
Protocol for Synchronizing Multimedia Objects

Exchanged in a Group of Processes

Seiichi Hatori and Makoto Takizawa
Department of Computers and Systems Engineering

Tokyo Denki University
E-mail {hatori, taki}@takilab.k.dendai.ac.jp

In distributed applications, a group of multiple processes are cooperating by exchanging multimedia ob-
jects. If messages transmitted in a network are causally delivered by using traditional group protocols,
computation and communication overheads are increased due to large size and complex structure of multi-
media object. In this paper, we discuss new types of causally precedent relations among multimedia objects
transmitted in a group of multiple processes. We also discuss a protocol to causally deliver multimedia
objects with QoS in a group of processes.

グループ通信でのマルチメディアオブジェクトの
同期プロトコル
羽鳥 精一 滝沢 誠

東京電機大学大学院理工学研究科情報システム工学専攻

テレビ会議等の分散応用では複数のプロセスにより送信されたメッセージは因果順序に配送されなければ
ならない。マルチメディアデータも通信されるが、従来のグループプロトコルを用いて因果順序配送を行
うと、通信と処理の負荷が増大してしまう。さらに、Quality of Service(QoS)を考慮して配送する必要が
ある。本論文では、マルチメディアメッセージ間の因果関係を基に、QoSを考慮した因果順序配送プロト
コルを提案する。

1 Introduction

In distributed applications, a group of multiple
processes are cooperating. Most distributed appli-
cations like teleconferences are realized in central-
ized control. That is, there is one controller pro-
cess which forwards messages sent by processes to
destination processes. Here, it takes at least two
rounds to deliver messages and the system is less
reliable and available due to the fault of the cen-
tralized controller. On the other hand, each pro-
cess directly exchanges messages with the other
process in distributed control. In group com-
munications [3, 9–12], messages sent by processes
are causally delivered to destination processes in
the group. The vector clocks [9] is widely used
to causally order messages in distributed group
communication. In distributed applications, var-
ious kinds of multimedia objects like image and
video are exchanged among multiple processes in
the group. An object is decomposed into a se-
quence of messages. If a pair of processes p1 and
p2 send objects o1 and o2 to a process p3, respec-
tively, messages decomposed from o1 and o2 are
causally delivered to p3 according to the tradi-
tional group protocols. The messages of the object
o1 can be delivered independently of the object o2

if o1 is manipulated independently of o2 in an ap-
plication. Shimamura and Takizawa [14] define
novel types of precedent relations named Object-
(O-)precedent relation of messages based on the
object concept. According to the O-precedent
relations, the destination processes deliver mes-
sages of objects. A pair of messages not to be
ordered in the O-precedent relations can be de-
livered in any order even if one of the messages
causally precedes the other message according to
the traditional network-level definition. In order
to support QoS required by applications, mes-
sage sequence of objects should be related at a
smaller granularity. Shimamura and Takizawa
[15] discuss how granules of objects are related
in the networks and present a causally ordered
multimedia (COM) group protocol which sup-
ports the types of causally precedent relations,
where a fewer number of messages are causally
ordered than the traditional network-level group
protocols. In another way to synchronize and or-
der multiple messages, time information attached
in messages like RTP [13] can be used. However,
time is not accurate in distributed systems and
the causality among events should rather hold as
discussed by Lamport [8]. Some communication

研究会Temp
マルチメディア通信と分散処理

研究会Temp
108－８

研究会Temp
（２００２． ６． ６）

研究会Temp
－43－

channels may not support enough QoS due to con-
gestions. In the example of three processes p1,
p2, and p3, suppose QoS supported by a channel
between processes p1 and p3 is so much degraded
that the object o3 received by p3 does not support
enough QoS required by an application. Here, p3
can deliver the object o2 sent by p2 independently
of o3. Thus, it is meaningful to make an object
o1 O-precede another object o2 only if both of the
objects o1 and o2 support enough QoS for applica-
tions. In this paper, we newly discuss QoS-based
O-precedent relation among multimedia objects
exchanged in a group of multiple processes.

