
1959

Information Propagation on the ϕ Failure Detector

NAOHIRO HAYASHIBARA, † XAVIER DÉFAGO,††,††† MAKOTO TAKIZAWA†

and TAKUYA KATAYAMA††

It is widely recognized that distributed systems would greatly benefit from the availability of a generic
failure detection service. There are however several issues that must be addressed before such a service can
actually be implemented.

In this paper, we highlight the issue related to propagating information on failures in the ϕ failure detector
for large-scale systems. Traditionally, failure detection systems provide information on suspects to every
processes. However, it is not the efficient way in the large-scale system. We consider the notification system
that propagates information on suspicions with content-based filtering.

1. Introduction

The ability for a distributed system to detect the
failure of its processes is widely recognized as an
essential issue for fault-tolerant systems. In fact,
virtually any practical fault-tolerant distributed ap-
plication relies on a form of failure detection mech-
anism or another to react appropriately in the face of
failures. In such applications, failure detection can
be invoked either directly, or indirectly through the
use of a group membership service or other group
communication primitives (e.g., consensus, total or-
der broadcast).

Our objective is to implement and provide a
generic failure detection service for large-scale dis-
tributed systems. The idea of providing failure de-
tection as an independent service is not itself partic-
ularly new (e.g.,8),12),21),22)). However, several im-
portant points remain to be addressed before a truly
generic service can be proposed.

While, to address the problems on adapting net-
work condition and application requirements, the ϕ
failure detector has been proposed by Hayashibara
et. al17). It allows lots of quality-of-service (QoS)
requirements on failure detection from unlimited
number of processes without any additional perfor-
mance cost.

In this paper, we discuss on the way for propagat-
ing information of failures in the ϕ failure detector.
In this context, we have to consider which informa-
tion is really needed. It means that useless informa-
tion shouldn’t be sent by the propagation protocol.
We discuss on this topic using publish/subscribe
scheme. Information of a certain process’s failure
is needed by some specific processes. It means that

† Tokyo Denki University
†† Japan Advanced Institute of Science and Technology
††† Japan Science and Technology Agency

some others do not need this information. Thus, no-
tification of failure information is looks like some
form of publish/subscribe system.

The remainder of the paper is constructed as fol-
lows. In the section 2, we describe the target system
of the paper and some related works. In the sec-
tion 3, we explain traditional failure detectors and
its advanced topics.

2. System Model and Related Works

We represent a distributed system as a set of pro-
cesses {p1, p2, . . . , pn} which communicate only
by sending and receiving messages. We assume that
every pair of processes is connected by two unidi-
rectional quasi-reliable communication channels2).
A quasi-reliable channel is defined as a commu-
nication channel which guarantees (1) no message
loss, (2) no message corruption, and (3) no creation
of spurious messages. We consider that processes
may only fail by crashing, and that crashed pro-
cesses never recover.

We assume the system to be asynchronous in the
sense that there exist bounds neither on communi-
cation delays nor on process speed. For each com-
munication channel, we assume message delays to
be determined by some random variable whose pa-
rameters are unknown, independent of other com-
munication channels, and whose distribution is pos-
itively unbounded. We assume that the parameters
of the random variable can change over time, but
that they eventually become stable.

Formally, this system model is a little stronger
than the asynchronous model described by Fis-
cher et al.14) because we make some assumptions on
the probabilistic behavior of the system. However,
our model remains weaker than any of the partially
synchronous models defined by Dwork et al. 11),
because the fact that the distribution is positively
unbounded implies that no bound (known or un-

1

研究会temp
テキストボックス
社団法人　情報処理学会　研究報告
IPSJ SIG Technical Report

研究会temp
テキストボックス
2005－DPS－123（5）
　　2005／6／2

研究会temp
テキストボックス
－25－

研究会temp
テキストボックス



2 1959

known) can ever exist on communication delays.
The system model described in this section pro-

vides an adequate basis to study fault-tolerant group
communication protocols, in particular when the
timing behavior of the system is not guaranteed
(e.g., unlike end-to-end real-time communication
systems). Protocols developed on this basis tend to
be quite robust as they do not rely on any strong tim-
ing guarantees. Large-scale communication over
the Internet (including Grid systems) is for instance
particularly prone to changing network conditions.
Beside, heterogeneity, as well as unpredictable sys-
tem loads, imply that the speed of process is not
homogeneous and cannot be predicted accurately.

