2004—DPS—120 (15)

200471175

FEMEN AL 2
IPSJ SIG Technical Report

WEFEHss

Concurrency Control using Role Ordering (RO) Scheduler

Tomoya Enokido and Makoto Takizawa

Tokyo Denki University
E-mail {eno, taki}@takilab.k.dendai.ac.jp

Abstract

A concept of role is significant to design and implement a secure information system. A role shows a job
function in an cnterprise. In addition to keeping systems secure, objects have to be consistent in presence of multiple
transactions. Traditional locking protocols and timestamp ordering schedulers are based on principles “first-comer-
winner” and “timestamp order” to make multiple conflicting transactions serializable, respectively. Each transaction
is associated with a role. We define a significantly precedent lation on roles showing which one of a pair of roles is
more significant than another one in an enterprise. We discuss a scheduler so that multiple conflicting transactions
are serializable in a significant order of roles of transactions.

BREDOEEE(ZE DU -REETHE
BHFE & TR B
REBKFETFHER AT L TER
BE| (role) DEEEIL, BRRIEM AT L& RF RETIEHDOBELFAETH S, HEITHRIMR (LEE) 0¥
BIZHEL, T2 B AEROEAS L LTEREND. VATLANTEED FFo¥ 7 v a VR BFICETFINB L& v
AT LEREBIHED, 10, VAT LAADAT V27 hEZELWRKREBIZES-OIZIE, B8 T38KDO T o+ o va v
NESNCETENILELRHD. (3R, BAETAHIEED NS o¥ 7 v a v 2EILT B HiEE LT, v v 7, BELIENERFA

F7a baAaBRBENTHED, TRHOFRIT TR LOBL) IO IRLEIE] TR o¥7 v s v 2B
LTS, &EIiL, HREROEBCAIETH I EPLBEEORVEBIIELL TITERLDRETHD. ARITIIL

BEOLF ¥ a2 Y ERBIOBBEE L BIZEIL L TRTT 2 2RABETHIEBS L2 RRT 5.

1 Introduction

Information systems like relational database systems
[6. 8] adopt role-based access control (RBAC) models
[3.7.9]. A role shows a job function like president and
secretary. which each person performs in an enterprise.
Roles are considered to be interface among information
systems and real world like enterprise. A role is a collec-
tion of access rights which a subject who plays the role
is allowed to do for objects in an enterprise. Here, an
access right (or permission) is a pair (o, op) of an ob-
ject o and a method op on the object 0. Only if an access
right (o, o0p) is granted to a subject s, the subject s is
allowed to manipulate the object o through the method
op. In the discretionary approach [6, 8]. a subject who
is granted a role can further grant the role to another
subject.

A transaction is an atomic sequence of methods which
are performed on objects [1,4]. . A pair of methods
con flict if and only if (iff) the result obtained by per-
forming the methods depends on the computation order.
Transactions are referred to as con flict if the transactions
manipulate a same object through conflicting methods.
A collection of conflicting transactions are required to be
serializable in order to keep objects consistent. In order
to realize the serializability of multiple conflicting trans-
actions, locking protocols [1,4] are widely used. A trans-
action T locks an object before manipulating the object
by a method op. Other transactions to manipulate the
object in a conflicting manner with the method op have
to wait until the transaction T releases the object. Lock-
ing protocols are based on a principle that only the first
comer is a winner and the others are losers. Another
way is a timestamp ordering (TO) scheduler [1]. Each
transaction T is stamped time when the transaction T is
initiated, timestamp ts(7). Transactions are totally or-
dered in their timestamps. Differently from the locking

protocols, objects are manipulated by conflicting trans-
actions in the timestamp order and no deadlock occurs.