In section 2, we present a system model and
types of causally precedent relations among multi-
media objects. In section 3, we discuss QoS-based
precedent relation of objects.

2 System Model

2.1 System configuration
Distributed applications are realized by cooper-

ation of a group of multiple application processes
A1, ..., An (n>1). Application processes exchange
objects including multimedia data with the other
processes in the group by taking usage of undering
networks. An application process At is supported
by a system process pt (t = 1, ..., n). The pro-
cess pt takes an object from the application pro-
cess At and then delivers the object to the system
processes supporting the destination application
processes by using the basic communication ser-
vice supported by the network. From here, let a
term process mean a system process.

A message is a data unit exchanged among
processes. We assume the underlying net-
work supports every pair of processes with
synchronous communication [5], i.e. messages are
not lost and maximum delay time is bounded. In
our implementation, a reliable transport protocol
like TCP/IP is used as the network service.

2.2 Causality
An object o is decomposed into a sequence

〈m1, ..., mh〉 of messages by a source process and
the messages are delivered to the destination pro-
cesses. Here, m1 and mk are referred to as top
and last messages of the object o, respectively.
A destination process pt assembles received mes-
sages into an object and then delivers the object
to the application process At. The cooperation
of processes is coordinated by a group protocol
which supports reliable, efficient communication
service by taking usage of the network service.

Let st(m) and ru(m) denote sending and re-
ceipt events showing that a pair of processes pt
and pu send and receive a message m, respectively.
By using the happen-before relation (≺) among
events [8], a message m1 causally precedes an-
other message m2 iff (if and only if) st(m1) ≺
su(m2) [8]. In Figure 1, a message m1 causally
precedes another message m2. Due to the com-
munication delay, p3 may receive m3 before m1.
A process p3 is required to deliver m1 before m2.

p p p

m

m

1

2

s t u

time

m2

m1

Figure 1: Causal precedence.

2.3 Distributed control
Every common destination of messages m1

and m2 is required to deliver m1 before m2 if
m1 causally precedes m2. One way to realize
the causally ordered delivery of messages is a
centralized one where every process pi sends a
message to one controller and then the controller
delivers the message to all the destination pro-
cesses [Figure 2(1)]. Every process delivers mes-
sages in a same order as the controller receives the
messages. Most distributed applications like tele-
conference systems take the centralized approach.
This approach is simple and easy to implement.
However, it takes at least two rounds to deliver a
message to destination processes. The centralized
approach is not suitable to realize real time, mul-
timedia applications due to the long delay time.
Another way is a distributed one where each pro-
cess directly sends a message to destination pro-
cesses. In addition, each process concurrently re-
ceives messages from multiple processes. It takes
one round to deliver a message. In this paper,
we take the distributed approach since it implies
one round shorter delay time than the centralized
approach. The vector clock [9] is widely used to
causally order messages in distributed group pro-
tocols.

(1)Centralized way (2)Distributed way

C

Figure 2: Data transmission.

2.4 O-precedency
We discuss how a pair of objects o1 and o2

transmitted by processes can be causally ordered.
Let sst(o) and est(o) denote events that a pro-
cess pt starts and finishes sending an object o, re-
spectively. In fact, sst(o) and est(o) show sending
events that the top and last messages of the object
o are sent by pt, respectively. srt(o) and ert(o)
show receipt events of the top and last messages
of the object o, respectively. Suppose a precess
pt receives an object o1 and sends another ob-
ject o2. The object o1 is interleaved with another

研究会Temp
－44－

(2)Tail-precedence ().

o

o

1

2

o

o

1

2

(1)Top-precedence ().

p p p pp pss t tu u

o

o

1

2

(3) Full precedence ().

p pp s t u
o

o

1

2

(4) Partial precedence ().

s t up p p

(6)Exclusive precedence()

p p p

o o

s t u

2
1

p p p
o

o

s t u

1

2

(5)Inclusive precedence()

Figure 3: Precedency of objects.