3. Failure Detection

In this section, we briefly introduce some of the
most important concepts related to failure detection
in distributed systems. Firstly, we introduce the
theoretical foundation of failure detection (§3.1).
Secondly, we present some of extended solutions
for various environments and large number of pro-
cesses that should be monitored (§3.2). Thirdly, we
discuss a second aspect of failure detection: the no-
tification of failures (§4). Distinguishing the detec-
tion of failures from the notification of their occur-
rence might be nearly useless in local networks, but
it is essential in large-scale systems.

3.1 Unreliable Failure Detectors
Chandra and Toueg8) define failure detectors as

a distributed oracle with well-defined properties. A
failure detector is a distributed entity which consists
of a set of failure detector modules, one attached to
each process. A failure detector module FDp , at-
tached to a process p, maintains a set of suspected
processes. Process p can query its failure detector
module at any time. Whenever some process q ap-
pears in the set maintained by FDp , we say that p
suspects q (that is, p suspects that q has crashed).
The failure detector is however unreliable in the
sense that its modules are allowed to make mistakes
(1) by erroneously suspecting some correct process
(wrong suspicion), or (2) by failing to suspect a pro-
cess that has actually crashed. A module can also
change its mind, for instance, by stopping to sus-
pect at time t + 1 some process that it suspected at
time t.

Several classes of failure detectors are defined ac-
cording to two properties which restrict the mis-
takes that the failure detector can make. For in-
stance, a failure detector of class ♦P must meet the
following properties of completeness and accuracy.

Property 1 (Strong completeness) Eventually ev-
ery process that crashes is permanently suspected

by every correct process.
Property 2 (Eventual strong accuracy) There

is a time after which correct processes are not sus-
pected by any correct process.

3.2 Adaptive Failure Detection
Towards a generic failure detection service, we

need to build a scalable and precise failure detec-
tion mechanism because failure detector modules
are parts of the service. However, lots of prob-
lems lay on this goal16) and no solution does not
succeeded completely so far. Now we focus on
the ability of adapting to network condition and re-
quirements of processes for failure detection.

Adaptive failure detection mechanisms are de-
signed to adapt dynamically to their environment
and, in particular, to adapt their behavior to chang-
ing network conditions. Failure detectors can also
be made to adapt to changing application behavior.

Adapting to network conditions
There exist several propositions of adaptive fail-

ure detection mechanisms (e.g.,3),9),13),20)). The pro-
posed solutions are based on a heartbeat strategy,
although nothing seems to preclude the use of other
strategies such as interrogation. The principal dif-
ference with the heartbeat strategy is that the time-
out is modified dynamically according to network
conditions.

Fetzer et al.13) proposed a protocol with a sim-
ple adaptation mechanism. The protocol adjusts the
timeout by using the maximum arrival interval of
heartbeat messages. The protocol assumes a par-
tially synchronous system model11), wherein an un-
known bound on message delays eventually exists.
The authors show that their algorithm belongs to the
class ♦P in this model.

Chen et al.9) propose a different approach based
on a probabilistic analysis of network traffic. The
protocol uses arrival times sampled in the recent
past to compute an estimation of the arrival time
of the next heartbeat. The timeout is set according
to this estimation and a safety margin, and recom-
puted for each interval. The safety margin is deter-
mined by application QoS requirements (e.g., upper
bound on detection time) and network characteris-
tics (e.g., network load).

Bertier et al.3) propose a different estimation
function, which combines Chen’s estimation with
another estimation of arrival times developed by Ja-
cobson18) for a different context. Bertier’s estima-
tion provides a shorter detection time than Chen’s,
but generates more wrong suspicions. The result-
ing failure detector is shown to belong to class ♦P
when executed in a partially synchronous system
model.

