
Distributed Data Management Based on Extensible Hashing
in Grid Computing

Yasutaka Nishimura, Yuichi Ayusawa, Tomoya Enokido, and Makoto Takizawa
Dept. of Computers and Systems Engineering

Tokyo Denki University, Japan
{yasu, ayu, eno, taki}@takilab.k.dendai.ac.jp

Abstract
A huge volume of data are created, stored, and used in ubiquitous networks like stream data in sensor networks. We

discuss how to dynamically distribute and ef�ciently locate huge volume of these data in computers of a Grid environment.
We adopt a type of extensible hashing to distribute data. The index to locate data is tree-structured with sibling chain.
However, since every access is sent to the root node, the root is a performance bottleneck and a single point of failure.
In order to resolve performance bottleneck and improve the reliability, an access request is �rst issued to a leaf node
which is local or nearest to an application. Then, the request is forwarded up and them down to the destination node. We
evaluate the algorithm compared with traditional top-down searching one in terms of access time, computation overhead,
and number of messages.

グリッドコンピューティング環境における拡張ハッシングを用いた
分散データベースシステム

西村康孝 鮎沢祐一 榎戸智也 滝沢誠
東京電機大学理工学部情報システム工学科

グリッドコンピューティング環境における分散データベースシステムでは、膨大なデータが広範囲に分散して
いる。データの動的な分散配置方法として拡張ハッシングを用い、ノードを 2分木に配置する。2分木では、根
ノードを中心に上位ノードの障害により、システム全体の障害となってしまう。また、これらのノードに検索要求
が集中することによってアクセス時間が増大し、システム全体の性能に大きな影響を与えてしまう。本論文では、
単一障害点を解決するための最適なデータの分散配置方法、データへのアクセス時間を減少させるために葉ノー
ドから検索を開始する方法を提案し、アクセス時間、耐障害性についての評価も行う。

1. Introduction

In peer-to-peer overlay networks [10] and Grid com-
puting systems [6], huge number and various types of
computers are interconnected with various types of net-
works like the Internet. In addition, various types of com-
puters are interconnected with networks. The Grid com-
puting is de�ned as infrastructure for sharing coordinated
resources and solving problem in dynamic among a set of
individuals and/or institutions to achieve a shared goal [5].
In various types of applications, the Grid computing sys-
tems are now widely used [6].

In ubiquitous societies [2], huge volume of data like
stream data [7] is dynamically created though sensor net-
works [13]. Here, data is not only generated but also ac-
cessed in various areas. In this paper, we discuss how to
distribute and make an access to these data in the Grid.
A Grid computing system is composed of various types
of computers, ranging from high-performance and high-
reliable computers like database servers to less-reliable
computers like personal computers. Each computer does
not provide an above large volume of data storage. Differ-

ent computers provide different sizes and performance of
data storages. A collection of data is distributed to a large
number of computers, each of which is equipped with a
smaller data storage. A unit of data storage is referred to
as bucket. A bucket is realized in a computer. Records are
dynamically hashed to buckets in computers by using the
extensible hashing scheme [11]. The number of buckets
is dynamically changed so that buckets neither over�ow
nor under�ow. Using the index tree in main memory, the
complexity for accessing to buckets through the index tree
is kept in O(1). Since huge number of records are stored
in a large number of computers, the height of the index is
getting deeper. In addition, huge number of applications
make access to records through the index. The index tree
is searched from the root to a leaf, i.e. in the top-down
manner. The root node may be performance bottleneck
and single point of failure. In order to resolve the dif�cul-
ties, we newly adopt the hybrid searching algorithm. First,
an application makes an access to a leaf node, i.e. bucket
which is in a local computer or in a computer nearest to
the application. The leaf node is referred to as an initial
node of the request. If the record is not found, a request is

1

研究会temp
テキストボックス
－193－

研究会temp
テキストボックス
社団法人　情報処理学会　研究報告IPSJ SIG Technical Report

研究会temp
テキストボックス
2005－DPS－122（34）2005－CSEC－28（34） 2005／3／23

forwarded up to the parent node. Here, if the record can
be located through some subtree, the request is forwarded
down to the subtree. Otherwise, the request is further-
more forwarded up to the parent node. We evaluate the
hybrid searching algorithm compared with the traditional
top-down one in terms of best and average access time and
overhead of each node. Furthermore, if a bucket satisfying
an access request is found, a pointer to the bucket is stored
in the initial node. If a same access request is sent to the
initial node, the target node is found through the pointer
in the buffer.