object o2 (o1‖o2) iff srt(o1) ≺ sst(o2) ≺ ert(o1)
or sst(o2) ≺ ert(o1) ≺ est(o2) in the process pt.
Here, the process pt is receiving messages of the
object o1 while sending messages of o2. Next, sup-
pose pt sends a pair of objects o1 and o2. o1 is
interleaved with o2 in pt (o1‖to2) iff sst(o1) ≺
sst(o2) ≺ est(o1) or sst(o2) ≺ sst(o1) ≺ est(o2).
The interleaving relation ‖t is symmetric but not
transitive. o1‖o2 if o1‖to2 in some process pt.
[Definition] Let o1 and o2 be a pair of objects o1

and o2 sent by processes ps and pt, respectively:
1 o1 top-precedes o2 (o1⇀o2) iff

� srt(o1) happens before (≺) sst(o2) if ps

�= pt.
� sss(o1) ≺ sst(o2) if ps = pt.

2 o1 tail-precedes o2 (o1⇁o2) iff
� ert(o1) ≺ est(o2) if ps �= pt.
� ess(o1) ≺ est(o2) if ps = pt.

3 o1 partially precedes o2 (o1→o2) iff o1⇀o2,
o1⇁o2, and o1 is interleaved with o2 (o1‖o2).

4 o1 fully precedes o2 (o1⇒o2) iff
� ers(o1) ≺ sst(o2) if ps �= pt.
� ess(o1) ≺ sst(o2) if ps = pt.

5 o1 inclusively precedes o2 (o1⊃o2) iff o1⇀o2

and o1⇁o2.

6 o1 exclusively precedes o2 (o1�o2) iff o1⇁o2

and o2⇀o1.�

An object o1 O−precedes another object o2 (o1

� o2) iff o1 top, tail, fully, partially, inclusively,
exclusively precede o2. The logical properties on
the O-precedent relation are discussed in a paper
[14]. The COM protocol using two types of vector
clocks is also presented in the paper [14].

3 QoS-based Precedency

3.1 Segments
The object(-O-)precedent relation does not im-

ply how different it is between time when starting
the transmission of o1 and time when starting the
transmission of o2. A synchronization (syn) mes-
sage is transmitted in order to synchronize com-
munication of objects o1 and o2 at a smaller gran-
ularity level. A process sends a syn message each
time the process sends some number of messages
for each object. An object is partitioned into sub-
sequences of messages which are named segments.
Each segment starts at a syn message and ends
at a next syn message. Suppose an object o is a
sequence of messages 〈 ..., mi, mi+1, ..., mj , ...
〉 where mi and mj are syn messages and mi+1,
mi+2, ..., mj−1 are normal messages. Here, a sub-
sequence 〈mi+1, ..., mj〉 is a segment. If mi is the
top message m1 of o1, 〈m1, m2, ..., mj〉 is a seg-
ment.

ps pt pu

s1

s2

s4

s3

s5

s6

s7

t i

time

Figure 4: Precedency on segments.

An O-precedent relation on segments is defined
in a same way as the O-precedent relations among
objects. For example, a segment s1 fully precedes
another segment s2 (s1⇒s2) if a process starts
sending s2 after finishing receiving s1.
[Definition] Let 〈s1, ... 〉 and 〈t1, ... 〉 be a
pair of sequences of segments of objects os and ot,
respectively. Suppose os O-precedes ot (os�ot).

1. A subsequence 〈si, si+1, ..., sl〉 of segments of
os and a segment tk of ot are synchronization
blocks iff si−1 fully precedes tk (si−1⇒tk), si

partially precedes tk (si→tk), every sh inclu-
sively precedes tk (sh⊃tk) (h=i+1, ..., l), and
sl+1 �⊃ tk.

