goboobooobooobooo

goooobobooboao

gogobooboooood

Adaptable Replication Scheme for Availability and

Reliability in a Distributed Object-Oriented
Computing Environment

Juan Carlos Leonardo Kentaro Oda Takaichi Yoshida
Department of Artificial Intelligence
Kyushu Institute of Technology
leonardo,ken,takaichi@mickey.ai.kyutech.ac.jp

Distributed object-oriented systems tend to evolve steadily influenced by its own
requirements. Adaptability enables objects to change its respective behaviour
on the fly to fulfill the current requirements of the system. As an alternative to
leverage the availability and reliability characteristics, we propose an adaptable
replication scheme that enables an object to adapt itself to provide a replicated
service, and a replicated object to choose the replication strategy that best fits
to achieve its requirements.

The adaptable replication framework encapsulates the details of replication and
communication which comprises a group membership service, reliable message
delivery service and message ordering service to comply with the consistency of
the replication protocol. The adaptive replication scheme permits replacement
of down replicas, or change of the number of replicas when partial failures occur
and chooses the most adequate consistency protocol for the current configuration.
Clients to the recently adapted objects for replication should take actions that
enables then to obtain a thourough service of the replicated object. The adaptable
replication scheme is being designed as part of the Juice system.

Introduction

Many replication protocols have been pro-
posed to enhance availability, reliability and
performance issues. These protocols base
their replication policies on a determined
computing environment and system require-
ments. The ROWA protocol does not con-

sider site failures as part of its specification.
The ROWAA protocol [2] [4], however, does
consider site failures as part of its specifica-
tion. The quorum consensus protocol [5],
keeps system functionality in spite of site
failures and network partitions so long as a
quorum is assembled. The primary-backup
protocol [3], works in a centralized way

gord

1090 14
170 14

研究会Temp
マルチメディア通信と分散処理

研究会Temp
109－14

研究会Temp
電 子 化 知 的 財 産・社 会 基 盤

研究会Temp
17－14

研究会Temp
（２００２． ９． １３）

研究会Temp
－97－

so that operations can be serialized consis-
tently without incurring in complex cooper-
ation issues. Other replication protocols re-
volve around these concerns offering differ-
ent levels of availability, reliability and per-
formance. These issues are subject to the
changes in the environment. Thus, a repli-
cation protocol cannot assure high depend-
ability at all times. Adaptive replication of-
fers an alternative which permits to change
the replication scheme during the lifetime
of an object when environmental conditions
has suffered drastic changes. Replicated ob-
jects with a fixed replication protocol may
run into troubles whenever issues out of its
scope show up.

Furthermore, singleton server objects can
enhance its availability and reliability by
replicating themselves. This involves the
deployment of a replica group concept to
encapsulate the replication details. A repli-
cated object is accessed through single ob-
ject identity throughout the whole sys-
tem. Depending on the replication policy
adopted, the replicated object can change
the number of replicas, keep the number of
replicas despite replica crashes to hold bet-
ter availability and reliability, etc. The con-
sistency protocol employ to provide correct-
ness can be of any form than ranges from a
relaxed approach to a strict approach. The
object can adapt itself to adopt the consis-
tency protocol that most suits its require-
ments.

Client objects can also be adapted to take
advantage of replicated objects. Clients just
have knowledge of the server object but not
of behaviour it has currently adopted. In
case of replication, it needs to know the
replica group object to be able to talk to
the replicated service. For that, clients must
obtain this knowledge indirectly through a

directory server which acknowledges clients
of the server object current behaviour.

The adaptable replication scheme is de-
signed on the Juice system. The Juice ob-
ject model comprises adaptability as one of
its features. It allows objects to change
its behaviour on the fly by replacing some
components in a modular way. A replica-
tion module can be installed to provide the
adaptable replication semantics to the ob-
ject.

2 The Adaptable Object
Model

The Juice system [1] is based on the adapt-
able object model. Adaptable objects are
user-defined, first-class and adapt them-
selves to the changing execution environ-
ment. This object model support net-
work transparency and adaptation proper-
ties for an open distributed environment.
The adaptable object model is made of five
components: the encapsulation object, the
executor, the communicator,the adaptation
strategy and the context object (See 1).

