally precedes
another message m2 in a subgroup Gi (m1 →Gi

m2) if m1.vc < m2.vc. �

[Theorem] A message m1 causally precedes an-
other message m2 (m1 → m2) iff m1 causally pre-
cedes m2 in a subgroup Gi (m1 →Gi m2). �

Even if a message m1 causally precedes another
message m2 in a main group (m1 →G m2), the
causality “m1 → m2” does not necessarily hold.
However, if m1 →Gi m2 in a subgroup Gi by the
HG protocol, m1 causally precedes m2 .

5 Concluding Remarks
We discussed the group protocol for large-scale,

wide-area, heterogeneous group of processes. A
group is hierarchically structured in a set of sub-
groups of processes.

References
[1] Ahamad, M., Raynal, M., and Thia-Kime,

G., “An Adaptive Protocol for Implementing
Causally Consistent Distributed Services,”
Proc. of IEEE ICDCS-18, 1998, pp.86–93.

[2] Birman, K., “Lightweight Causal and Atomic
Group Multicast,” ACM Trans. on Com-
puter Systems, 1991, pp.272–290.

[3] Defense Communications Agency, “DDN
Protocol Handbook,” 1985, Vol.1–3, NIC
50004-50005.

[4] Deering, S., “Host Groups: A Multicast Ex-
tension to the Internet Protocol,” RFC 966,
1985.

[5] Hofmann, M., Braun, T., and Carle, G.,
“Multicast communication in large scale net-
works,” Proc. of IEEE HPCS-3, 1995.

[6] Kaashoek M. F. and Tanenbaum A. S., “An
Evaluation of the Amoeba Group Communi-
cation System,” Proc. of IEEE ICDCS-16 ,
1996, pp.436–447.

[7] Lamport, L., “Time, Clocks, and the Or-
dering of Events in a Distributed System,”
CACM, Vol.21, No.7, 1978, pp.558–565.

[8] LAN MAN Standards Committee of the
IEEE Computer Society, “Wireless LAN
Medium Access Control (MAC) and Physi-
cal Layer (PHY) specifications: Higher speed
Physical Layer (PHY) extension in the 2.4
GHz band.,” Sept. 2001.

[9] Mattern, F., “Virtual Time and Global
States of Distributed Systems,” Parallel and
Distributed Algorithms (Cosnard, M. and
Quinton, P. eds.), North-Holland, 1989,
pp.215–226.

[10] Reiter, M. K., “The Rampart Toolkit for
Building High-Integrity Services,” Theory
and Practice in Distributed Systems, LNCS
938 , Springer-Verlag, 1995, pp.99–110.

[11] Shimamura, K., Tanaka, K., and Takizawa,
M., “Causally Ordered Delivery of Multime-
dia Objects,” to apear in Computer Commu-
nications Journal, 2002.

[12] Tachikawa, T., Higaki, H., and Takizawa, M.,
“Group Communication Protocol for Real-
time Applications,” Proc. of IEEE ICDCS-
18, 1998, pp.40–47.

[13] Tachikawa, T., Higaki, H., and Takizawa, M.,
“∆-Causality and ε-Delivery for Wide-Area
Group Communications,” Computer Com-
munications Journal , Vol. 23, No. 1, 13–21,
2000.

[14] Takizawa, M., Takamura, M., and Naka-
mura, A., “Group Communication Protocol
for Large Group,” Proc. of the 18th IEEE
Conf. on Local Computer Networks (LCN),
1993, pp.310–319.

研究会Temp
－36－

