
公開 DNS通信のセキュリティ確保

力武健次 ‡� 中尾康二 ‡ 野川裕記 � 下條真司 �

DNS（ドメイン名システム）にはトランスポート層にインターネット全体のセキュリティを弱めかねない基

本的な欠点がある。 DNSデータベースのトランザクションは大部分が UDP上でなされており、サービス拒

否攻撃に対してシステム全体が影響を受けやすい。本論文では公開されたインターネットゲートウェイシステ

ムにおいて、 UDP による DNS サービスの提供のリスクについて論じる。その代案として、 DNS のトラン

スポート層への T/TCP（トランザクショナル TCP）の導入を提案し、実装実験による評価を通じて、 T/TCP

がパフォーマンスの損失を抑えつつ、 DNSトラフィックの制御をより容易にすることを示す。

Securing Public DNS Communication

Kenji Rikitake‡�, Koji Nakao‡, Hiroki Nogawa� and Shinji Shimojo�

The DNS (Domain Name System) has a fundamental weakness on the transport layer, which may affect the

overall security of the Internet. The DNS database transaction is mostly performed over UDP, which makes

the whole system susceptible to denial-of-service attacks. In this paper, we first discuss the risk of providing

DNS service through UDP access on publicly-exposed Internet gateway systems. We then propose introduc-

ing T/TCP (Transactional TCP) to the DNS transport layer as an alternative. We evaluate an experimental

implementation and show how T/TCP is effective to improve the controllability of the DNS traffic while the

performance degradation is minimal.

1 Introduction

One of the most important and mission-critical
subsystems of the Internet Protocol Suite is DNS
(Domain Name System) [1, 2]. Almost all Inter-
net applications depend on DNS for the domain
name resolution. Electronic mail messages use do-
main names to choose the source and destination
addresses. The Web is fully dependent on domain
names to properly choose the appropriate servers.

The integrity of Internet depends on how DNS
is managed. The management is not only limited

‡ 株式会社 KDDI研究所
� 大阪大学サイバーメディアセンター
‡ KDDI R&D Laboratories, Inc.
{kenji,nakao}@kddilabs.jp
� Cybermedia Center, Osaka University
{nogawa,shimojo}@cmc.osaka-u.ac.jp

to the consistency of the database contents (Re-
source Records, RRs) but also to ensure the reli-
able access between the servers and the resolvers
(clients). If DNS server-resolver communication
is intentionally forged or spoofed for a security at-
tack, the attacker can forward an email message to
another server for monitoring or rewriting the con-
tents, or redirect a Web service request to another
server to provide a negative publicity by forged
contents.

Massive attacks have been going on to publicly-
exposed DNS subsystems, such as the server run-
ning on a corporate Internet gateway, or even to the
Root Servers [3]. DNS has a fundamental weak-
ness on the transport layer of using UDP [4] for the
database queries, which makes the system prone to
DoS (Denial-of-Service) attacks.

Cryptographic protocols such as DNSSEC [5]
have been extensively studied for authentication of

1

研究会Temp
マルチメディア通信と分散処理コ ン ピ ュ ー タ セキュリティ

研究会Temp
（２００３． ２． ２８）

研究会Temp
111－32

研究会Temp
20－32

研究会Temp
－179－

DNS traffics. Most of the DNS programs, how-
ever, are not capable of performing the crypto-
graphic extension. For the production-level sys-
tems, the overall security of DNS should be con-
sidered without the cryptographic extensions.

In this paper, we focus on the transport layer se-
curity of DNS, and propose an alternative DNS
transport with T/TCP (Transactional TCP) [6, 7].
We describe how T/TCP helps ensuring the trans-
port security of DNS, by showing the practicality
of replacing the current DNS queries of UDP with
T/TCP, through the performance analysis and eval-
uation.

In the later sections, we first describe the secu-
rity risks of public UDP services in Section 2, and
analyze the transport layer behavior and require-
ments of DNS in Section 3. We then describe the
T/TCP fundamentals and the advantages to tradi-
tional TCP in Section 4, and the evaluation results
of T/TCP used as a DNS transport in Section 5.
We conclude this paper on Section 6 with a dis-
cussion of the possible application fields of T/TCP
to improve DNS security.

2 The Security Risks of Providing Pub-
lic UDP Services Including DNS

Providing a public service on Internet, which
means making the server accessible globally from
anywhere by anybody, imposes a risk of security
attacks. In case of UDP services, the risk is even
greater. CERT Coordination Center advises dis-
abling unneeded UDP services on each host [8].