Adapt abl e
bj ect

Cdient View

Adapt ati on
Strateg

Internal structure

Figure 1: The Adaptable Object Model

0980

研究会Temp
－98－

. Encapsulation object: It hides the in-
ternal structure of the adaptable ob-
ject. The encapsulation object type is
the same as the user-defined type for
the problem domain.

. The executor: It provides execution
and concurrent control. It executes
methods from the context object corre-
sponding to message received from the
communicator. The executor object
supports concurrency control by having
more than one thread of control. It per-
mits synchronization based on mutual
exclusion or condition variables. The
method selector can be changed de-
pending on the executing environment.

. The communicator: This metaobject
provides the communication infrastruc-
ture. It interprets the communica-
tion protocol, manages message recep-
tion, to say, in a message queue, sends
the message in an appropriate order
to the executor object. Generally, it
handles both message sending and re-
ception. The communicator can be
installed modularly to provide a new
communication protocol, message or-
dering control policy, message sending
policy (unicast or multicast).

. The adaptation strategy: provides
strategies for adaptation as environ-
ment changes occur. These changes are
informed in the form of events. De-
pending on the characteristic of the
event adaptation

. The context object: It holds the state
and behaviour of the adaptable object.
It merely deals with the application do-
main implementation. It is defined by
the user.

3 The Adaptable Repli-
cation Scheme

3.1 Overview

First, the adaptable replication scheme de-
fines the process it takes for a replicated ob-
ject to distribute and synchronize messages
among its members based on the current
replication policy. By definition a replicated
object is made of replica objects and client
objects which may be located at different
address spaces (See 2).

_ﬁ\message
Repl i cat ed obj ect

P rrrey

< L e 7
PR R
gi‘ ey o] Vi ;]

VN

‘ Joroi
s s, 5o,

iy

AN
IO e PP LT

Figure 2: The replicated object framework

On the one hand, Replica objects, in gen-
eral, keep the same state information and
perform computations by means of a well-
defined service. Issues such as data con-
sistency, fault tolerance, performance are
of concern at this level. The replication
scheme expresses the different solutions to
these issues. On the other hand, client ob-
jects are the ports to access replica objects’
services and are allow to offer the service
given by the replica objects. In the over-
all, this service turns to be the service pro-
vided by the replicated object. Replica ob-
jects and client objects must communicate
to process messages(object-oriented envi-
ronment) sent to the replicated object which

0990

研究会Temp
－99－

is assumed to be referred to by a global ob-
ject identifier. Therefore, within the repli-
cated object, the replication scheme pro-
vides the rules for communication, the con-
sistency protocol, and the number of repli-
cas that abstracts replication. The replica-
tion scheme considers as the unit of commu-
nication a message. A message has it own
format which is shared among all replication
schemes and is analyzed and understood by
any replica object and client object using
the same replication scheme. An replica ob-
ject receiving a message decides whether to
process a message given that the message
ancillary information agrees with the one
currently at hand. Messages rejected by
the replica service are acknowledged back
to the client object. Client objects take ac-
tions based on this ackowledgement. This
scheme is being supported by a communica-
tion subsystem which provides all commu-
nication services such as unicast communi-
cation and group communication. Message
ordering, message reliability, message dupli-
cates are handled at this layer.

The adaptable replication scheme also es-
tablishes the process it takes to adopt a
new replication policy due to environmen-
tal conditions. For that, every replication
scheme is identified uniquely. The replica
set and client set must agree on the replica-
tion scheme identifier in order to communi-
cate. Messages must carry with it the cur-
rent replication scheme identifier.

The adaptable replication framework con-
tains a input message queue, a replica-
tion component, a replication manager and
a messenger (See 3). The input mes-
sage queue as it names implies holds mes-
sages coming from the adaptable object it-
self. The messanger distributes the receiv-
ing messages to either the replication com-

ponent or the replication manager. At times
when the system is in a transitional stage
and keeps message in a queue until fur-
ther notification. The replication compo-
nent holds the current replication scheme.
It fetchs messages from the queue, process
them adding the proper ancillary informa-
tion, and sends then in the form of a re-
quest message to the communication sub-
system. Further, it receives messages from
the communication system, interprets the
message and proceed to do its respective ac-
tion. Messages that cannot be understood
by the it are delegated to the replication
manager. The set of replicas are allowed
to change the replication scheme provided
that the guarantees are not being met. Not
all the members of the replicated object are
aware of this kind of decisions. Therefore,
such members are forced to adapt them-
selves to be able to establish communica-
tion again. Replication managers deal with
replication scheme adaptation. No matter
which replication scheme is being employed
at the time, replication managers are able
to communicate due to they share a com-
mon communication protocol. They are lo-
cated at all members of the replicated ob-
ject. They are activated whenever the repli-
cation system suffers from serious availabil-
ity and reliability degradation to the extent
that another replication scheme has to be
adopted. Or whenever a change has been
done in the system such that the current
replication component fails to get a certain
service.