研究会temp
テキストボックス
－26－

研究会temp
テキストボックス



Information Propagation on the ϕ Failure Detector 3

Sotoma et al.20) propose the implementation of
an adaptive failure detector with CORBA. Their al-
gorithm computes a timeout, based on the average
time intervals of heartbeat messages, plus a ratio
between arrival intervals.

Adapting to application requirements
Let us illustrate with a simple example what we

describe as the adaptation to application require-
ments. Consider for instance two applications A in

and Adb , where Ain is an interactive application
and Adb is a heavyweight database application.
Consider also than both applications run simulta-
neously and rely on the same system-wide failure
detection service. With Ain , the actual crash of
a process must be detected quickly to prevent the
system from blocking. In contrast, Adb launches a
multi-terabytes file transfer whenever a process is
suspected, and hence requires accurate suspicions.
While Ain favors the reactivity of the failure detec-
tor, Adb requires high accuracy.

Some of the adaptive failure detectors mentioned
above3),9) can be tailored to match diverse applica-
tions requirements. This is done by using QoS re-
quirements to compute the parameters of the failure
detector. Then, the failure detectors adapt to chang-
ing network conditions in such a way that the QoS
requirements are met with high probability.

The drawback with these studies is that the pa-
rameters of the failure detectors are determined stat-
ically (i.e., at deployment time), and cannot eas-
ily be changed dynamically (i.e., at runtime). This
a problem for applications with requirements that
can change over time. For instance, an application
might have very stringent QoS requirements for a
certain period of time, and more relaxed one the
rest of the time. Unless the cost of enforcing the
stringent requirements is negligible, it is desirable
to adapt the parameters of the failure detector when
requirements are more relaxed.

A second (and more important) drawback of the
failure detectors mentioned above is that they are
designed with one single application in mind. This
means that, even if parameters can be adjusted to
match QoS requirements, they can only meet those
of one single application at a time. Arguably, QoS
requirements could be set as a least common factor
of all concurrent applications. However, this is un-
fortunately not that simple in practice, as doing only
results in tradeoffs that are impossible to address.

3.3 The ϕ Accrual Failure Detector
To address the problems mentioned above, we

have recently developed a novel approach to fail-
ure detectors, called the ϕ-failure detector17). ϕ-

failure detectors are based on the notion of Accrual
failure detectors10), which use no timeout and rec-
oncile all three types of adaptation. The key idea
is that a ϕ-failure detector provides information on
the degree of confidence, called suspicion level, that
a given process has actually crashed. More specifi-
cally, the failure detector associates a value ϕp to
every known process p. The value ϕp increases
dynamically according to a normalized scale and
represents the degree of confidence, at the time of
query, that process p has crashed.

The interactions between the applications and the
failure detector are hence different than in the tra-
ditional case. Indeed, distributed applications use
the value ϕp associated with a process p to de-
cide on a course of action. For instance, applica-
tions can set some finite threshold for ϕp and de-
cide to suspect p if ϕp crosses that threshold. Dif-
ferent applications can then set different thresholds
for the same process. For instance, some applica-
tions would set a low threshold to obtain prompt yet
inaccurate failure detection (i.e., with many wrong
suspicions), while applications with stronger re-
quirements would set a higher threshold and obtain
more accurate suspicions. Consequently, this ap-
proach can effectively adapt to application require-
ments because the threshold can be set on an per-
application basis (and also on a per-communication
channel basis within each application). Beside, the
scale ensures that the value set as a threshold is
meaningful for the application (it represents the de-
gree of confidence). In practice, we compute the
value ϕp based on the history of arrival intervals
between heartbeat messages (see17) for details).

4. Propagation of Failure Information

In practice, failure detectors play two fundamen-
tal roles: detecting when monitored processes fail,
and conveying this information to the monitoring
processes. In local networks, these two roles are
combined. This is not the case in large-scale dis-
tributed systems, where the two aspects should be
distinguished. Doing so allows to ensure that the
detection of failures remains a local mechanisms,
whereas the distribution of failure suspicions is
done by some notification mechanism.

