FEFEN SR
IPSJ SIG Technical Report

W

2007—ARC—171
2007—EMB— 3
200771723

Split & =1 — @412 & B = — R KB

Iver STUBDAL Arda KARADUMAN Hi¥EE

PR SE

BERERBICEE T FE T223-8522 #IET LK A & 3-14-1

E-mail:

HHEL ma—@fid, BHRARETak vy SO us T ha— KA ADOEMRETH D,
B L BEHROMERZBIEL 2S5 AROBEKEFTORBED 2 e & EITT 5 Split = 2 —MSDREL{To 72,

snail@am.ics.keio.ac.jp

=

Z ® Split = —&4 ik, MediaBench DWW 2D T 7Y r— a3 ZBWT, 14~15%0Da— NEXHIEFTEET
botr, Flhxa—meEYdR— b LE7utybORBETICHIED, 2070 b4 T L LT TR
a—ME B ETTHHEE MIPSR3000 ¥ A 7O 7wy IKEE UL, RELEOIXT v 7 F AP ORI ET
OHBFIEETEEE, bo b bEANART 2 —ARTHEN, FEHOEMTS206u’IZE EEVENTHH T &

Bbhrol,

F—U— F . za—@id, o— NER. AR

Code Compression with Split Echo Instructions
Iver STUBDAL Arda KARADUMAN Yasuki TANABE Hideharu AMANO

Dept. of Information and Computer Science, Keio University 3-14-1 Hiyoshi Yokohama, 223-8522 Japan

E-mail:

snail@am.ics.keio.ac jp

Abstract Echo Instructions have been introduced as a technique to allow reduction of software code size for
memory-constrained embedded devices. To achieve better compression ratio we propose a new type of echo instruction: split
echo instruction that references exactly 2 instructions located in a different part of the program. This echo instruction
achieved 14-15% code size reduction on some programs from MediaBench. And as a tentative implementation of a processor
that supports echo instruction, we implement a mechanism for a basic echo instruction that references separate instruction
sequence in a program. Evaluation results from an implementation on a simple MIPS R3000 like processor shows the
increased area is only 5296 um2 . This result shows the implementation cost for echo instruction to processor is not expensive.

Keyword Echo Instructions, Code

1. Introduction

Embedded computers in consumer products and
industrial devices have become a common feature of
daily life during the previous decade. While embedded
computers can be found throughout a large performance
spectrum, from tiny computers with very limited
capabilities to processors as capable as those found in
desktop computers and workstations, the majority of
embedded processors can be found among the
low-performance variety. These computers trade low
performance in exchange for other features such as low
cost, low power consumption and/or small size.
Because of the limited performance of these systems,
some concerns which have little relevance in modern
desktop computing are still real limitations in the
embedded world. One of these concerns is code size.
While modern desktop computers may have gigabytes of
memory, many embedded systems still have memory
sizes measured in kilobytes. If the size of program
code can be reduced, it is possible to create embedded
devices with more functionality without increased costs.

Compression, Instruction Implementation

Another feature of embedded systems is the limited
requirement for binary software compatibility between
devices. Each device usually only runs software installed
by the manufacturer at production time, and this software
is usually unchanged throughout the life of the device.
This makes it simpler to introduce spectalized hardware,
including hardware that supports code size reduction. One
such approach is echo instructions[1][2], introduced in
2002. One recently proposed code size reduction method
is the use of echo instructions. An echo instruction is
basically an instruction that references a small block of
code at a different location in the program. By replacing
all but one instance of duplicate code sequences by echo
instructions, programs can be made smaller. By
replacing all but one instance of duplicate code sequences
by echo instructions, programs can be made smaller.

This paper introduces a new type of echo instruction
called the split echo, which references instructions at
different locations in a program, rather than just one
location as with standard echo instructions. This allows
for further code size reduction compared to the basic echo
instruction.

— 103 —

(19)
(19)

And as a tentative work for implementing processors

that support various type of echo instructions, we
implemented a mechanism that support simple and
basic echo instruction: sequential echo instruction as
Fraser introduced. The mechanism is implemented
on a simple MIPS instruction set architecture
processor.