Finally, we evaluate how many records each applica-
tion can locate in presence of index node fault.

In section 2, we overview the extensible hashing
scheme. In section 3, we discuss the modi�ed index tree
and the hybrid searching mechanism. In section 4, we
evaluate the hybrid searching mechanism.

2. Extensible Hashing Scheme

We take a type of dynamic hashing algorithm [4, 8, 9]
to distribute and locate records in buckets of computers.
The maximum number of records which can be stored in
a bucket B is the size of the bucket B denoted by ||B||.
A bucket B is a unit of data storage. The sizes of buckets
are not necessarily the same. Each bucket is realized in a
secondary storage of a computer. For example, a bucket
is one �le and another bucket is one database. A unit of
data is a record. A record r is composed of attribute val-
ues. A collection of records with same attributes is re-
ferred to as dataset. A scheme of a dataset is a collection
of attributes a0, · · · , am. A record r is a tuple of attribute
values <v1, · · · , vm> where vi is a value of an attribute
ai(i = 1, · · · ,m). The value vi in a record r is denoted by
r.Ai. |B| shows the number of records stored in a bucket
B. The utilization ratio of a bucket B is de�ned to be
|B| / ||B||. Suppose a record is to be stored in a bucketB.
Here, the bucket B is referred to as over�ow if |B| > ||B||.
If |B| ≤ c (≤ ||B||) for a constant c, the bucket under-
�ows.

First, one bucketB0 in a computerC0 is allocated [Fig-
ure1]. Every record generated is stored into the bucketB0.
In the meantime, the bucket B0 over�ows. Here, a new
bucket B1 is allocated in a computer C1. Then, records in
B0 are redistributed to a pair of the bucketsB0 andB1, i.e.
B0 is split into B0 and B1. There is a hash function h(x)
which gives a sequence of bits b1b2 · · · bl for a value x. A
key K is a subset of the attributes, K ⊆ {a1, · · · , am}.
For each record r, h(r.K) is calculated and a sequence of
bits b1b2 · · · bl is obtained. Here, if b1 = 0, the record
is stored in the bucket B0, else in the other bucket B1.
Thus, every record r is stored in either B0 or B1 by using
the hash function h. In the meantime, suppose the bucket
B1 over�ows. Here, a new bucket B11 is allocated in a
computer C11 and the bucket B1 is renamed with B10.
Records in the bucket B10 are rehashed to B10 and B11.
For every record r in B10, h(r.K) = b1b2 · · · bl. Here, if

the second bit b2 is 0, the record r is stored in B10, else
in B11. Each edge from a parent node to a child node is
labeled 0 or 1 as shown in Figure 1. A label label(N)
of a node N is a sequence of labels for the root to the
node N . For a root node r, label(r) = φ. For exam-
ple, label(B10) = 10, label(B11) = 11, and label(b) = 1
[Figure 1].

Let b show a sequence b of bits b1b2, · · · , bl. Here,
b[i] shows bi and b〈i] stands for a pre�x b1b2 · · · bi, b[i〉
indicates a post�x bibi+1 · · · bl−1 of the bit sequence b
(i = 0, · · · , l − 1). b[0〉 = φ. b〈i] = b and b[i〉 = b
if i ≥ l.

For a node N in the index tree, parent(N) denotes a
parent node of N . child(N, 0) and child(N, 1) show left
and right child nodes of N , respectively. For example,
parent(b) = a, child(b, 0) = B10, and child(b, 1) =
B11 in Figure 1. level(N) shows the level of a node N in
an index tree. level(r) is 0 for a root node r. For exam-
ple, level(d) = 0 and level(B10) = 2. In this paper, we
assume that the length l of sequence obtained by the hash
function h in larger than the maximum depth of the index
tree.

B0 overflows

0..... 1..... 0.....

10..... 11.....