We focus on the notification aspect of failure de-
tectors. As with most of notification services, the
information can be conveyed using two basic in-
teraction models, namely the push model and the
pull model. Figure 1 illustrates these two interac-
tion models with two entities A and B. Although
only the two endpoints are depicted here but, in the
general case, there could be any number of interme-

研究会temp
テキストボックス
－27－

研究会temp
テキストボックス



4 1959

information flow control flow

source destination

query

A B

(a) Pull model

source destination

A B

(b) Push model

Fig. 1 Interaction models for failure notification

diates on the path between A and B.
We consider the separation of failure detection

and its notification in large-scale systems. Typi-
cally, failure detector modules output information
on failures and exchange it by interaction with other
modules. For adding scalability, some approaches
were proposed such as hierarchical failure detec-
tors4),12),21), gossip-based failure detectors15),22) and
so on. They attempt to distribute information on
failures to all failure detector modules. However, no
one consider to propagate such information based
on its contents. This issue is one of the most im-
portant things to build the failure detection service
for large-scale systems. In such a system, it has
huge amount of nodes and processes. Existing fail-
ure detectors and its service will propagate informa-
tion, which a certain process has been crashed, to all
processes. It could make the bandwidth narrow and
prevent some messages issued by applications.

Specially, this problem is a serious for the ϕ-
failure detector. It can realize the adaptability for
network condition and application requirements by
many processes. Each failure detector module out-
puts suspicion level on a certain process. Suspicion
level means how much chance to get a correct sus-
picion if the failure detector module suspects the
process at certain time. It is also represented as a
positive real value. It means that this information
should be delivered as soon as possible by applica-
tion processes that are interested in it.

Thus, we now discuss on the content-based prop-
agation of information given by failure detector
modules. Propagating information based on re-
quirements were investigated in the context of mul-
ticasting and group communication. While it is also
studied as publish/subscribe interaction model.

In the viewpoint from application processes, nor-
mally they don’t need information about every pro-
cess. They are interested only in some specific
groups of processes. In this case, the notification
service has to provide information matched to their
interests. This kind of interaction looks like pub-
lish/subscribe model.

Event Manager

Publisher Publisher

Consumer

notify()

register()unregister()

ConsumerConsumer

Publisher Publisher

Consumer

information on Ainformation on B

register on A
register on B

unregister on A

information on A

information 
on B

notification

registration

API

Fig. 2 The publish/subscribe system

4.1 Publish/Subscribe Interaction Model
The publish/subscribe interaction model provides

subscribers with the ability to express their inter-
est in events. There exist lots of implementa-
tions of publish/subscribe systems1),5)∼7),19). Infor-
mation providers generate information and send it
to an event manager (or a broker) and consumers
subscribe to the information they want to receive
from that manager. This information is called
event and the act of delivering it is defined as the
term notification. An event manager has mainly
an API notify() for publishers and two APIs,
register() and unregister(), for con-
sumers (see Fig. 2). Consumers use register()
or unregister() to have or terminate informa-
tion according to their interest. To propagate infor-
mation, publishers can use notify() on the event
manager.

This model has been applied for mail magazine,
net news and so on. It can do that each consumer
can get only information that matches its registered
interest. In our case, publishers are replaced to fail-
ure detector modules and consumers are replaced to
application processes.

4.2 Notification Service based on Publish/Subscribe
Model

As we said, the propagation of information
should be separated from failure detection in large-
scale systems. The notification service plays a
role that it propagates information on suspicions
as events. Failure detector modules ask the noti-
fication service to propagate information on a cer-
tain process’s failure if it has suspected the process.
Therefore, the service should lay among failure de-
tectors.

The notification service also has the same APIs
as ones in the publish/subscribe system described
in the section 4.1. Failure detector modules prop-
agate information on suspicions using the API

研究会temp
テキストボックス
－28－

研究会temp
テキストボックス



Information Propagation on the ϕ Failure Detector 5

Event Manager

Failure
Detector
Module

Failure
Detector
Module

Application
Process

notify()

register()unregister()

Application
Process

Application
Process

Failure
Detector
Module

Failure
Detector
Module

Application
Process

suspect psuspect q

register on p
register on q

unregister on p

suspect p

suspect q

notification

registration

API

Fig. 3 The notification service with failure detector modules

notify() on the notification system. While, ap-
plication processes register process(es), which they
want to know, using register(). When appli-
cation processes want to terminate for delivering
events, they can use unregister(). The no-
tification system has a facility of filtering events.
Thus, it can provide required events to application
processes.