2. A segment sk of os and a subsequence 〈ti,
..., tl〉 of segments of ot are synchronization

研究会Temp
－45－

blocks iff sk exclusively precedes th (sk�th)
(h = i, ..., l-1), sk �� ti−1, and sk → tl[Figure
5].�

Suppose a process sends six segments s1, ..., s6
of an object o to a pair of processes pt and pu and
a process pt sends a segment ti of an object ot
to pu as shown in Figure 4. Here, a sequence of
segments 〈s2 , s3, s4〉 should be synchronized with
a segment ti. Let os and ot be objects where os

O-precedes ot (os�ot). Let 〈S1 , ..., Sn〉 and 〈T1,
..., Tn〉 be sequences of synchronization blocks of
objects os and ot, respectively. Here, each pair
of blocks Si and Ti are synchronization blocks. If
each of synchronization blocks Si and Ti includes
one segment, a pair of objects os and ot are re-
ferred to as fully synchronized.

ps pt pu

sk t i

t l

time

t i-1

Figure 5: Synchronization blocks.

3.2 Synchronization of blocks
It is still question when a syn message to be

transmitted. One way is that a sender process
autonomously transmits syn messages indepen-
dently of the other processes. Every common des-
tination process pu of objects os and ot delivers
messages so as to satisfy the O-precedent relation
among synchronization blocks. This is referred
to as asynchronous way for transmitting objects
while receiving objects.

Another way is a synchronus way. For exam-
ple, suppose a process ps is receiving messages
of an object os, another process pt is sending
messages of an object ot, and os O-precedes ot

(os�ot). The process pt sends a syn message each
time pt receives a syn message from ps. Here, the
objects os and ot are fully synchronized. In an-
other example, the process pt can send one syn
message of the object ot if pt receives two seg-
ments from ps. The process pt can also send a
pair of syn messages of ot while pt receives one
segment. Thus, a pair of objects can be synchro-
nized by sending syn messages.

Here, we introduce a blocking factor bi for each
pair of synchronization blocks Si and Ti of objects
os and ot, respectively, where os�ot. The block-
ing factor bi is defined to be ‖Ti‖/‖Si‖. Here,
a notation ‖B‖ shows number of segments in a
block B. If bi=1, the objects os and ot are fully
synchronized. If bi > 1, pt sends more number
of syn messages than ps. If bi < 1, pt sends less
number of syn messages than pt.

Suppose that a process pu receives a pair of seg-
ments s1 and s2 from processes ps and pt, respec-

tively. The process pt starts transmitting mes-
sages an object ot after receiving a syn message
from ps. Then, pt receives messages from ps. In
the meantime, if pt receives syn message from ps,
pt sends a syn message. Here os and ot are fully
synchronized. If s1 fully precedes s2 (s1⇒s2), pu

is required to deliver all the messages in s1 before
s2.

3.3 Quantity-based precedency
Each segment s of an object o is a subsequence

of messages. A message is a unit of data trans-
mission in the underlying networks. We assume
each message has the same size. Here, let g(s)
show the number of messages included in the seg-
ment s. Let us consider a pair of objects o1 and o2

where o1 O-precedes o2 (o1 � o2) and o2 is sent
by a process pt while o1 is received by pt, i.e. o1
and o2 are interleaved in pt. The object o is de-
composed into a sequence of segments s11, s12, ...
and o2 is also decomposed into a sequence of seg-
ments s21, s22, ... as shown in Figure 6. Suppose
the objects o1 and o2 are fully synchronized and
a pair of segments s1i and s2i are synchronization
blocks (i = 1, 2, ...). Suppose a process ps sends
a video object o1 to a pair of processes pt and pu
and the process pt sends a video object o2 to the
process pu. The objects o1 and o2 are simulta-
neously displayed in pu. Suppose that o1 and o2
have different frame rates f1 and f2, respectively.
The synchronization factor b12 = g(s2i)/g(s1i) is
required to be f2/f1. Here, let b12 be a synchro-
nization factor of the object o2 to o1. Thus, a
process pt is required to deliver a pair of objects
o1 and o2 in the O-precedent relation� if the ob-
jects o1 and o2 satisfy the QoS requirement at the
process pt.
[Definition] An object o1 quantity-precedes an-
other object o2 with a blocking factor b (o1

b� o2)
iff o1 � o2 and the blocking factor of o1 to o2 is
b.�

Suppose an object o1 quantity-precedes an-
other object with a blocking factor b (o1