0 1 0 1

0 1B0 B0 B1

B10 B11

B0
B1 overflows

d d

b

Figure 1. Extensible hashing.

In the paper [3], the index to locate buckets is realized
in a linear table. The size of table depends or the deepest
depth of the tree. In this paper, the index is realized in
a 2h-ary tree. For simplicity, the index is assumed to be
binary in this paper. Each node in the index tree is stored
in one computer. Suppose an application would like to
�nd a record whose key K is v. First, the application sends
an access request access(v) of the key value v to a root
node N . The following procedure TDsearch(0, v,N) is
executed in a top-down manner:

TDsearch(i, v,N) {
if label(N) = v〈i],

if N is a leaf node, {
N is searched;
if a record r satisfying the key v is found, return(r);
else return(NULL);

}
h := v[i+ 1];
return(TDsearch(i+ 1, v, child(N,h)));

}
Let us consider Figure 2. In the traditional index tree,

every access request access(011) is issued to the root

2

研究会temp
テキストボックス
－194－

node r. The access request sent to the child node a since
the �rst bit of the key 011 is 0. Then, the access request
is forwarded to the node c and �nally the leaf node buket
B3. Thus, every access request is initially is sent to the
root and then the request is forwarded down to the leaf
node in the traditional top-down search..

Suppose a pair of buckets B10 and B11 have a parent
index node N , i.e. N = parent(B10) = parent(B11).
Let σ be the size of a bucket. If |B10|+ |B11| < ασ(0 <
α ≤ 1), the buckets B10 and B11 are merged into B10.
Here, the parent node of B10 is a parent of N .

B0 B1 B2 B3 B4 B5 B6 B7

0

0

0

1

0 0 01 1 1 1

1

1

0

011...

r

a

b c e

d

f

Figure 2. Topdown search (TD).

3. Index in a Grid Computing System

3.1. Hybrid search

In the Grid environment, data is not only distributed
in a large number of computers but also accessed by a
large number of applications. Since every application �rst
makes an access to the root node in the index tree to locate
the bucket node as presented in the top-down search algo-
rithm TDsearch, the root node may be a performance bot-
tleneck. That is, at the higher layer a node is in the index
tree, the lager overheads the node implies. In addition, if
the root node is faulty due to the fault of the computer, no
data can be accessed. That is, the root node may be a sin-
gle point of failure. In order to overcome the dif�culties,
we propose a hybrid searching approach where every ap-
plication initially issues an access request to a leaf bucket
node, not the root. The hybrid searching (HB) algorithm is
shown as follows, where an access request with key value
v access(v) is issued to a node whose level is i,

HBsearch(i, v,N) {
if label(N) = v〈i], {
h := v[i+ 1];
return(TDsearch(i+ 1, v, child(N,h)));

} else return(HBsearch(i− 1, v, parent(N)));
}

An application �rst issues an access request access(v)
with key value v, to a bucket N in some computer C. The

node N is referred to as initial node of the access request
access(v). An application takes a local computer C of the
local computer has a bucket N , otherwise a computer C
with a bucket N which is nearest to the application. Here,
HBsearch(i, v,N) is performed where i is the level of the
node N , i = level(N)

In Figure 2, an access request with hash key value 011
access(011) is sent to a leaf bucket node, e.g. B1 where
an application exists. label(B1) = 001 as shown in Figure
3. Since there is no record whose key value is 011 and
v〈2](= 0) 6= label(2)(= 1). Here, the access request
access(011) is forwarded up to the parent node b where
label(b) = 00. The access request is forwarded up to
the parent node a via a node c. Then, the access request is
forwarded down to the leaf nodeB3. Records are searched
in the bucket B3.

B0 B1 B2 B3 B4 B5 B6 B7

0

0

0

1

0 0 01 1 1 1

1

1

0

011

r

a

b c e

d

f

Figure 3. Hybrid search (HB).