2. Background

Fraser [1] introduced the echo instruction as a way to
directly execute compressed bytecode programs. This
compression works by replacing repeated occurrences
of a sequence of instructions with references — Echo
Instructions - to the first instance of the sequence. Echo
Instructions consist of a pair (length, offsef) where
offset is the distance from the echo instruction to the
referenced sequence and length is the number of
clements to repeat. When an echo instruction is
encountered in the program code, execution jumps to
the point referenced by offset, and length instructions
are executed before execution returns to the position
following the echo instruction (Figure 1). This is
similar to how LZ77 compression works. Fraser
achieved about a 30% reduction in code size with this
method.

MUL $9 $10 > $11
DIV $11 $2> §$1
ADD $10 #1 > $10
BNE $10 #-6

LD $7 #5SFF3 >$2<
ADD $1 $2>$3
MULS$3 $8 > $4
ADD $4 $5>$6
SUB $6 $2 > $8
ECHO 3,-4
SUB $4 $7>$8

Figure 1: Example Echo Instruction. The next 3
instructions are retrieved from the position 5 steps
back in program code.

Lau et al [2] proposed the use of echo instructions for
embedded applications, and introduced the bitmask
echo instruction. Bitmask echo replaces the length field
with a fixed length bitmask, to allow the conditional
exclusion of some instructions in the referenced
sequence. This increases the potential for code size
reduction, since the referenced sequence does not need
to be identical to the sequence replaced, merely similar.
Figure 2 shows how a block of code is replaced by an

echo instruction referencing another block with similar
dataflow the bitmask is used to exclude a single
unmatched instruction. Lau et al applied echo
instructions to Alpha ISA binary code, a RISC based
architecture similar to typical embedded processors,
and made substantial use of binary rewriting to
increase the number of matches. A version of the
SimpleScalar[4] simulator, modified to support echo
instructions, was used to verify transformed programs
and evaluate their performance. Lau et al achieved a
15% code size reduction with negligible impact on
performance. They attributed the lesser size reduction
compared to Fraser's work to the difficulty of
compressing register based binary code as opposed to

bytecode.
Brisk et al [6] made an early report on a framework to
identify targets for echo replacement on the

intermediate representation level of a compiler, before
register allocation. They estimated potential code size
reduction using this method to be from 35-25%.

DIV $11 $2> $3

DIV $11 $2> §3

Figure 2: Bitmask Echo example. Source region is
replaced by an echo instruction referencing
corresponding instructions in the target region. One
unmatched instruction is excluded by the bitmap.

Wau et al [7] Applied echo instructions to the Intel x86
ISA, and achieved 12-20% code size reduction. They
found that a CISC architecture with variable length
instructions such as x86 is a particularly suitable
subject for echo instructions.

2.1 Fingerprint based echo match
An interesting property of bitmask echo instructions

— 104 —

is that by using the bitmask to mask out control flow
instructions, such as branches and jumps, from the
target region, it is possible to match instructions
straddling several different basic blocks. Since
matching is not limited to these naturally bounded
areas of a program, the number of possible matches
increases dramatically. While existing algorithms used
for eliminating redundancy in programs can also be
used with echo instructions, better results should be
possible with an approach that goes beyond the
original structure of the target regions.

A key insight when searching for matching regions is
to recognize that the regions need not be identical, they
merely need to have the same effect when executed.
The exact order of the instructions in the targeted
region is not critical, as long as the system's registers
and memory is left in the same state after execution of
the replacement region, as they would have been after
cxecution of the original region. Clearly searching for
matches by comparing instructions one by one as they
appear in a program will fail to detect a substantial
number of matches. Furthermore, by applying bitmask
echo instructions to a region, the effect of executing
the region will change, further increasing the number
of possible matches.

To illustrate the number of potential matches that can
be referenced by an echo instruction, consider a block
of 10 instructions. Since any combination of
instructions in the region can be referenced by a
bitmask echo, the number of potentially semantically
different target regions in the block is equal to the
number of possible combinations of “on” and “off” bits
in a 10-bit sequence. Even if we ignore all sequences
containing only one “on” bit, since nothing will be
gained in code size by replacing a single instruction by
an echo, and require that the first bit in every sequence
be one, since a sequence targeting location x with y
“off” bits at the head will always semantically equal a
sequence targeting location x+y with y “off”
instructions at the tail end, there are still 870 valid
sequences of 10 bits, each corresponding to a potential
echo target region. While there may be a number of
duplicates among this number, there is clearly a large
potential for finding matches suitable for echo
instructions. Figure 3 shows two possible echo target
regions that can be found in an example 10-instruction
block.

