HEBEA HROAEES
IPSJ SIG Technical Report

WS

2006 —DPS—1217
2006766

Standalone Overlay Reconfiguration Algorithm for Unstructured Peer-to-Peer
Networks

Naohiro Hayashibara

Makoto Takizawa

Department of Computers and Systems Engineering,
School of Science and Engineering,
Tokyo Denki University (TDU)
Ishizaka, Hatoyama, Saitama 350-0394, Japan
E-mail: {haya,taki}etakilab.k.dendai.ac.jp

Abstract

Recent years, peer-to-peer (P2P) overlay networks attract great interests because of its scalability and capability to
share resources. However, unstructured P2P overlay networks (e.g., Gnutella) can cluster links. In such a situation,
the performance of applications, such as flooding search, running on the network can be reduced because of the
clustering. In the view point of reliability of the network, there exist some vulnerable points (i.e., hub peers) on

crashing peers. It leads network partitions.

In this paper, we propose an algorithm of self-reconstructing unstructured peer-to-peer overlays into the desired
topology with some constant degree D or D + 1 in each peer. This algorithm does not require additional ser-
vices (i.e., membership protocols, etc.). Moreover it does not divide the given overlay network during its execu-

tion.

1 Introduction

The development of peer-to-peer applications is one
of the main stream in the area of networking. The
growth of it is getting faster with the spreading of high
speed network infrastructure. This movement moti-
vate interest in the notion of overlay network separated
from physical one.

On such a network, processes can connect to an-
other process as they want without considering the
physical topology and the routing information. Thus,
applications can realize the robustness to node and link
failures. Scalability is also one of the advantages of
peer-to-peer overlay networks since there is no central
control.

However, links sometimes cluster on one side of
the network. It makes some hubs which mean that
there exist performance bottleneck even in this type
of network. Therefore it would reduce the perfor-
mance of algorithms for overlay networks (e.g., flood-
ing search).

There are several approaches [3-7] that constitute a
desired form of overlay topology from arbitrary state.
However they need some additional services such as
group membership, address lookup, etc. These ser-
vices help to modify the overlay structure though they
cause overhead and make the algorithm complex.

In this paper, we propose an algorithm that each
peer autonomously constructs the topology with the
desired degree D or D + 1 from arbitrary initial state.
More precisely, the resulting topology is shown as an
undirected connected graph G such that the difference
between the maximum degree and the minimum de-
gree is at most one. The proposed algorithm guaran-
tees that it does not isolate the whole system during
its execution. We call the graph with such a property
quasi-regular graph. Moreover, this algorithm does
not need any other service.

The topology modified by the proposed algorithm
can keep connectivity after random failures on peers
or links. It also have some advantages for boosting
distributed algorithms, for example, search algorithms
based on flooding such as Gnutella, CBF [8], etc. Sup-
pose the large tree structure (or star structure), it might

an

take many hops to reach the leaf node that has the tar-
get object (e.g., files, multimedia contents) from an-
other leaf node. Therefore, flooding search algorithms
spend many TTLs in this case.

2 System Model

Distributed system consists of a set of peers II =
{p1,p2, ..., p;} which communicate only by sending
and receiving messages. We assume that every pair of
peers is connected by two unidirectional guasi-reliable
channel [1], which holds the following conditions as
the channel condition in the system.

o No Creation: If a process g receives a message m
from process p, then p sends m to q.

e No Duplication: ¢ receives no more than one

message m from p.

o No Loss: If p and ¢ are correct and p sends m to
g, q eventually receiving m.

Quasi-reliable channels can be implemented over un-
reliable channels, using error detecting or correcting
codes, sequence numbers and retransmission in cases
of message loss. - The TCP protocol is a good approxi-
mation to quasi-reliable channels. Thus, quasi-reliable
channels ensure that messages are not lost in transit.
We use

We consider that peers can only fail by crashing,
and that crashed peers never recover. Every peer has a
local failure detector that eventually detects all crashed
peers (e.g., oP defined in [2]).