UDP provides the following two functionalities:

• selecting data flow between different appli-
cation services by assigning port numbers to
each service;
• the per-packet checksum to ensure the data in-

tegrity of each packet.

On the other hand, what UDP does not provide
are as follows:

• the retransmission functionality to provide a
reliable communication between the applica-
tion programs under data errors and packet
losses;
• the state of being connected or not;
• the state of direction of connection, which dis-

tinguishes the clients and the servers.

The stateless nature of UDP is a vulnerability
for the application protocols. While UDP is effi-
cient on a reliable link when retransmission is not
needed, it is less controllable at a firewall using a
packet filter than TCP [9], since the UDP exchange
does not have a state. The packet filter must be
configured to leave the service port publicly acces-
sible, which exposes a vulnerability, since it allows
an unlimited access to the port. DoS attacks over
UDP is much easier to perform than those over
TCP, since the attacker does not have to manage
the state of the connections.

The volume of UDP traffics is also difficult to
control. UDP packets must be directly processed
by the application software, which makes the soft-
ware vulnerable to DoS (Denial-of-Service) at-
tacks, since the content of the packets are directly
passed onto the application software without be-
ing verified. This also indicates that the operating
system on which the server runs should be capable
of handling the volume of all incoming packets,
whichever the packets are legitimate or not.

Some of the attacks to the known vulnerabili-
ties of UDP-based protocols include the worm at-
tack to Microsoft SQL Server [10], which caused
a major traffic disruption in Korean and world-
wide networks [11]. This attack used the UDP
port 1434 assigned for The SQL Server Resolu-
tion Service, which can be abused to initiate a
perpetual ping exchange between two Microsoft
SQL servers [12]. Another well-known vulnera-
ble UDP-based protocols is RPC (Remote Proce-
dure Call) [13]. These examples show that open-
ing unprotected UDP ports to public may result in
harmful exploits.

Most of the well-known UDP-based protocols,
such as DHCP, NTP, SYSLOG, and TFTP can be
isolated from the public networks since they are of
limited use in a private network environment. The
UDP service of DNS, however, must be provided
by all Internet sites for the domain name resolution
by running a public server on the Internet, as stated
in the Section 6.1.3.2 of RFC1123 [14]. The risk of
DNS server attacks can not be reduced by the DNS
delegation which many organizations and individ-
uals have to the domain name authority to Internet
service providers (ISPs), since only the targets are
changed to the ISPs from their subscribers, which
may be even more risky because the ISPs are del-

2

研究会Temp
－180－

egated thousands of domain name authorities.
Moreover, DNS programs have already been ex-

posed under persistent attacks [15, 16], so the
transport layer should be protected as robust as
possible. If the DNS database queries could effi-
ciently performed over another transport protocol
than UDP, public Internet gateway systems would
no longer need to provide an open UDP service,
and the systems could be much more secure and
easier to defend. We discuss the possibility of the
protocol replacement in the later sections.

3 DNS Transport Layer Issues

DNS server-resolver communication protocol is
collectively defined by many Internet RFCs (Re-
quest For Comments). The three important RFCs
are:

• RFC1034 [1], which specifies the architecture
of DNS;
• RFC1035 [2], which specifies the implemen-

tation details;
• RFC1123, which specifies the DNS usage as

a part of the Internet host requirements.

DNS has two major forms of data exchange be-
tween servers and resolvers as follows:

RR Queries: this occurs between the servers and
resolvers. Most of the real-world traffic of
the queries is over UDP, though TCP is also
allowed and supported by the majority of
servers.

Zone Transfer: this occurs between two servers
for replication of a set of RRs to obtain redun-
dancy against a possible server failure. This is
performed solely over TCP.

We focus on the RR queries in this section, since
the our goal is to improve the efficiency and secu-
rity of the DNS database lookup.

While both UDP and TCP are allowed on the
initial DNS queries, TCP must be used for a large-
size reply. Section 4.2.1 of RFC1035 explicitly
restricts the size of UDP queries and answers to
512 bytes. Section 6.1.3.2 of RFC1123 shows
that a DNS server must service UDP queries and
it should service TCP queries, and allows private
agreement of servers and resolvers to solely use
TCP for the queries.