In this paper, we discuss a concurrency control al-
gorithm based on roles associated for transactions, role
ordering (RO) scheduler. Each job is realized in a collec-
tion of transactions. Let T} and T be a pair of transac-
tions which are associated with roles R; and Ra. respec-
tively, and which manipulate an object o in a conflicting
manner. Here. the transaction 7} manipulates the ob-
ject o before Ty if the role Ry is more significant than
the other role Ry. This means the more significant job
a transaction does, the earlier an object can be manipu-
lated by the transaction. In the RO scheduler. conflicting
methods issued by transactions are ordered in the signif-
icancy of the roles. Transactions can concurrently ma-
nipulate objects in such an order that persons really do
their jobs in an enterprise.

In section 2. we present a system model. In sections 3
and 4, we define significantly dominant relations among
roles. In section 5. we discuss the role ordering serializ-
ability. In section 6, we discuss a novel type of the role or-
dering (RO) scheduler based on the significancy concept
of roles. In section 7, we evaluate the RO scheduler.

2 System Model
2.1 Object-based system

A system is composed of objects [5] which are dis-
tributed on multiple computers in networks. An object
is an cncapsulation of data and methods for manipulat-
ing the data. An object can be manipulated only through
methods supported by the object. A method is more ab-
stract than primitive methods like read and write. A
pair of methods op; and op, supported by an object o
are referred to as con flict with one another if and only if
(iff) the result obtained by performing the methods op;
and opy depends on the computation order. Otherwise,

研究会temp
テキストボックス

a pair of the methods op; and op, are compatible with
one another.

A transaction is modeled to be an atomic sequence of
methods issued to objects [1]. Multiple transactions are
concurrently performed in order to increase the through-
put of the system. Multiple conflicting transactions are
required to be serializable to keep objects mutually con-
sistent [1,4]. Let T. be a transaction which issues a
method op;; to an object 0; and a method opy; to an-
other object 02. Suppose there are a pair of transactions
Ty and T, where op;; and opg) conflict on the object o; as
well as the methods op;2 and opy; on the object 0. If the
method op;; is performed on the object 07 before ops.
op2; is required to be performed before ops» on the other
object 0y according to the serializebility theory [1]. In the
timestamp ordering (TO) scheduler [1], each transaction
T; is assigned with real time ¢s(7;) when the transaction
T; is initiated on a client. If ts(T7) < ts(T3), the method
opy1 is performed before ops; on the object o and the
method opj2 is performed before opy2 on the object os.
Thus, a pair of conflicting methods op; and op; from dif-
ferent transactions T and T3, respectively, are performed
in the timestamp order.

In the two-phasc locking protocol [4], the transaction
T is performed if a pair of the objects o; and o2 are
locked before the other transaction T5. The transaction
T, cannot manipulate the objects 0; and o2 until the
transaction 7 releases the objects. In the strict proto-
col [1], every transaction releases all the objects locked
on termination of the transaction. Hence, no cascading
abort occur.

2.2 Roles

In access control models (3, 7], a system is composed
of two types of entities, subject and object. A subject is
an active entity which issues a request to an object like
user and program. On the other hand, an object is a
passive entity like database which receives a request and
then sends back its response. A subject can manipulate
an object only through a method which the subject is
allowed to issue. An access right is a pair (o,0p) of
an object o and a method op. Only if an access right
(0, 0p) is granted to a subject s, the subject s is allowed
to manipulate an object o through a method op.

A role shows a job function in an enterprise. Each
subject s plays a role like president and secretary in an
enterprise. A subject which plays a more significant role
should be more prioritized than less significant subjects.
If a pair of tasks in different jobs would like to use an
object, one task in a more significant job should take
the object earlier than the other. A task is realized as a
transaction in a system.

A role is a collection of access rights in a role-based
access control (RBAC) model [7]. which a subject play-
ing the role can do in the enterprise. A subject s is first
granted a role R. Then, the subject is allowed to issue
an access request op to an object o only if an access right
(0,0p) is included in the role R, i.e. (o,0p) € R. Sup-
pose a subject s initiates a transaction T with a role R
granted to the subject s. We assume each transaction
is associated with only one role in this paper. Here, let
subject(T) denote a subject which initiates a transaction
T. Let role(T) show a role which is associated to a trans-
action T'. A transaction T issues an access request (o, op)
to manipulate an object o through a method op. The re-

quest (o, op) is accepted if (0.op) € role(T). Otherwise,
the access request (o, op) is rejected. i.e. the transaction
T is aborted.