3.2. Hybrid search with sibling chain

Next, we consider an index tree which is composed of
same nodes as Figure 3 except that there is no root node,
as shown in Figure 4. A pair of sibling nodes of a same
parent are interconnected with a sibling link. sibling(N)
shows another sibling node of a node N . For example,
sibling(b) = c, sibling(f) = e, and sibling(B0) = B1.
For an access request access(v) issued to a nodeN where
level(N) = i, the index tree is searched in the following
procedure HBCsearch(i, v,N);

HBCsearch(i, v,N) {
if label(N) = v〈i],

return(TDsearch(i, v, N));
else if label(N)〈i− 1] = v〈i− 1],

return(TDsearch(i, v, sibling(N)));
else

return(HBCsearch(i− 1, v, parent(N)));
}

An access request access(010) is �rst is issued to the
initial leaf nodeB1 in Figure 4. Here, HBCsearch(3, 011,
B1) is performed. Then the access request access(011) is

3

研究会temp
テキストボックス
－195－

forwarded up to the parent node b in a same way as the HB
algorithm since label(B1) 6= v〈3]. In the HB algorithm,
the access request is further forwarded up to the parent
node a of the node b. Since label(b〉1] = v〈1] = 0, the re-
quest access(011) is forwarded down to the child node c.
In the HBC algorithm, the request access(011) is directly
forwarded to the sibling node c from the node b without
passing the parent node a as shown in Figure 4. Then, the
access request access(011) is sent to the target leaf node
B3.

B0 B1 B2 B3 B4 B5 B6 B7

a

b c

d

e f

0 1

0

0 1

0

0 00 1

1 1

1 1

100010

Figure 4. Hybrid search with chain (HBC).

We discuss the cost cost(v,N) which shows how many
nodes an access request access(v) passes to the target
node from a node N . For example, in Figure 3, an access
request access(011) is initially issued to the leaf node
B10. Then, the access request access(011) is issued to the
nodes b, a, c, and �nally to the target leaf node B1. Thus,
the access request access(011) passes over four nodes in
the HB algorithm. On the other hand, since three nodes
are passed in the HBC algorithm, costcost(011, B1) = 3.
The cost cost(v,N) in the HBC algorithm is shown as fol-
lows:

cost(v,N) {
for i such that label(N)〈i] = v〈i]
and label(N)[i+ 1] 6= v[i+ 1],

return(2(level(N)− (i+ 1)) + 1); }

cost(v,N1, N2) {
if N1 = N2, return(cost(v,N1));
else return(cost(v,N2) + 1); }

3.3. Hybrid algorithm with chain and link

In order to improve the response time in the HBC algo-
rithm, we take the following approach:

1. On receipt of an access request access(N) with
key value v, an initial node N forwards a pair
〈label(N),N 〉 of request v and its identi�er of N to
the parent node ofN in the index tree as explained in
the HB and HBC algorithms.

2. If the target leaf node N' is found, the target leaf node
N' sends a response 〈v,N ′〉with a target record to the
initial node N.

3. On receipt of the response 〈label(N ′), N ′〉, the re-
sponse 〈label(N ′), N ′〉 is stored in the buffer of the
initial node N.

Let R be a set of responses stored in the buffer. The
size of the buffer in each node is limited. Suppose a target
node N' is sent back the a response 〈label(N ′), N ′〉 of an
access request access(v) to the initial node N. If three is
space to store the response 〈label(N ′), N ′〉 is added to the
buffer, i.e. R := R ∪ {〈label(N ′), N ′〉}′. Otherwise, the
buffer over�ows. In this paper, a response which is least
recently used is discussed and then the respance 〈v,N ′〉 in
the stored in the buffer, by using the LRU buffer replace-
ment algorithm [12].

An access request access(v) is issued to a leaf node
N. Here, the following procedure HBCLsearch(i, v,N)
is performed where the node N is at level i in the index
tree:

HBCLsearch(i, v,N) {
1. A response 〈v′, N ′〉 whose Cost(v,N1) is the mini-

mal in R ∪ {〈label(N), N〉} is selected.
2. An access request access(v) is issued to the nodeN ′.

i.e. HBCLsearch(i, v,N) is executed where N' is at
level i if N 6= N ′.

3. If N ′ = N , HBCsearch(i, v,N) is executed.

}
Figure 4 shows the hybrid search with sibling chain

(HBC) algorithm, for the same bucket allocation as Fig-
ures 2 and 3. Suppose a bucket B4 is detected through the
initial nodeB1 as explained. Here, the link toB4 is stored
in the bucket B1. The link is identi�ed by the label of the
node B1, i.e. 100. If an access request 100 is issued to the
bucket B1, the access request is directly sent to the node
B4 through the link 100.