Section 4.1.1 of RFC1035 specified the DNS
header format. In the format, the TC bit is set when
a server sends a truncated reply, due to length
greater than that permitted on the transport. The
djbdns [17] behavior of the resolver which re-
ceives a UDP answer with the TC bit set is to reis-
sue the request to the server using TCP [18] all
over again. This means the query reply longer than
512 bytes is always sent back by TCP, after wait-
ing a UDP exchange solely for the notification pur-
pose.

The limit imposed by UDP packet size leads to a
restriction that answers to the DNS queries for the
Root Servers must be fit into 512 bytes, The UDP
size limitation means a restriction which only 13
IPv4 servers can be specified in the SOA answer ∗1.
If the number of Root Servers were increased or
some of the servers also announced the IPv6 ad-
dresses by the AAAA RR, the answer may easily
exceed the 512-byte size limit [18], so the query
answer for the Root Servers will not be able to be
carried over UDP. If TCP can be used as a pri-
mary protocol of DNS queries, this problem will
be solved, since it has no limitation of the data size
per packet.

DNS programs has its own retransmission and
timeout algorithms for the UDP transport, since
UDP does not have them. For example, djbdns
uses the timeout algorithm [19] of waiting 3, 11,
and 45 seconds respectively for each UDP re-
cursive queries, and terminates the operation if
nothing received after retransmitting three times.
This retransmission strategy works well when the
packet loss rate of the network is small. When the
packet loss rate is very high, however, it may cause
delay of the completion of query processes, either
succeeded or failed, since only four or less pack-
ets are sent for each query. On the other hand,
TCP has its own retransmission algorithm imple-
mented, which scales well on various conditions
of links.

4 T/TCP and Traditional TCP

T/TCP is an extension of TCP, designed for
a transactional use between a connection-based
client-server communication which fits very well

∗1 The RRs of the query answer for the Root Domain is 1
SOAs, 13 NSes and 13 As, 493 bytes in total.

3

研究会Temp
－181－

FIN+ACK + answer

answer;
close connection

2RTT
+

processing
time

setup
connection SYN

ACK

ACK

accept
connectionsending

a query received the query

close request received
close connection also

sending back the answer

client server

SYN+ACK
FIN+ACK + query

received the

Fig. 1 Traditional TCP Time Line

server

answer;
close connection

close request received
close connection also

connect and
sending a query

accept connection
and received query

processing time
1RTT +

ACK

ACK

sending back the answer
SYN+ACK

SYN+FIN+PSH + query

FIN+PSH
+ answer

client

received the

Fig. 2 T/TCP Time Line

to DNS database exchange. The transactional
model of communication proceeds as the follow-
ing sequence:

• the client sends a request to the server;
• then the server sends back the reply;
• the exchange completes and the link is discon-

nected.

Using traditional (non-transactional) TCP for
the transactional model sequence requires two
round-trip exchanges. Figure 1 shows the time line
of traditional TCP. It shows that the first of the two
exchanges is solely for setting up a TCP connec-
tion, while the second one is actually used for the
data exchange.

On the other hand, using T/TCP requires only
one round-trip exchange, which is the same as in
the UDP case. Figure 2 shows the time line of
T/TCP. It shows that the first packet sent from the
client to the server carries the query data as well as
the connection request. Putting the query data on
the same packet for the connection request is per-
formed by using the CC (Connection Count) op-
tions, introduced by T/TCP, to indicate the support
and to avoid duplicate old connections.

Note that in either time line figures of Fig. 1 or
Fig. 2, the meaning of the ACK bit in TCP header
is left unchanged. The packet filtering rules of al-

lowing only established connections of TCP are
applicable to T/TCP with no need to change.

T/TCP has another feature to shorten the time
spent in TCP TIME_WAIT state which is to com-
plete full-duplex closing of a connection and to al-
low old duplicate TCP segments to expire. The
amount of time spent in the TIME_WAIT is tradi-
tionally specified as twice the MSL (Maximum
Segment Lifetime). T/TCP specifies the length
of TIME_WAIT as eight times the RTO (Retrans-
mission Timeout) when the connection duration is
less than the MSL. This means that the length of
TIME_WAIT state is shortened from 60 to 4 seconds
on FreeBSD 4.6.2-RELEASE. A smaller length of
TIME_WAIT state means a smaller size requirement
to the network control block, and an increase of
number of TCP connections which a server host
can simultaneously handle.