3.2 Server Object Adaptation

Assuming that a replicated object exists
server object adaptation can be observed
by changes in the replication scheme and

0 1000

研究会Temp
－100－

Replication

manager

net wor k

Figure 3: The adaptable replication framework

changes in the number of replicas. Repli-
cation managers, at the replica side, know
each other and can communicate and co-
operate to enable to replication system to
evolve. In other words, any change in repli-
cation can be done by these members. Each
replication manager can independently call
all members for a new configuration. A
manager sensing a slow down in process-
ing can warm others managers by sending
the relevant information which concerns the
problem. There should a set of parameters
at each replica manager that causes a spon-
taneous action to make changes in the sys-
tem. A transitional stage is essential to pre-
vent the messages of being process wrongly.
After the change has been installed, the sys-
tem can come back to normal processing.
As the nature of replication protocols varies,
replication components cannot present uni-
form characteristics. For instance, the pri-
mary replica component and the backups
components differ in functionality. The pri-
mary replica handles synchronization and

the backups are just mere keepers of state
information. If the primary-backups ap-
proach is elected, then after the transitional
stage has ended, the messenger starts send-
ing the pending messages. Those messages
are rejected and a acknowledge reply is sent
back to the client objects due to the new
replication scheme. In short, all pending
messages are reformatted and re-sended af-
ter the client object has adopted the new
replication scheme.

A replica group abstraction is introduced
that simplifies the management of repli-
cated objects. The replica group manages
the number of replicas, the consistency pro-
tocol and the failure of replicas. The replica
group makes use of a group membership
protocol to cope with the above aspects.
Every time a replica is added, or has been
determined to have failed and excluded from
the list of replicas, a new view of the group is
created consistently. The replication proto-
col can, for instance, reduced the number of
replicas to lessen the data consistency cost

01010

研究会Temp
－101－

by excluding a number of replicas from the
group. Or add more replicas in cases where
more availability is required.

The replica group should provide a single
interface for the replicated service. Clients
accesses this replicated service by means of
this interface. The replica group should
be exported and made available to clients.
A unique global logical identifier for the
replica group becomes necessary.

3.3 Client Object Adaptation

Client objects should adapt to be able to
get services from the replica group. The
replica manager, at the client side, takes
care of misunderstandings among replica
components. Replica components receiving
an acknowledge message can delegate the
message to the replica manager. Then, the
replica manager must contact the replica
managers from the replica group and ask
about the new requirements. During this
stage the system enters in a transitional
stage in which in returns the acknowledged
messages back to the queue for the new
replication component to process them.
Clients objects interacts with replica ob-
jects by means of a unique object reference,
a kind of opaque reference, which contains
the details of communication and object lo-
cation, and identifies every object over the
whole address space. These object refer-
ences are used in the communication sub-
system that needs the information to es-
tablish a connection. It is worth noting,
however, that adaptability introduces an is-
sue when the server object adopts a dif-
ferent approach which completely changes
the communication protocol. The client and
server may have an aggreement that advises
the client to adapt itself to conform to the

newly-selected communication protocol. A
server with a single replica having a com-
munication protocol that only understand
unicast communication, due to availability
and reliability degradation, can change to
a multicast communication protocol to sup-
port a replication protocol. The client has
to change its communication semantics and
acquire a replica group reference to be able
to get service done from the whole set of
replicas. An smart directory service should
intervene in this process by acknowledging
clients that the server object has been repli-
cated so that they start reconfiguring them-
selves and then interact with the replicated
object. In the current approach the client
can take full advantage of replication by
changing its communicator to the one that
provides the adaptable replication scheme.