Fig. 3 shows the interaction among the notifica-
tion system, failure detector modules and applica-
tion processes.

4.3 Propagation in the ϕ Failure Detector
In the previous section, we described about the

notification system. In this section, we explain the
propagation of information on monitored processes
in the ϕ failure detector using the notification sys-
tem. As we said above, this failure detector has a
problem on propagating information of suspicions.
This is because suspicion level is changed accord-
ing to time. If the failure detector does not have any
interaction with a certain monitored process p, its
suspicion level ϕp would increase by elapsing time.
Therefore, suspicion levels of processes that are re-
quired should be delivered to application processes
as soon as possible. Otherwise this information will
be outdated.

Each failure detector module in the ϕ failure de-
tector is located in each node and monitors pro-
cesses in its local host. The module also moni-
tors other failure detector modules in the same sub-
net or some range of network. They provide sus-
picion levels of processes, that they are monitor-
ing, to the notification system periodically using
notify() (Fig. 3).

Application processes have a certain threshold
Φp for a process p. It means the requirement for
failure detection on p and it is used to decide the
suspicion on p compared with ϕp. They can use
register() to register the process IDs and their

thresholds. Then, the notification system delivers
event(s) if the suspicion level ϕp in the registered
process p exceeded its threshold Φp.

Thus, the notification service sends informa-
tion only to registered application processes with
content-based filtering. It means that useless infor-
mation is not sent. Moreover, the notification sys-
tem can send the suspicion level, which are desired
by some process, it notifies this information to the
process immediately.

5. Conclusion

In this paper, we described the relationship be-
tween failure detectors and the publish/subscribe
system. Specially, we proposed the way of prop-
agating information in the ϕ failure detector with
the publish/subscribe system. This approach can
deliver desired suspicion levels to appropriate pro-
cesses immediately. Moreover, it can reduce the
number of information sent by failure detector mod-
ules and the notification service. Because the noti-
fication service can provide information only to the
processes that require it.

In the future direction of our work is to customize
the existing publish/subscribe system for building
the notification service and define APIs more pre-
cisely.

Traditionally, failure detection systems provide
information on suspicions to every processes. In
this paper, we have shown a new approach to prop-
agate such information efficiently. This topic can
be discussed formally and practically as our future
work, as well.

References

1) G. Banavar, T. Chandra, B. Mukherjee, J. Nagara-
jarao, R. Strom, and D. Sturman. An efficient mul-
ticast protocol for content-based publish-subscribe
systems. In Proc. of ICDCS’99, 1999.

2) A. Basu, B. Charron-Bost, and S. Toueg. Solv-
ing problems in the presence of process crashes and
lossy links. Technical Report TR96-1609, Cornell
University, USA, September 1996.

3) M. Bertier, O. Marin, and P. Sens. Implementation
and performance evaluation of an adaptable failure
detector. In Proc. of the 15th Int’l Conf. on Depend-
able Systems and Networks (DSN’02), pages 354–
363, Washington, D.C., USA, June 2002.

4) M. Bertier, O. Marin, and P. Sens. Performance
analysis of a hierarchical failure detector. In Proc.
Intl. Conf. on Dependable Systems and Networks
(DNS’03), pages 635–644, San Francisco, CA, USA,
June 2003.

5) A. Carzaniga, D. Rosenblum, and A. Wolf. De-
sign and evaluation of a wide-area event notification

研究会temp
テキストボックス
－29－

研究会temp
テキストボックス



6 1959

service. ACM Trans. Comput. Syst., 19(3):332–383,
2001.

6) Miguel Castro, Peter Druschel, Anne-Marie Ker-
marrec, and Antony Rowstron. Scribe: A large-scale
and decentralized application-level multicast infras-
tructure. IEEE Journal on Selected Areas in Com-
munications, 20(8):100–110, 2002.