2.1 Problem Description

The topology of the system is represented as a undi-
rected graph G = (P, L) consisting of a set of peers
P and a set of links L C P x P. In the graph theory,
peers and links are simply replaced into vertexes and
edges, respectively.

We assume each peer is assigned a unique identi-
fier (e.g., IP address + port number). Since the pro-
posed algorithm is fully decentralize, each peer exe-
cutes independently. Thus every peer involved in the
algorithm has the following restrictions: (i) each peer
only knows its neighbors which are directly connected,
(ii) peers can communicate only to their neighbors by
message passing. Since the algorithm does not rely on
membership protocols, the assumption is much rigor

than other related works introduced above. This as-
sumption means that it is impossible to connect again
two or more sets of peers partitioned while the con-
struction of overlay links is modified. Our approach
has to take network partitions caused by modifying the
overlay structure into consideration.

Links of the given topology is initially connected
among peers arbitrary (i.e., unstructured overlay net-
work) without no redundant link in any pair of peers.
This assumption is not so strong because it is not dif-
ficult to remove such links. The algorithm aims to re-
construct the initial topology into the desired one that
holds the following properties.

Definition 1 (Fairness). In the given graph G, the dif-
ference of A(G) and 6(G) is at most one. Let A(Q) be
the maximum degree and §(Q) be the minimum degree
among all peers in G.

Definition 2 (Connectivity). Any pair of peers in the
graph G has at least one path (i.e., connected graph).

Definition 3 (Non-redundancy). Any pair of peers
has at most one link.

In this paper, the desired degree D is given as a pa-
rameter. Bach peer could be converge its degree into
D or D + 1 by connecting and disconnecting links.

The algorithm allows to join and leave peers during
its execution. However, we assume time after which
no such operation is occurred until the properties de-
scribed above are satisfied, otherwise, the topology
would gradually converge but the algorithm can not
guarantee to hold Fairness property.

Although join/leave operations are often discussed
with overlay formation algorithms, we do not discuss
these operations in this paper. Because, we consider
that the new topology is given and the algorithm starts
again from the topology when such operations were
occurred. Normally, these operations require a look-up
service for the address of the peer or a partial view of
the group membership. However, the algorithm does
not require such services. Thus, we should discuss on
it separated from join/leave operations though we as-
sume them developed in the context of group commu-
nication protocols.

3 Reconfiguration Algorithm

In this section, we describe the detail of the pro-
posed algorithm for reconfiguration of unstructured

overlays. The algorithm constitutes balanced topology
from given arbitrary initial one. Any peer ¢ maintains a
set of one hop neighborhoods (i.e., directly connected
ones) IV;. Since the given initial topology must be a
connected graph, N; must riot bé empty (IV; # 0).

Moreover, this algorithm does not rely on additional
protocols such as membership management protocols
and look-up services for peer IDs. Every peer only
knows its neighbors on the initial topology at the be-
ginning. So, peers can only communicate with peer
4 € N;. Then, each peer requires its neighbors to have
candidates for adding and removing links.

Thus, changing links would be done locally. It
means that the resulting structure would not insure the
property of the initial one. For example, if the initial
overlay topology coincide with the physical structure,
the overlay topology reconstructed by the algorithm
could be close to the physical one.

Every peer executes the same procedure indepen-
dently. The procedure contains two operations: (i) the
connect procedure, which establishes a link, is called
by peer ¢ if the current degree of ¢ is |[IN;| < D (ii) the
disconnect procedure which removes a link of peer ¢
if the current degree of ¢ is |N;| > D.

3.1 Connecting links

First, each peer checks its current degree (i.e., the
number of neighbors) and then it calls the procedure
for connecting links if the degree is less than desired
degree D. Now we consider three peers: any peer ¢
that wants to , one hop neighbor j of 5 (i.e., j € N),
two hops neighbor & of ¢ (ie., k € N;). Let dj- be a
local variable that stores the degree of ¢ at j. We also
define the following message types that are used for
connecting links.

o GATHER_CANDIDATES: a message to all
neighborhoods for having their neighbors

o PROPOSE_CANDIDATES: a response to
GATHER_CANDIDATES including own set of
neighbors

o CONNECT_REQUEST: a request message for
connecting a link

o CONNECT ACK: an acknowledgement of
CONNECT REQUEST

o UPDATEDEGREE: a message to notify all
neighbors own degree that has been updated

Algorithm 1 shows the procedures for connecting
a link. Suppose three peers ¢, j, k: peer ¢ wants to
connect a link, j is a neighbor of ¢ and k is a neighbor
of j. First, £ collects sets of neighbors IN; of each ¢’s
neighbor j, then it makes a set of candidates C'and; for
making a link (line 2-6). In the connection procedure,
Cand; is constructed by the following way.