b� o2)
where a process pt sends o2 while receiving o1
from a process ps. Suppose the process pt receives
a synchronization(syn) message m1 from the pro-
cess ps and then receives messages in a segment
s1. The process pt starts sending a new segment
s2 of the object o2, i.e. pt sends a syn message
m2. Then, pt receives a syn message m1 from
ps. Here, let h(s2) show the number of messages
which pt has sent so far. If h(s1)/g(s2) ≥ b, pt

finishes sending s2 by sending a syn message m4.
Suppose a process ps sends an object o1 to a pair
of precesses pt and pu and the process pt sends
an object o2 to pu. Here, pu receives o1 and o2.
Suppose o1 � o2. If pu delivers segments of o1
and o2 according to the causality of segments, o1

and o2 are delivered in pu so as to satisfy o1
b�

o2. In Figure 6, a pair of the objects o1 and o2 are
fully synchronized. Suppose a pair of segments
s11 and s21 satisfy the QoS requirements Q(o1)
and Q(o2). Messages of s11 and s21 are required
to be delivered to pu according to the O-precedent
relation. Then, QoS of a segment s12 is degraded

研究会Temp
－46－

due to the channel congestion.

[Property] If o1
b1� o2 and o2

b2� o3, o1
b3� o3

where b3 = b1*b2. �

p p p

o
o1

2

s t u

s

s

s
s

11

12

13

14
s
s 22

23

s 24

time

s 21

Figure 6: Synchronization of o1 and o2.

3.4 Quality-based precedency
Suppose an application is realized by a group

of processes p1, p2, and p3. Suppose a process p1
sends an object o1 to a pair of processes p2 and p3
and the process p2 sends an object o2 to p3. The
process p3 receives the objects o1 and o2 in some
type of O-precedent relation, i.e, o1 � o2. The
application requires the processes to deliver each
object o with QoS Q(o) to destination processes
in the group. Due to congestion in the networks,
a process may not deliver messages of an object
to a destination process with QoS required by the
application. For example, suppose the bandwidth
of a communication channel between p1 and p2 is
degraded. Here the number of collars of the object
o1 is decreased to monochrome one by reduce the
message size. If the application is not interested in
the number of colors, the process p1 can receive
the object o1 independently of the other object
o2. QoS of the segment s12 does not satisfy the
QoS requirement Q(o1). Here, the process pu can
deliver messages of the segment s22 independently
of messages of the segment s12.

4 Application
We are now designing and implementing a tele-

conference system by using JGN(Japan Gigabit
Network) [6]. At the 64th IPSJ annual confer-
ence held at Tokyo Denki University, Hatoyama,
on March, 2002, a virtual session on high-level
communication and applied technologies was held
by cooperation of four sites, Iwate Prefectural
Univ.(IPU), Tohoku Univ., Communications Re-
search Lab.(CRL), and Tokyo Denki Univ.(TDU)
which are interconnected in JGN [Figure 7]. Each
site is composed of presentation device, video
camera, and projector as shown in Figure 8. The
video and voice data are transmitted by using IP,
i.e. DV over IP [4]. In addition to transmitting
multimedia data of video and voice of the confer-
ence, the powerpoint is used for presentation at
each site. The data of the powerpoint is replicated
in each site. The control signal to change pages is
transmitted to all the sites without transmitting
data in the pages. This virtual session was coordi-
nated in a centralized controller of CRL. It takes
two to four seconds to deliver video and voice due

to the processing delay of each site. In order to
overcome the difficulties, we are now taking the
fully distributed approach discussed here to real-
izing the virtual conferences.

TDU

CRL

2.4Gbps100Mbps

IPU

Tohoku Univ.

Figure 7: Network

Video camera

Projector

Screen

Speaker

JGN

PowerPoint

Figure 8:

5 Concluding Remarks
This paper discussed a group communications

of multimedia objects with the fully distributed
control. According to the O-precedent relations
among multimedia objects, messages of the ob-
jects are delivered to destination processes ordered
We discussed QoS-based precedency.