Next, suppose an access request access(110) is issued
to the initial bucket B1. Then are two ways to �nd the
bucket B6 whose label is 110. In one way, the request
is forwarded to the nodes b, a, d, f , and �nally B6. In
another way, the access request access(110) is issued to
the node B4 through the link 100. Then, the request
access(110) is forwarded to the nodes e, f , and lastly
the node B6. cost(110, B1) = 5, cost(110, B4) = 3.
Since cost(110, B1) > cost(110, B4) + 1, the access re-
quest access(110) is forwarded to the leaf node B4.

4. Evaluation

In the evaluation, we consider the following three mod-
els discussed in :

1. Top-down (TD) model.
2. Hybrid model without sibling chain (HB) model.
3. Hybrid model with sibling chain (HBC) model.

4

研究会temp
テキストボックス
－196－

In the top-down (TD) model, every access request is
�rst sent to the root node. Then, the request is forwarded
down to a child node. This is the traditional tree search
model, for example, which is used in B+tree [1]. In the
hybrid HB and HBC models, a request is �rst sent to a
leaf node. Then, the request is forwarded up to a parent
node and down to a child node. In the HBC model, a pair
of child nodes with a same parent node are interconnected
in a sibling chain as shown in Figure 4. Here, there is no
root node. On the other hand, in the HB model, the index
tree is the same as Figure 1, where the access request is
forwarded to the sibling node only via the parent node.

Each access request is randomly assigned with a key
value in the evaluation. In the HB and HBC models, each
access request is randomly issued to one leaf node. Then,
the request is forwarded to the target node according to the
hybrid search algorithm. On the other hand, every request
is �rst sent to the root node in the top-down (TD) model.
Then, the access request is forwarded down to the target
leaf node.

We evaluate the hybrid searching HB and HBC al-
gorithms compared with the traditional top-down (TD)
searching algorithm in terms of access time and overhead
of each index node. We make the following assumptions:

1. The size of each bucket is 128k [bytes].
2. The number of buckets is 128.
3. The index tree is binary and height-balanced, where

h is the height of the index tree.

First, suppose that an access request to �nd a target leaf
node is issued. We obtain access probability Pα(i) that a
request is issued to a node at each level i of the index
tree in the algorithm α (∈ {TD,HB,HBC}). In the TD
algorithm, every access request is issued to the root node,
i.e. the access probability PTD(0) = 1. At the second
level, the probability PTD(1) is 1/2. Thus, PTD(i) = 2−i

for each level i.
In the HB and HBC models, an access request is �rst

issued to a leaf node. Each node receives access requests
from the parent and the child nodes in the HB model. In
the HBC model, each node receives access requests from
the sibling node in addition to the parent and child nodes.
The access probabilities PHB(i) and PHBC(i) are given
for each level i as follows:

PHB(0) = 1/2

PHB(i) =
1
2i

h−i∏

k=1

2h − 2h−i−1

2h − b2h−2−ic +
1

2i+1
(0 < i < h)

PHB(h) = 2h−1 + 1/4h

PHBC(1) = 1/2

PHBC(i) =
1
2i

h−i∏

k=1

2h − 2h−i

2h − b2h−1−ic+ b21−h+ic

×
(

1 +
1

2h − 2h−i

)
+

1
2i

(1 < i < h)

PHBC(h) = 2h + 2/4h

The access probabilities PTD(i), PHB(i) and
PHBC(i) shows how many percentages of the total num-
ber of access requests are issued to each node at level i in
the index tree. The access probability indicates overhead
of each node to process an access request. Figure 5
shows the access probability ratios for the TD, HB, and
HBC algorithms. In the HB and HBC algorithms, the
overhead of the root node can be reduced. However, the
overhead of nodes at lower level are increased than the
TD algorithm.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

P
ro

ba
bi

lit
y

P
.

Levels of binary tree.

Top-down
Hybrid (HBC)

Hybrid (HB)

Figure 5. Ratio of request messages.