Cand; = (U N)NN;
JEN;

Note that 4 can only communicate with its neighbors
and connect a link to a two-hop neighboring peer of
i. Thus, any peer k € Cand; must be also a two-hop
neighbor of <.

If Cand; is not an empty set, ¢ selects a peer k with
minimum degree among peers in Cand; and sends it
a CONNECT REQUEST message (line 7 and 8). The
way of selecting an eligible link is one of the impor-
tant factors to constitute the desired topology. There
are some possibilities for selecting such a link and the
corresponding peer, such as taking account of trans-
mission delay, geometrical distance, etc. For instance,
if you focus on the transmission time, i has to select a
link of the peer that have low transmission delay. Al-
though we choose the way that each peer selects a peer
that have the minimum degree among its neighbors in
order to make the algorithm simple, it is capable to
take such factors into account.

We assume that k accepts any connection request
in this algorithm if it is alive. Thus, & replies CON-
NECT_ACK to ¢ and adds ¢ into N, when k received
CONNECT _REQUEST message (line 15-17). Then,
1 adds k into IV; and sends UPDATE_DEGREE mes-
sages with ¢'s degree |N;| to all neighbors (line 9-
12). Finally, each peer in N; updates i’s degree which
is the local value of the peer after receiving a UP-
DATE DEGREE message (line 18 and 19).

We also show an example of the interaction in the
link connection procedure in Fig. ?2?. Now, we focus
on the peer pp with the given topology as shown in
the figure. In this topology, m has two neighboring
peers, py and p3 (i.e., Np, = {p1,p2}). Thus, py sends
GATHER_CANDIDATES messages to p; and pg and
then gets Candp, including four candidates, p3, ps, ps,
P8, to connect a link.

In Algorithm 1, pp would select the peer which has
the minimum degree among candidates. If still have
several choices after filtering with the minimum de-
gree, po has to select one of them in another way such

as the minimum ID number, similarity of IP address,
hop count, etc. We now consider p selects the peer
which has the minimum ID number, thus p3 is se-
lected as the destination of new link. Therefore, 1
sends a CONNECT_REQUEST message to p3. After
receiving the response of ps, po adds ps into Np, and
sends UPDATE_DEGREE messages with its degree to
all peers in Ny, . Peer p1, po, p3 update their local vari-
able df?, db3, dbS respectively.

Peer po periodically check the status of peer p3
through the local failure detector when g makes the
link to ps. If po notifies that ps has crashed during the
procedure, p3 is removed from Candp, and then py
continues the procedure from line 7.

3.2 Disconnecting links

Peers must reduce their degree by disconnecting
their links if their degree is more than D + 2. For
removing links, each peer must consider to keep con-
nectivity in whole structure. Therefore, it has to select
the eligible link which is not a bridge. In this task,
each peer also considers that its degree is not less than
D.

The procedure for disconnecting links shown in
Algo. 2 uses the following message types together with
ones defined in Sect. 3.1.