T/TCP is fully backward-compatible with the
traditional TCP. When the server is T/TCP-aware,
it can identify the client is T/TCP-aware or not by
referring to the CC options sent from the client.
On the other hand, when the server is not T/TCP-
aware, it discards the data payload on the first
packet with SYN flag to avoid TCP SYN-flooding,
so the client to wait for an additional error time-
out period for each transaction. Nevertheless, the
backward compatibility is still retained.

5 Evaluation of T/TCP on DNS

We tested T/TCP as a DNS transport by mod-
ifying the program code of djbdns on FreeBSD
4.6.2-RELEASE using dummynet [20], and mea-
sured the performance and behavior. The details
of djbdns modification are listed as follows:

• adding a function to set the TCP_NOPUSH
socket flag, and an interface to sendto() sys-
tem call for djbdns socket library;
• changing the DNS resolver interface func-

tions called from the djbdns programs to use
T/TCP instead of traditional TCP;
• changing dnscache, the DNS cache program,

to use T/TCP for accepting the connections
and external lookups.

The conditions of DNS query time measure-
ments are as follows:

4

研究会Temp
－182－

Table 1 Total Elapsed Time of 1000 Sequential DNS
Queries to a dnscache Server (in seconds)

local Ether ADSL
RTT (ms) ≈0.04 ≈0.4 60∼70
UDP 0.22 2.40 67.77
T/TCP 0.52 8.70 74.70
TCP 0.53 8.92 138.80
RTT: Round-Trip Time

• dns_resolve(), a DNS resolver function of
djbdns, is called for each query. A mod-
ified version is used to perform TCP-only
DNS queries. DNSCACHEIP, The environ-
ment variable is set to choose the appropriate
dnscache to test.
• Each query contains a request to the NS RRs

of the Root Domain ("."), which dnscache
can answer solely by referring to a configura-
tion file root/IP/@, with no external or inter-
nal lookup.

Table 1 shows the result of measuring the dif-
ference of query processing time between UDP,
T/TCP and TCP for different types of links. We
used a local interface, a 100BASE-TX Ethernet,
and an ADSL (Asynchronous Digital Subscriber
Link) of an Internet service provider.

For the local interface and Ethernet links, UDP
is the fastest, since the number of packets ex-
changed for each query differs; 2, 5, and 6 for
UDP, T/TCP, and TCP, respectively. On the other
hand, the testing of the ADSL link shows that the
overhead of T/TCP to UDP is only 10% of the to-
tal time, while TCP takes about twice as much as
UDP does. This is consistent with the time line
explanation on Section 4.

We also performed a test to evaluate how the
random packet loss rate affects the query suc-
cess rates of UDP and T/TCP. Since UDP ex-
change takes 59 seconds as the maximum value by
the djbdns retransmission algorithm, the value of
T/TCP timeout to determine the success of query
is extended from the default value of 10 to 60 sec-
onds on both the server and resolver sides. We
used two hosts connected with a 100BASE-TX
link and dummynet for the network delay simula-
tion. 100 concurrent queries was conducted.

Figure 3 shows the result in the case of 500 mil-
liseconds delay. In this case, UDP and T/TCP

60

10

20

30

40

50

60

0

100 concurrent queries with 500msec delay

UDP
T/TCP

fa
ile

d
qu

er
ie

s
(%

)

packet loss rate (%)
10 20 30 40 50

0

Fig. 3 Query Failure Rates of UDP and T/TCP for
Link with 500ms Delay

showed little difference at the low packet loss rates
≤ 10%. As the packet loss rate increases, the dif-
ference between UDP and T/TCP also increase.
At the packet loss rate of 55%, more than a half
of UDP queries fails, while T/TCP queries only
failed about 25% of the whole queries. This indi-
cates T/TCP is effective for decreasing the worst-
case failure rate for DNS queries in the networks
of high packet loss rates.

6 Conclusion and Further Works

In this paper, we proposed to use T/TCP as a
DNS transport, evaluated the protocol by an imple-
mentation, and showed that T/TCP is an effective
alternative to enhance the overall security of DNS
by increasing the reliability of the query process-
ing, while maintaining the controllability of TCP
on the firewalls.