The relational database systems [6, 8] take the
discretionary approach [6.8]. A role R is first created
by a subject sg. Here. the subject sy is an owner of the
role R, denoted by owner(R). Then. the owner so grants
the role I} to a subject s;. Furthermore, the subject s,
can grant the role R to another subject s2. A role is also
an object with methods grant and revoke for granting
and revoking and methods delete and add for deleting
and adding access rights in the role, respectively. If the
subject s, changes the role R, e.g. adds an access right
to R, the role R granted to the subjects sy and s, is also
changed. Suppose a subject s is granted a pair of roles
R; and R;. The subject can append R; into Rs. In ad-
dition, the subject s can create a new role R, by adding
access rights to the existing role R,. Here, Ry C Rs.

3 Significancy on a Role

We take the discretionary approach to adopting the
role-based access control (RBAC) model [7] to distributed
objects. First, suppose that a subject so creates a role R.
Here, the subject sg is an owner owner(R) of the role R.
Then, the owner subject sy grants the role R to another
subject s;. The subject s; furthermore grants the role R
to subjects s and s3 as shown in Figure 1. The subject
s1 is more tightly related with the role R than the subject
s2. This means, the subject s; is considered to be more
significant than the other subject s> with respect to the
role R.

We define a precedent relation among subjects show-
ing which subjects are more significant than others with
respect to a role R :

e A subject s; is more significant than another sub-
ject so with respect to a role R (s; »g s2) iff the
subject s; grants the role R to s or 87 >g S3 >gr S2
for some subject s3.

The significantly precedent relation »g is acyclic. A
pair of subjects s, and sz are concurrent with respect to
arole R (s ||r s2) iff s1 and s2 are granted the role R
and neither s; =g sz nor sy >g s;. In Figure 1, an owner
subject so (owner(R)) of arole R is more significant than
a subject s; (Sp =g s1) since the owner sp grants the role
R to the subject s,. In addition, s; > s and s; =g
s3. Thus, sp >gr s1 =r s2 and s9 >gr s>. However, s; is
concurrent with s3 (s2 ||r s3) and s2 ||g 4.

— QI ant
C) :subject

:owner of role R.

Figure 1. Discretionary approach.

Let S(R) be a set of subjects which are granted a role
R. Subjects in the set S(R) are partially ordered in the
significantly precedent relation >g. Suppose the role R
includes a pair of access rights (o, op1) and (o, op2) where
a method op; conflicts with a method ops. A pair of
the subjects s; and sy are granted the role R and issue
methods op; and opy to the object o, respectively. In
our approach, if the subject s; is more significant than

the subject s; with respect to the role R (s1 >r s2),
the method op, issued by the subject s; is performed
before another method opy issued by s; on the object o
[Figure 2].

—) . grant ——: access

Figure 2. Significant precedency.

4 Significancy on Multiple Roles

We discuss which roles are more significant than other
roles in the system. Suppose a subject s, is granted a role
R, and a subject sy is granted another role Ry. Then, a
pair of the subjects s; and sz issue conflicting methods
op; and opy to an object o, respectively. We discuss which
method op; or ops to be performed on the object o before
the other method. It is true that op; should be performed
before op; if a job function shown by a role R; is more
significant than another role Ry in an enterprise.

A method op; is more significant than another
method op> on an object o (op; > ops) iff the state of the
object o is changed by the method op; but is not changed
by the method op;. Methods which change state of an
object are referred to as object methods. Object methods
are classified into two types : output and input ones. By
using an output type of method, data is derived from an
object while an input type of method brings data into
an object. Furthermore. there are class methods where
an object is created for a class and dropped. A pair of
methods create and drop of an object are more significant
than the other methods for manipulating the object.