A node may be faulty. In the TD algorithm, if the root
node is faulty, all the nodes cannot be reached. However,
nodes are still able to be accessed in the HB and HBC al-
gorithms even if the root node is faulty. Figure 6 shows the
fault ratios of the TD, HB, and HBC algorithms for each
level in the index tree. In the TD algorithm, STD(0) = 1
means that all the nodes in the index tree cannot be ac-
cessed if the root node is faulty. In the HB algorithm, the
half of the nodes are reachable even if the root node is
faulty. Following the �gure, if a node in the index tree
is faulty, more number of nodes still accessible in the HB
and HBC algorithms. LetNSα(i) be the number of nodes
which can be accessed due to the fault of a node at level
i in an algorithm α. Sα(i) shows the ratio of NSα(i) to
the total number of nodes in the index tree. i.e. how many
nodes can be accessed in the index tree. Sα(i) is obtained
as follows:

STD(i) = 1− 2−i

SHB(0) = 1/2

SHB(i) =
4i+1 − 2i+3 + 5

4i+1
(0 < i < h)

5

研究会temp
テキストボックス
－197－

SHB(h) = 1− 2−h

SHBC(1) = 1/2

SHBC(i) =
4i + 4i−1 − 2i+1 + 1

4i
(1 < i < h)

SHBC(h) = 1− 2−h

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

R
at

io
 o

f s
ea

rc
ha

bl
e

no
de

s.

Levels of binary tree.

Top-down
Hybrid (HBC)

Hybrid (HB)

Figure 6. Ratio of searchable nodes.

5. Concluding Remarks

We discussed the extensible hashing scheme to dis-
tribute records in the Grid computing environment and the
newly proposed hybrid searching algorithm HB and HBC
to locate records distributed in the network. In addition,
we discuss another algorithm HBCL where the target in-
dex information obtained from each leaf node is buffered
in the leaf node. We evaluated the hybrid searching al-
gorithms compared with the traditional top-down (TD)
searching one in terms of performance and survivally.

References

[1] R. Bayer and E. McCreight. Organization and Mainte-
nance of Large Ordered Indexes. Acts Informatica, 1:173�
189, 1972.

[2] E. Einemann and M. Paradiso. Digital Cities and Urban
Life: a Framework for International Benchmarking. Proc.
of the Winter International Synposium on Information and
Communication Technologies (WISICT'04), pages 1�6,
2004.

[3] R. J. Enbody and H. C. Du. Dynamic Hashing Schemes.
ACM Computing Surveys, 20(2):85�113, 1988.

[4] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong.
Extendible Hashing - a Fast Access Method for Dynamic
Files. ACM Transactions on Database Systems (TODS),
4(3):315�344, 1979.

[5] I. Foster. What is the Grid? A Three Point Check-
list. GRIDToday, pages http://www�fp.mcs.anl.gov/ fos-
ter/Articles/WhatIsTheGrid.pdf, 2002.

[6] I. Foster and C. Kesselman. The Grid 2: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann, 2003.

[7] J. Han and M. Kamber. Data Mining: Concepts and Tech-
niques. Morgan Kaufmann, 2001.

[8] P.- 	A. Larson. Dynamic Hashing. BIT, 18(2):184�201,
1978.

[9] W. Litwin. Linear Hashing: A New Tool for File and Table
Addressing. Proc. 6th International Conf. on Very Large
Data Bases (VLDB), pages 212�223, 1980.

[10] R. Schollmeier. A De�nition of Peer-to-Peer Network-
ing for the Classi�cation of Peer-to-Peer Architectures and
Applications. Proc. of the First International Conf. on
Peer-to-Peer Computing (P2P`01), pages 101�102, 2001.

[11] O. Shalev and N. Shavit. Split-Ordered Lists: Lock-Free
Extensible Hash Tables. Proc. of the 22nd Annual Sympo-
sium on Principles of Distributed Computing, pages 102�
111, 2003.

[12] P. Silberschatz and A. W. Galvin. Operating System Con-
cepts (4th Edition). John Wiley & Sons.Inc., 2001.

[13] F. Zhao and L. J. Guibas. Wireless Sensor Networks: An
Information Processing Approach. Morgan Kaufmann,
2004.

6

研究会temp
テキストボックス
－198－