¢ DISCONN_REQUEST: a request message for
disconnecting a link

o REPLACE REQUEST: a request message for
replacing a link

e DISCONNACK: a positive acknowledge-
ment of DISCONNREQUEST or RE-
PLACEREQUEST

e DISCONNNACK: a negative acknowledge-
ment of DISCONN_REQUEST

¢ DISCONN_CONFIRM: a confirmation message
for disconnecting the link that is going to re-
moved

Peer ¢ starts the disconnection procedure by exe-
cuting the exactly same procedure (line 2-4) as the
connection procedure (line 2-4) shown above. Be-
cause 4 also requires information on two-hop neighbor-
hoods to have a set of eligible links and corresponding
peers (i.e., Cand;) that can be removed. In order to

Algorithm 1 Procedure for connecting a link
Initialization:
: Cand; — {0};
Link connection procedure at peer z:
2: for all j such that § € N; do
3: send GATHER_CANDIDATES msg. to j;
4: upon receive PROPOSE_CANDIDATES msg.
containing N from j do
5: Cand; — Cand; U (N; N Cand;); {avoid
to add the same peer redundantly}
6. Cand; — Cand; N N;
connected ones}
. if Cand; # {0} then
send CONNECT.REQUEST msg. to k where
k € Cand; A k = min(Cand;);
9: upon receive CONNECT_ACK from & do
10: N; — N;U{k}; {add k into N;}
11: for all j such that j € N; do
12: send UPDATE_DEGREE with |N;] to 7;
Message handling at recipient 4:
13: upon receive GATHER_CANDIDATES msg.
from j do
14: send PROPOSE_CANDIDATES msg. with N;
to j;
15: upon receive CONNECT_REQUEST msg. from
jdo
16: N; — N;u{j} -
17 send CONNECT_ACK msg. to j;
18: upon receive UPDATE DEGREE msg. with |Nj|
from j do
19 dl —|Nj;

{remove already

o =

{update d at peer i}

make Cand;, ¢ must avoid to select the bridges that
can occur partitions by removing themselves. How-
ever, it is difficult to find such links, because each peer
can only have the local view of two-hop distance. We
consider this fact from the opposite side, that is, % con-
structs Cand; in the following way.

Cand; = | J (Ni N Ny)
JEN;

We take an intersection of N; and sets of neighbors of
every peer j in Nj to lead Cand;. It means that el-
ements of Cand; does not have a bridge to . Thus,
one of them and its link can be removed without net-
work partitioning. Line 6 in the disconnection proce-
dure makes Cand; in this way.

If a peer ¢ has Cand; = 0, it tries to replace one of
its links. In this case, 7 sends a REPLACE_REQUEST
message to its neighborhood j € N,. j makes a link
with one of the neighbors of % (i.e., N;) and then sends
a DISCONN_ACK message to 7. Upon receiving the
DISCONN_ACK message, ¢ can remove the link (i,j)
and reduce its degree.

3.3 Properties of the algorithm

We now discuss on the properties of the algorithm.

Connectivity We show that the algorithm guarantee
that any pair of peers has at least one path. On the
other words, any peer is never separated from others
in the overlay network.

To prove the fact, first, we show that any pair of
peers can not be partition away by removing links in
the algorithm.

Lemma 1 (Local connectivity). If there exist a link
(a,b) between peer a and peer b, both peers can not
be reachable.

Proof. For adding a link, each peer a finds a candidate
b that have the link to the peer ¢ where ¢ € N,. Thus,
after the connection procedure, b has two paths to a
reaching within two hops, and a is reachable to b if
at most one link of b is removed. When a removes
the link (a,b) and b is not reachable from a without
(a,b), b makes a link to a certain peer d in N, before
removing (a,b). Therefore, it is guarantee that b has
some neighboring peer z where 2 € N, whenever a
removes the link (a,b). It means that connectivity of