Let us consider a pair of methods withdraw and
deposit on a bank object. Both the methods withdraw
and deposit are input types. Hence, the meth-
ods withdraw and deposit are significantly equivalent
(withdraw = deposit). In our life, a subject more care-
fully issues a method withdraw than a method deposit
because the account value in the bank object is decre-
mented by withdraw in real life. This example shows
that some methods are considered to be more signifi-
cant than other methods by an application. Here, a
method withdraw is referred to as more semantically
significant than another method deposit (withdraw =
deposit). A semantically significant relation >~ among
methods is defined on each object by an application. A
method op, is referred to as semantically significantly
equivalent with another method ops (op1 = op,) iff nei-
ther op; >> opz nor opy > op;1. op; »= opy iff opy >~
op2 or opy = opy.

[Definition] A method op; is more significant than
another method opz (op1 > op2) iff one of the following
conditions is satisfied:

1. op; is a class type and op; is an object type.
2. op; is an input type and ops is an output one.
3. op; and op, are same types and op; is semantically
more significant than ops (op1 > op2).
A method op, is significantly equivalent with an-
other method op2 (op1 = opz) iff neither op; > ops nor
op2 > op;. A method op; significantly dominates an-

other method opy (op1 > opz) iff opy > ops or op; =
op2.

Objects are classified into some security classes [2]. An
object 0; is more significant than another object 0, (0] >
02) if 01 is more secure than o, in an enterprise. A pair of
objects 0, and o, are significantly equivalent (0; = 02) if
neither 0; > 0z nor 03 < 01. An object 0; signi ficantly
donimates another object oz (01 > 02) iff 01 > 02 or 0;
= 09.

A role is a collection of access rights. Let (01.0p1)
and (02, 0p2) be access rights on a pair of objects 0; and
02. We discuss which one in the access rights (o1, op;)
and (02, 0p2) is more significant than the other. First,
methods op; and opy are supported by a same object
o1 (01 = 02). An access right (0;,0p;) is more signifi-
cant than (o01.0p2) ({o1,0p1) > (01.0p2)) if op1 = opa.
Next, a pair of methods op; and op, are supported by
different objects 0; and o3, respectively (0 # 02). An
access right (o1, op;) is more significant than another ac-
cess right (02.0p2) ({01, 0p1) > (02.0p2)) if 01 = 02 and
op1 > opz. Lastly, suppose that an object oy is more
significant than another object oz (01 > 02). An ac-
cess right (o1, op1) is more significant than another access
right (02, 0p2) ((01.0p1) > (02.0p2)) if 01 > 02.
[Definition] An access right (o1, 0p;) is more significant
than another access right (o2, 0p2) ({01.0p1) > (02, 0p2))
iff

e op; > opz if 01 = 02 or 07 = 03.

® 01 > 0.

A pair of access rights (o1,0p)) and (0s.0p2) are
signi ficantly equivalent ({o1,0p1) = (02.0ps)) iff nei-
ther (o1, 0p1) > (02.0p2) nor (01.0p1) < {(02,0p2). An
access right (01.0py) significantly dominates another
access right (03, 0p2) ((01.0p1) = (02, 0p2)) iff {01, 0p;) >
(02.0p2) or (01, 0p1) = (02, 0p2).

We discuss which role is more significant than another

role based on the significantly dominant relation > of
access rights.
[Definition] A role R, signi ficantly dominates another
role Ry (Ry = R,) if for cvery access right (02.0p2) in
Ra, there is at least one access right (01.0p1) in R; such
that (o1, op1) > (02, op2) and no {03, ops) in R such that
(03, 0p3) = (o1.0p1).

A role Ry is significantly equivalent with another role
R2 (Rl = Rz) if R] bt Rz and Rz > Rl. A role R[
is more significant than another role R, (R; > R») iff
Ry > Ry but R; # Ry. A pair of roles R; and R, are
comparable if Ry > R; or Ry = R,. Otherwise, R; and
R3 are uncomparable.