4 Design on Juice Sys-
tem

The capability of the Juice system of being
adaptable facilitates the integration of the
adaptable replication scheme. Due to mes-
sage processing is main task done within the
adaptable replication scheme, a new com-
municator component of the adaptable ob-
ject can be created which incarnates the
adaptable replication scheme (See 4).
Messages are intercepted at this level and
the communicator can perform additional
functionality to support features. Repli-
cation as an alternative to enhance avail-
ability and reliability involves handling of
messages. Messages must be recieved and
executed in the same order at all repli-
cas given that the replication protocol be-
ing employed is ROWA. They must be de-
livered reliably. And duplicated messages

0 10200

研究会Temp
－102－

Communi cat or

Adapt abl e
bj ect

Cient View Execut or

Adapt ation
Strat egy

Internal structure

NN NNN 2 Qoj ect

Adapt abl e

Cient View

Internal structure

Figure 4: The adaptable object after replication adaptation

must be removed. Adaptable replication is
supported at this level. The communica-
tor with the adaptable replication scheme,
hereafter replicator, deals entirely with all
replication details. The replicator chores are
divided into two sides: One is addressed to
maintain data consistency and the other is
directed to maintain group membership.

An instance of the replicator would be
a communication subsystem using a token-
based approach and replication policy such
as active replication. A replica belongs to
a replica group and receives a token that
informs of the order of the previously re-
cieved messages. It also deals with mem-
bership on the ring. Only members that
belong to the logical ring are counted at
the time of running the replication proto-
col. Failures of members must be masked
transparently. The membership protocol es-
tablished the rules to be applied in cases

when members leave or enter the ring. In
short, a new ring has to be created if one
or more members fail or join the ring. For
instance this approach for adaptable repli-
cation can be based on TCP connections so
that the reliable delivery of point to point
messages is of no concern. To provide the
required availability failed replicas could be
replaced for new ones spawned from any
of the already-updated replicas. New repli-
cas join the group after the new logical has
formed and all replicas are up-to-date. A
representative has to spawn new replicas at
different processors and call for a new mem-
bership.

Global message ordering entails unique-
ness of messages at all replicas. For that,
every message has to be uniquely identi-
fied. A unique sequence number is attatched
to each message in its header. Only the
replica which has received the token can as-

0 1030

研究会Temp
－103－

sign sequence numbers to messages follow-
ing the sequence number described in the to-
ken information. The replica in charge mul-
ticasts its messages to the rest of the repli-
cas and past the token the following replica.
Due to the reliability guarantee provided by
the TCP implementation, replicas has little
work to do regarding message transmission
reliability.

The membership protocol and the replica-
tion protocol are independent of each other
so any adaptable object is free to select
the replication policy that best suits its
needs. The replica policy can range from
a primary-backup policy, quorum consen-
sus, mayority voting, etc. The replica group
specifies the replication policy adopted.
Furthermore, the replica group can resize it-
self to accomodate the current availability.

5 Concluding Remarks

Adaptable object model with its structure
facilitates the design of adaptable replica-
tion scheme by a accomodating a commu-
nication object that specifies the replica-
tion behaviour. The adaptable replication
scheme aims at providing a framework that
enables adaptable objects to change the
replication at runtime. The replication pol-
icy can be adopted according to the needs of
each adaptable object. Adaptable objects
can be enhanced in such a manner when-
ever changes on the environment turn out
the working place hostile. An environment
experiencing making the service of some ob-
jects poor available or reliable can advice
the objects through events to adapt to a
replicated service. The communicator with
the adaptable replication scheme is part of
the Juice system.

References

[1] Oda, K. and Tazuneki, S. and Yoshida,
T.: The Flying Object for an Open
Distributed Environment, 15th Interna-

tional Conference on Information Net-
working (2001).

2] Berstein, P. and Goodman, N.: An algo-
rithm for concurrency control and recov-
ery in replicated distributed databases,
ACM Transactions on Database Sys-
tems, Vol. 9, No. 4, pp. 596-615 (1984).

[3] StoneBraker, M. and Neuhold E.: Con-
currency control and consistency of mul-
tiple copies of data in distributed IN-
GRES, IEEE Trans. on Software En-
gineering, Vol. 3, No. 3, pp. 188-194
(1979).

[4] Berstein, P. A. and Hadzilacos, V. and
Goodman N.: Concurrency Control and

Recovery in Database Systems, Addison-
Wesley (1987).

[5] Gifford, D. K.: Weighted voting for
replicated data, Proc. 7th Symp. on Op-

erating System Principles, pp. 150-162
(1979)

0 1040

研究会Temp
－104－