7) Raphaël Chand and Pascal Felber. Xnet: A re-
liable content-based publish/subscribe system. In
Proc. 23nd IEEE Int’l Symp. on Reliable Distributed
Systems (SRDS’04), pages 264–273, Florianópolis,
Brazil, October 2004.

8) T. D. Chandra and S. Toueg. Unreliable failure de-
tectors for reliable distributed systems. Journal of
the ACM, 43(2):225–267, 1996.

9) W.Chen, S.Toueg, and M.K. Aguilera. On the qual-
ity of service of failure detectors. IEEE Transactions
on Computers, 51(5):561–580, May 2002.

10) Xavier Défago, Péter Urbán, Naohiro Hayashibara,
and Takuya Katayama. Definition and specifica-
tion of accrual failure detectors. In Proc. Int’l Conf.
on Dependable Systems and Networks (DSN), Yoko-
hama, Japan, June 2005. To appear.

11) C.Dwork, N.Lynch, and L.Stockmeyer. Consensus
in the presence of partial synchrony. Journal of the
ACM, 35(2):288–323, April 1988.

12) P. Felber, X. Défago, R. Guerraoui, and P. Oser.
Failure detectors as first class objects. In Proc. 1st
IEEE Intl. Symp. on Distributed Objects and Appli-
cations (DOA’99), pages 132–141, Edinburgh, Scot-
land, September 1999.

13) C. Fetzer, M. Raynal, and F. Tronel. An adaptive
failure detection protocol. In Proc. 8th IEEE Pa-
cific Rim Symp. on Dependable Computing(PRDC-
8), pages 146–153, Seoul, Korea, December 2001.

14) M. J. Fischer, N. A. Lynch, and M. S. Paterson. Im-
possibility of distributed consensus with one faulty
process. Journal of the ACM, 32(2):374–382, 1985.

15) I. Gupta, T. D. Chandra, and G. S. Goldszmidt. On
scalable and efficient distributed failure detectors.
In Proc. 20th Annual ACM Symp. on Principles of
Distributed Computing (PODC-20), pages 170–179,
Newport, RI, USA, August 2001. ACM Press.

16) N. Hayashibara, A. Cherif, and T. Katayama.
Failure detectors for large-scale distributed sys-
tems. In Proc. 21st IEEE Symp. on Reliable Dis-
tributed Systems (SRDS-21), Intl. Workshop on Self-
Repairing and Self-Configurable Distributed Sys-
tems (RCDS’2002), pages 404–409, Osaka, Japan,
October 2002.

17) Naohiro Hayashibara, Xavier Défago, Rami Yared,
and Takuya Katayama. The ϕ accrual failure de-
tector. In Proc. 23nd IEEE Int’l Symp. on Reliable
Distributed Systems (SRDS’04), pages 66–78, Flo-
rianópolis, Brazil, October 2004.

18) V. Jacobson. Congestion avoidance and control. In
Proc. of ACM SIGCOMM’88, Stanford, CA, USA,

August 1988.
19) Robbert Van Renesse, Kenneth P. Birman, and

Werner Vogels. Astrolabe: A robust and scalable
technology for distributed system monitoring, man-
agement, and data mining. ACM Trans. Comput.
Syst., 21(2):164–206, 2003.

20) I. Sotoma and E. Roberto M. Madeira. Adaptation
- algorithms to adaptive fault monitoring and their
implementation on CORBA. In Proc. of the Third
Int’l Symp. on Distributed-Objects and Applications
(DOA’01), pages 219–228, Rome, Italy, September
2001.

21) P.Stelling, I.Foster, C.Kesselman, C.Lee, and G.von
Laszewski. A fault detection service for wide area
distributed computations. In Proc. 7th IEEE Symp.
on High Performance Distributed Computing, pages
268–278, July 1998.

22) R. van Renesse, Y. Minsky, and M. Hayden. A
gossip-style failure detection service. In N. Davies,
K. Raymond, and J. Seitz, editors, Middleware’98,
pages 55–70, The Lake District, UK, September
1998.

研究会temp
テキストボックス
－30－

研究会temp
テキストボックス