5 Serializability

Suppose a pair of transactions T; and T, are granted

roles R, and Rj, respectively. Each transaction is sub-
mitted by a subject and assigned with one of roles granted
to the subject. Let T be a set of transactions which are
being performed in a system. The transaction set T is
partially ordered in the significantly dominant relation >
of roles.
[Definition] A transaction Ty significantly dominates
another transaction T, (T} > T3) iff role(T}) > role(Ts)
or subject(Ty) =g subject(T) if role(Ty) = role(Tz) =
R

A transaction T is significantly equivalent with an-
other transaction T, (Ty = T3) if T} = Ty and Tp > Ti.

研究会temp
テキストボックス

Ty and T3 are independent iff neither Ty = T, nor Ty >
T;.

A schedule H is an execution sequence of methods
from transactions in the transaction set T. A transaction
Ty precedes another transaction T3 in the schedule H (T}
—py 1) iff a method op; from T} is performed before a
method op, from T which conflicts with op;. A schedule
H is serializable iff the precedent relation — g is acyclic
according to the traditional theory [1]. A schedule H is
shown in a partially ordered set (T, —p).

[Definition] A transaction T) significantly precedes
another transaction T3 in a schedule H of a transaction
set T (T] =>H T2) iff T1 — g Ty and TY > Tg.

Suppose a transaction Ty preccdes another transaction
T, in a schedule H. Here, if T} = T3. “T; —y Ty" is re-
ferred to as legal, i.e. T significantly precedes Tp (T3
=y T2). That is, conflicting transactions are performed
in the significantly precedent relation = g. On the other
hand, if Ty < Ty, “Ty —y 12" is illegal. A schedule H,
ie. (T,—p)islegal iff Ty -y T2 if Ty > T for every
pair of transactions Ty and T3 in T. In order to make a
schedule legal, methods from transactions are required to
be buffered until all the transactions are initiated. Here,
the throughput of the system is degraded since trans-
actions have to wait in the buffer. In order to increase
the throughput, only some number of transactions in T
which are initiated during some time units are scheduled.
A schedule H is partitioned into subschedules Hy, ..., H,
where each subschedule H;, = (T;,—»pg) (: = 1, n)
satisfies the following conditions:

1. T; N T; = ¢ for every pair of subschedules H; and
H]' andT1 U--- UTn =T.

2. Ty =y T is legal if Ty —py T, for every pair of
transactions 7y and T3 in T;.

3. For every pair of subschedules H; and H;, if T;; —p
T for some pair of transactions T, in H; and T},
in Hj, there are no transactions T;2 in H; and T}z in
Hj such that Tjy —g Ti.

/ /
\ : :
/
AN T;/ \TG 7
= : legal — :illegal

Figure 3. Schedule H.

Figure 3 shows a hasse diagram of a schedule H for a
transaction set T = {Ty. To. T3. Ty. T, Ts.}. Suppose
that Ty > To, T3 > 15, Ty > Ts, Ty > T, Ty > T,
and T > T3. Here, the schedule H is decomposed into
subschedules H; with Ty = {T1, T». T3} and H, with
Ty = {T4. Ts, Ts}. In the schedule Hy, methods from
the transactions T3, T3, and T3 are first performed in the
significantly dominant relation >, i.e. Ty =y 1> and T3
=y T,. Since Ty < Ty and T3 < Tg, the transactions
T, and Ty cannot be performed. After T5 commits, the
transactions in H; are performed.

6 Role-Ordering (RO) Scheduler

We discuss a role-ordering (RO) scheduler based on
the significancy of subjects and roles.
6.1 One-object model

First, we discuss a role-ordering (RO) scheduler for a
single-object which is manipulated by multiple transac-

tions. An object is stored in an object base (OB) of a
server. Multiple transactions on clients issue methods to
an object 0. An RO scheduler is composed of a receipt
queue RQ and auxiliary receipt queue ARQ. On receipt
of a method from a transaction, the method is performed
on the object o in the object base (OB). Methods from
multiple transactions are first stored in a receipt queue
RQ of the object o [Figure 4].