DNS has become the only mandatorily-required
UDP protocol which a firewall connected to the
public Internet must support for non-private ex-
change. While simply prohibiting the UDP queries
of DNS may work, it will increase the consump-
tion of the server host resources, as TCP exchange
requires the connection blocks inside the operat-
ing system kernel. As shown in Section 4, T/TCP
shortens the timeout state length, which largely
affects the maximum processing capability of a
server host, to 1/15 of the traditional TCP. This
will reduce the average resource consumption of
the server host. And as shown in Section 5,
T/TCP is a practical solution to replace UDP DNS
lookups on an ADSL or other kinds of network,
which have larger latencies, and which many of

5

研究会Temp
－183－

the end-user Internet sites use. The zone transfer
exchange of DNS will benefit from T/TCP for the
fast startup and earlier closing of connections as
well. If the workload increase due to the T/TCP
resource consumption is of concern, the expertise
for Web servers are applicable to reduce the im-
pact.

Using T/TCP for DNS lookups from mobile
equipments may be effective. Links from those
devices often fails because of the high packet loss
rate. T/TCP work better than UDP in such a case.
Even in a lower packet loss rate, T/TCP has only
10% of query time overhead than UDP in a wide-
area network environment which has the RTT of
≥ 60 milliseconds. Changing the current UDP
queries to T/TCP is a practical solution for mobile
equipments, since it eliminates a requirement for
UDP protocol stack and gives more control on the
firewall between Internet and the networks of the
equipments.

We consider three major issues should be dis-
cussed for the further works:

• the detailed security analysis on T/TCP;
• how T/TCP can be used on other UDP-based

applications;
• estimating resource consumption overhead of

DNS migration from UDP to T/TCP.

Acknowledgements

Our thanks go to Mr. Tohru Asami, the presi-
dent and CEO of KDDI R&D Laboratories, Inc.,
for supporting our research activities.

References

[1] Mockapetris, P. V.: Domain names – con-
cepts and facilities (1987). RFC1034 (also
STD13).

[2] Mockapetris, P. V.: Domain names –
implementation and specification (1987).
RFC1035 (also STD13).

[3] Vixie, P., Sneeringer, G. and Schleifer,
M.: Events of 21-Oct-2002. http://f.

root-servers.org/october21.txt.
[4] Postel, J.: User Datagram Protocol (1980).

RFC768 (also STD6).
[5] Eastlake, D.: Domain Name System Security

Extensions (1999). RFC2535.

[6] Braden, R.: Extending TCP for Transactions
– Concepts (1992). RFC1379.

[7] Braden, R.: T/TCP – TCP Extensions
for Transactions Functional Specification
(1994). RFC1644.

[8] CERT/CC: UDP Port Denial-of-Service
Attack. CERT Advisory CA-1996-01,
http://www.cert.org/advisories/

CA-1996-01.html.
[9] Postel, J.: Transmission Control Protocol

(1981). RFC793 (also STD7).
[10] CERT/CC: MS-SQL Server Worm. CERT

Advisory CA-2003-04, http://www.cert.
org/advisories/CA-2003-04.html.

[11] CNET News.com: Computer worm slows
global Net traffic. http://news.com.com/
2100-1001-982131.html.

[12] CERT/CC: Microsoft SQL Server 2000 con-
tains denial-of-service vulnerability in SQL
Server Resolution Service. CERT Vulner-
ability Note VU#370308, http://www.kb.
cert.org/vuls/id/370308.

[13] CERT/CC: Integer Overflow In XDR
Library. CERT Advisory CA-2002-25,
http://www.cert.org/advisories/

CA-2002-25.html.
[14] R. Braden (Editor): Requirements for Inter-

net Hosts – Application and Support (1989).
RFC1123.

[15] CERT/CC: Denial-of-Service Vulnerability
in ISC BIND 9. CERT Advisory CA-2002-
15, http://www.cert.org/advisories/
CA-2002-19.html.

[16] CERT/CC: Buffer Overflows in Multiple
DNS Resolver Libraries. CERT Advi-
sory CA-2002-19, http://www.cert.org/
advisories/CA-2002-19.html.

[17] Bernstein, D. J.: djbdns. http://cr.yp.
to/djbdns.html.

[18] Gudmundsson, O.: DNSSEC and IPv6 A6
aware server/resolver message size require-
ments (2001). RFC3226.

[19] Bernstein, D. J.: User’s guide to name
resolution. http://cr.yp.to/djbdns/

resolve.html.
[20] Rizzo, L.: Dummynet: a simple approach

to the evaluation of network protocols, Com-
puter Communication Review, Vol. 27, No. 1,
pp. 31–41 (1997).

6

研究会Temp
－184－