References
[1] Adelstein, F. and Singhal, M., “Real-Time

Causal Message Ordering in Multimedia Sys-
tems,” Proc. of IEEE ICDCS-15 , 1995,
pp.36–43.

[2] Baldoni, R., Mostefaoui, A., and Raynal,
M., “Efficient Causally Ordered Commu-
nications for Multimedia Real-Time Appli-
cations,” Proc. of IEEE HPDC-4 , 1995,
pp.140−147.

[3] Birman, K., “Lightweight Causal and Atomic
Group Multicast,” ACM Trans. on Com-
puter Systems, 1991, pp.272–290.

[4] Shushi Uetsuki, Takahiro Komine, Akihiko
Machizawa, Kazunori Sugiura, Michiaki Kat-
sumoto, Shin-ichi Nakagawa, and Fumito
Kubota, “Quality evaluation of DV over IP
transmission reflection,” Tech. Report of SIG
Communication Quality, IEICE, 2000.

[5] Fischer, M. J., Lynch, N. A., Paterson, M. S.,
“Impossibility of Distributed Consensus with
One Faulty Process,” Journal of the ACM
(JACM), Vol.32, No.2, 1985, pp.374–382.

研究会Temp
－47－

[6] JGN: Japan Gigabit Network.
http://www.jgn.tao.go.jp/org_tec/inde
x.html

[7] Kanezuka, T., Higaki, H., Takizawa, M., and
Katsumoto, M., “QoS Oriented Flexible Dis-
tributed Systems for Multimedia Applica-
tions,” Proc. of the 13th Int’l Conf. on In-
formation Networking (ICOIN-13), 1999, pp.
7C-4.

[8] Lamport, L., “Time, Clocks, and the Or-
dering of Events in a Distributed System,”
Comm. ACM , Vol.21, No.7, 1978, pp.558–
565.

[9] Mattern, M., “Virtual Time and Global
States of Distributed Systems,” Parallel and
Distributed Algorithms (Cosnard, M. and
Quinton, P.), North-Holland , 1989, pp.215–
226.

[10] Melliar-Smith, P. M., Moser, L. E., and
Agrawala, V., “Broadcast Protocols for Dis-
tributed Systems,” IEEE Trans. on Parallel
and Distributed Systems, Vol.1, No.1, 1990,
pp.17–25.

[11] Nakamura, A. and Takizawa, M., “Reliable
Broadcast Protocol for Selectively Ordering
PDUs,” Proc. of IEEE ICDCS-11 , 1991,
pp.239–246.

[12] Nakamura, A. and Takizawa, M., “Causally
Ordering Broadcast Protocol,” Proc. of
IEEE ICDCS-14 , 1994, pp.48–55.

[13] Schulzrinne, H., Casner, S., Frederick, R.,
and Jacobson, V., “RTP: A Transport Proto-
col for Real-Time Applications,” RFC 1889,
1996.

[14] Shimamura, K., Tanaka, K., and Takizawa,
M., “Causally Ordered Delivery of Multi-
media Objects,” Computer Communications
Journal , 2002, Vol. 25, No. 5, pp.437–444.

[15] Shimamura, K., Tanaka, K., Takizawa, M.
: “Protocol for Synchronizing Multimedia
Objects Exchanged in a Group of Process,”
Journal of IPSJ , 2002, Vol. 43, No. 2.

[16] Tachikawa, T., Higaki, H., and Takizawa, M.,
“Group Communication Protocol for Real-
time Applications,” Proc. of IEEE ICDCS-
18, 1998, pp.158–165.

[17] Tachikawa, T. and Takizawa, M., “Multime-
dia Intra-Group Communication Protocol,”
Proc. of IEEE HPDC-4 , 1995, pp.180−187.

[18] Yavatkar, R., “MCP: A Protocol for Co-
ordination and Temporal Synchronization
in Multimedia Collaborative Applications,”
Proc. of IEEE ICDCS-12 , 1992, pp.606–613.

研究会Temp
－48－