For a receipt queue @, there are following procedures:

1. enqueue(op, Q) : a method op is enqueued into the
queue Q.

2. op = dequeue(Q) : a method op is dequeued from
the queue Q.

3. op: = top(Q) : a method op is a top method in the
queue Q.

4. sort(Q) : all methods in the queue @ are sorted in
the significantly dominant relation > of transactions.

A variable E shows a set of methods being currently
performed on the object 0. A variable C shows a transac-
tion which is performed and which is dominated by every
transaction performed. Initially, C := T. Here, T and L
denote top and bottom transactions, respectively, where
T > T > L for every transaction T. There are following
procedures to perform a method op on the object o in the
object base :

1. conflict(op, E) : false is returned if E = ¢ or a
method op does not conflict with every method in
E, else true.

2. perform(op) : a method op is performed on the
object o.

transactions

O :method
Figure 4. RO scheduler.

Suppose a method op from a transaction T is delivered
to the object o. The method op is enqueued into the
receipt queue R(Q of the object 0. Suppose methods in
transactions Ty, ..., T;,, are performed. Here, C shows
a transaction T; where T; <X Tj for every j = 1, ..., m.
Then, suppose a method from 7,4 is issued. If Tpnyy =
C for every i = 1, ..., m, the method is enqueued into the
receipt queue RQ. However, if T, > C, the method
is enqueued into the auxiliary receipt queue ARQ. After
that, every method issued to the object o is enqueued
into ARQ. If all the methods in RQ are performed, all
methods in ARQ are moved to the receipt queue RQ.
That is. one subschedule is finished. Let Tr(op) show a
transaction which issues a method op. Then, methods
in the receipt queue RQ are sorted in the significantly
dominant relation >.

[Delivery of a method op of a transaction T
if T € Eor T < C {enqueue(op. RQ); sort(RQ);}
else {C := 1; enqueue(op. ARQ):}

Methods in the receipt queue RQ are performed on
the object as follows:

[Execution of methods)

1. op = top(RQ):

2. if op = NULL and E = ¢,
{C := T: Every method op in ARQ is moved
to RQ and sort(RQ); then goto 1: }
3. if conflict(op. E). return;
else{ /* op is compatible with every method being
performed */
op : = dequeue(RQ):
E:=E U {op};
if Tr(op) < C, C := Tr(op):
perform(op); }

Let op be a method on an object o, which is the top
in the receipt queuc RQ. If the method op is compatible
with every method being currently performed, the top
method op is dequeued from the receipt queue RQ and
then is performed on the object o in OB. Otherwise, no
method in the receipt queue RQ is dequeucd. Until some
method being performed completes, every method has to
wait in the receipt queue RQ.

If a method op completes. the following procedure is
performed :

[Completion of method op]

1. E:=E- {op};
2. Methods in the receipt queue RQ are performed
in the execution procedure presented here.

If a top method op; is kept waited in RQ, every other
method in RQ is required to be waited. Here, suppose
there is another method op, following the method op; in
the receipt queue RQ. If ops is compatible with op;. ops
can be performed by jumping ever op; in RQ.
[Definition] A method op is referred to as ready in a
receipt queue RQ iff op is compatible with every method
preceding op in RQ and with every method in E.

In the execution procedure, if the top method op =
top(RQ) cannot be performed. i.e. conflict(op, E) is
true, ready methods in R() are taken in the significantly
dominant relation > and performed. We introduce the
following procedures :

e ready(op, RQ, E) : true is returned if a method op
is ready in the receipt queue RQ clse false.

e op1: = next(op, RQ) : op; is a method in RQ which
directly follows an method op.