Algorithm 2 Procedures for disconnecting and replac-
ing links
Initialization:
1: Cand; — {0};
Link disconnection procedure at peer .
2: for all j such that j € N; do
3: send GATHER_CANDIDATES msg. to j;
4: upon receive PROPOSE_CANDIDATES msg.
containing N; from j do
if N; N\ N; # {0} then
Cand; — Cand; U (N; N Nj);
. if Cand; = 0 V Vk € Cand;.(df < D) then
send REPLACE REQUEST msg. to ! € Nj;
else
10: send DISCONN_REQUEST msg. to k where
k € Cand; Adf > D;
11: upon receive DISCONN_ACK from & do
122 N; — N;n{k}
13: send DISCONN_CONFIRM msg. to k;
14: upon receive DISCONN_NACK from k£ do
15: send REPLACE REQUEST msg. to l € Nj;
16: for all 7 such that j € N; do
7. send UPDATE_DEGREE msg. with |V;] to j;
Message handling at recipient ¢
18: upon receive DISCONN_REQUEST msg. from j
do
19: if |N;| > D then
20: send DISCONN_ACK msg. to 3;
21: else
22: send DISCONN_NACK msg. to j;
23: upon receive DISCONN_CONFIRM msg. from j
do
4. N;— N;n{G} {remove j from N;}
25: upon receive REPLACE_REQUEST msg. from j
do
26: Cand; — Nj;
27: send CONNECT _REQUEST msg. to & where
k € Cand; A k = min(Cand,);
28: upon receive CONNECT_ACK msg. from k do
29: N; — N;U{k} '
30: for all l such that ! € N; do ,
31 send UPDATE DEGREE msg. with |Nj| to
5
32: send DISCONN_ACK msg. to j; {Note that j
is a sender of REPLACE_REQUEST msg.}

© o aw

—

the overléy network can not be lost in the disconnect
procedure. O

Lemma 2 (Inter-subnet connectivity). Suppose two
sub-networks A and B in the overlay network. They
are connected with the link (a,b) where a € A and
b € B. A and B always keep connected. :

Proof. If A and B are connected by the link (a,b),
both sub networks are never separated by any proce-
dure in the algorithm. Because the local connectiv-
ity shows that a is reachable to b even if (a,b) is re-
moved.

Theorem 3 (Global connectivity). Neither any peer
nor any sub-network in the overlay network are par-
titioned away in the algonthm if the overlay is con-
nected.

Proof. According to Lemma 1 and Lemma 2, this the-
orem can be proven. O

Non-redundancy It is obvious that the proposed al-
gorithms (Algo. 1 and Algo 2) never make redundant
links.

4 Conclusion

In this paper, we presented an algorithm which
transforms an unstructured overlay network into the
structured one with constant degree in each node. This
algorithm does not require any other service. Thus, it
has to consider network partition caused by operations
of modifying overlay structure. We have proven that
network partition is never happened in the proposed
algorithm. We’ll make an experiment to measure con-
vergence time of our algorithm. '

References

[1] A. Basu, B. Charron-Bost, and S. Toueg. Solving
problems in the presence of process crashes and lossy
links. Technical Report TR96-1609, Comnell Univer-
sity, USA, Sept. 1996.

[2] T. D. Chandra and S. Toueg. Unreliable failure de-
tectors for reliable distributed systems. Journal of the
ACM, 43(2):225-267, 1996.

[3] L. Massoulié, A. M. Kermarrec, and A. J. Ganesh.
Network awareness and failure resilience in self-
organising overlay networks. In Proc. IEEE Int’l Symp.
on Reliable Distributed Systems (SRDS’03), pages 47—
55, Florence, Italy, Oct. 2003.

[4] R. Melamed and 1. Keidar. Araneola: A scalable reli-
able multicast system for dynamic environments. In
Proc. IEEE Int’l Symp. on Network Computing and
Applications (NCA’(Q4), pages 5-14, Cambridge, MA,
USA, aug 2004.

[5] K. Shen. ‘Structure management for scalable over-
lay service construction. In Proc. First Symp.
on Networked Systems Design and Implementations
(NSDI'04), San Francisco, California, USA, March
2004.

[6] A. Stavrou, D. Rubenstein, and S. Sahu. A lightweight,
robust p2p system to handle flash crowds. IEEE Jour-
nal on Selected Areas in Communications, 22(1):6-17,
2004.

[71 S. Voulgaris, D. Gavidia, and M. van Steen Cyclon:
Inexpensive membership management for unstructured
p2p overlays. Journal of Network and Systems Man-
agement, 13(2):1143-1152, 2005.

[8] K. Watanabe, N. Hayashibara, and M. Takizawa. CBF:
Look-up protocol for distributed multimedia objects in
peer-to-peer overlay networks. Journal of Interconnec-
tion Networks, 6(3):323-344, 2005.