Let op be a top method in the receipt queue RQ. i.e.
op = top(RQ). If op conflicts with some method being
performed. i.e. conflict(op. E) is true, the following pro-
cedure is performed :
op : = next(op, RQ);
while(op exists) {

if ready(op. RQ, E). {
op is removed from RQ;
E:=E U {op}
if Tr(op) < C. C := Tr(op):
.perform(op):
break; }

else op : = next(op, RQ):

6.2 Distributed server model

In a distributed server model, there are multiple server
computers vy, Uy (m > 1) and multiple transactions
on multiple clients ¢; ¢, (n > 1). Each server com-
puter v; receives methods from multiple transactions on
clients ¢ ¢, while each transaction issues methods to
multiple servers.

There are local receipt queues RQ;y, ..., RQ:p in each
server v; (i = 1, ... , m). Transactions are initiated on a
client ¢, and issue methods to server computers. Methods
issued from transactions on a client ¢, to a server v; are
stored in each local receipt queue RQ;s (s =1, ..., n). We
assume a communication network supports every pair of
a server v; and a client ¢, with a reliable communication
channel.. i.c. a server v; receives every message from each
client cs in the sending order and with neither message
loss nor duplication.

oo = |
= RQ RQ., >< j
T u=] Mo

Figure 5. Schedulers.

Requests in local receipt queues RQ;y, ..., RQ;, are
moved to a global receipt queue RQ); in a server v; [Fig-
ure 5]. Here, requests in the global receipt queue RQ; arc
sorted in the significantly dominant relation >. Then, the
top method in RQ; is dequeued and then is performed if
no method conflicting with the top method is currently
being performed. Question is when the top method in
RQ; can be dequeued. Let us consider a pair of transac-
tions 7 and T3 as shown in Figure 5. The transaction
Ty issues a pair of methods op;; and op;2 to the servers
vy and vy, respectively. The transaction T issues a pair
of methods opz; and ops2 to the servers v; and vs, re-
spectively. Suppose a pair of the methods op;; and ops;
conflict in the server v, and a pair of the methods op;,
and ops: also conflict in the other server vy. Suppose a
method op is delayed and another method ops; is also
delayed due to congestions and faults. In the server v,
the method opy; is enqueued into the global receipt queue
RQ, from the local receipt queue RQp;, and then per-
formed. On the other hand, the method ops; is performed
in the server v, as well. Eventually, a pair of the delayed
methods opy; and op;2 arrive at the servers v; and vy,
respectively, and then are performed. Here, a pair of the
transactions 77 and 73 are not serializable.

The following conditions have to be satisfied for a col-
lection of global receipt queues RQ;, ..., RQn, for servers
U1, Um, respectively, to realize the scrializability of
multiple transactions :

[Role-based serializability (RBS) conditions]

1. Methods in every global receipt queue RQ; are
sorted in the significantly dominant relation > (i =
1, ..., m).

2. For a top method op; from a transaction T in each
global receipt queue RQ);. if there is a method op;
from the transaction T; in RQ; which the method
ops precedes and conflicts with op;, op, precedes op;
in every global receipt queue RQ; where op; and op;
are methods form. T; and T, respectively. and op,
and op; conflict with one another [Figure 6]A

The second RBS condition shows the traditional seri-
alizability in a distributed database system [4]. The first
condition means that every pair of conflicting methods
are performed in the significantly dominant relation >.

—89—

研究会temp
テキストボックス

In order to satisfy the RBS conditions, we take the
following approach :

1. Each client ¢, periodically sends a fence message k.
to every server v;.

2. In a server v;, if there is a fence message k, in every
local receipt queue RQ;,, methods preceding a fence
massage ks in RQ;, are moved to the global receipt
queue RQ);. Then, a fence message k. is dequeue
from RQ);;. Finally, a fence message k. is enqueued
into RQ,

3. Methods from the fence method or the top method
to the fence message just enqueued are sorted in the
significantly dominant relation >.

4. A top method in the global receipt queue RQ); is
performed according to the execution procedure.

RO,

Vs 4_
RO

v (4__

Figure 6. Confliction.

In the example of Figure 5, methods in the global re-
ceipt quenes RQ; and RQ; of servers vy and vs. respec-
tively, arc not sorted in the significantly dominant rela-
tion > until fence messages are received from two clients.
Since each communication channel between a client and
a server supports the reliable FIFO property, a fence
message is delivered after the request messages op;2 and
op22 in the server v; and wvp. Hence, after receiving all
the messages from the transactions T, and T3, the meth-
ods are sorted in the significantly dominant relation >.
Thus, every pair of conflicting methods are performed on
an object in the significantly dominant relation.

RO,

© :fence RQ, Q0@ +~— c.
‘. :fence (:)(:) (:) (;;;;;:::::
(A@A - C,

A e
OO@OAAOA©\C

RO..

cs

- C;

sort
Figure 7. Execution.

7 Evaluation

We evaluate the role ordering (RO) scheduler for a sin-
gle object in terms of computation time of each method
compared with the traditional two-phase locking (2PL)
protocol. In the evaluation, an object o supports ten
types of methods. We assume it takes same time units 7o
to perform every method. If multiple conflicting methods
are concurrently performed, some of the methods have to
wait. This means, it takes longer to perform a method.
The computation time 7 is time from when a method is
issued until when the method completes. The computa-
tion ratio is the ratio 79 / 7. A conflicting relation on the
methods is randomly defined so that each method aver-
agely conflicts with 10 % of the other methods. There
are five roles R;. Ra, R3, R4, and Rs. Each role includes
three access rights, which are randomly selected out of
ten possible access rights. There are three subjects so.
s1, and sz. The subject sp is an owner of the roles R;.

Ry, Rs. R4, and Rs. The subject sp grants each role to
the other subjects. That is. sp =g, s1, so =g, s2. and
so ||r, s2 for R; (i = 1. 2, 3, 4, 5). A transaction issues
randomly ten methods.

For cach configuration generated based on the random
number, the simulation is performed multiple times until
the average value of the computation ratio is saturated.
Figure 8 shows the computation ratio for the number of
transactions. 1.0 shows the maximum ratio. As shown
in Figure 8, the RO scheduler implies higher throughput
than the 2PL protocol. For example. the RO scheduler
implies six times and ten times higher throughput than
the 2PL protocol for 20 and 40 transactions, respectively.

RO scheduler —o—
b1 TI———

1 10 20 30 40 50
Number of transactions

Figure 8. Evaluation of one-object model.

8 Concluding Remarks

We discussed a role ordering (RO) scheduler based on
role concept in this paper. The role is a central concept
to design, implement, and operate information systems.
In this paper, multiple conflicting transactions are se-
rializable according to the significant order of roles. We
also discussed the role-ordering (RO) scheduler for single-
server and multi-server models and how to implement the
RO scheduler.

The role-ordering (RO) scheduler discussed here is su-
perior to the timestamp ordering (TO) scheduler from
the application’s point of view because a more signifi-
cant application can manipulate objects earlier than less
significant applications.

References

[1] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Con-
currency Control and Recovery in Database Systems.
Addison- Wesley , 1987.

[2] D. E. Denning and P. J. Denning. Cryptography and Data

Security. Addison-Wesley Publishing Company, 1982.

D. Ferraiolo and R. Kuhn. Role-Based Access Controls.

Proc. of 15th NIST-NCSC National Computer Security

Conf., pages 554-563, 1992.

J. Gray. Notes on Database Operating Systems. Lecture

Notes in Computer Science, (60):393-481, 1978.

[5] Object Management Group Inc. The Common Object
Request Broker : Architecture and Specification. Rev.
2.1, 1997.

[6] Oracle8i Concepts Vol. 1. 1999. Release 8.1.5.

7] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-Based Access Control Models. IEEE Com-
puter, Vol. 29(No. 2):38-47, 1996.

[8] Sybase SQL Server. http://www.sybase.com/.

[9] Z. Tari and S. W. Chan. A Role-Based Access Control for
Intranet Security. IEEE Internet Computing, Vol. 1:24-
34, 1997.

3

[4