To take full advantage of the code-reduction
opportunitics offered by echo instructions, a method
that can expose semantic similarity between regions
and efficiently process a large number of regions is
needed. We proposed two parted approach; first the
instructions in a region are sorfed to identify semantic
equality, and then fingerprints [3] are calculated for

each region, these allow matching regions to be
identified quickly.

Original block: trgt 1| 2 1: echo
0110100011 trgt
MUL $9$10>$11 L[1 |MUL $9 $10> $11

—
(=]

DIV $11 $2 > $1 DIV $11 $2 > $1

ADD $10#1>$10/0/1 |ADD$1 $2>$3

BNE $10 #-6 010 'ADD$4 $5>96

LD $7 #5FF3|0/1 |suB$4 $7>$8

>$2

ADD $1 $2>9$3 |1|0 2: echo 0011010101
trgt

MUL$3 $8>%4 (011 IMUL $9$10> $11

ADD $4 $5>%6 |!|1 |ADD $10#1>$10

SuB$4 $7>¢8 |1|0 LD $7#5FF3>8$2

RET 00

MUL $3 $8>$4

ADD $4 $5>$6

Figure 3: An example of two five instruction echo
instructions targeting different parts of the same target
block, using the bitmask to select instructions.

We implemented this method with a 16 bit signed

offset value, and a 10 bit bitmask and evaluated the
reduction ratio using this method with some
applications from MediaBench[8] benchmark. The
method achieved 11% of average code size
reduction[5]. Further research is in a progress to
improve the reduction ratio by combining with much
complex methods.

3. Split echo

One observation made during evaluation of the
fingerprint based matching method is that most of the
echo instructions in a program have a length of 2, they
reference a block of 2 other instructions. Even though a
length 2 echo instruction results in a net reduction of
only one instruction, they still represent a significant
portion of the total program size reduction.

In an attempt to achieve further compression, we have
devised a new kind of echo instruction called the split
echo. The split echo is quite simple in that it references

— 105 —

exactly 2 instructions, each instruction located in a
different part of the program. The encoding of a split
echo instruction is like this: opcode, offsetl, offset2. As
can be seen, the split echo eliminates the length field of
the standard echo, and instead has two offset fields,
each referencing an instruction in a completely
different location. By thus splitting the echo region, we
create a new logical code sequence by executing two
completely unrelated instructions as if they were a 2
instruction echo region. This allows further code size
reduction by replacing some code blocks which it is
impossible to find matches for using standard echo
instructions.

BNE §10#-6

LD $7#SFF3-32 %
| ADD$1 $2>$3
MUL $3 $8 > $4

Zlesyo

ADD $10#1 > $10
ADD$4 $5=>$6
SUB $6$2 = $8

I BNE §10#-6

L1asyo

ADD $4 $5= %6
ECHO offset], offset2
SUB §4 §7»> 88

Figure 3: An example of split echo instruction. Split
echo instruction references two instructions from
separate two part of program.

The downside to having two offset fields is that the
range of addressable instructions is reduced. A standard
echo instruction may have a 10 bit length field and a
16 bit offset (and a 6 bit opcode, making for a total of
32 bits) This gives an addressable range of 65536
(2"16) instructions. If we eliminate the length field and
split the 26 bits remaining in an instruction apart from
the opcode, we are left with a much smaller
addressable range of 8192. However, since we are
attempting to match individual instructions rather than
a sequence, the probability of finding matching
instructions in the range given is still quite good.

Since we are dealing with single instructions over a
short interval, the algorithm for detecting split echo
matches is very simple:

- Examine each sequence of two instructions in the
program being compressed.

- Eliminate all sequences which contain branches or
jumps, control flow instructions that are unsuitable

for being replaced by split echo instructions.

- Search the addressable range for instructions
which match each of the instructions in the original
sequence.

- If matches for both sequences are found, replace
the sequence with a split echo instruction.

While the use of split echo instructions offers the
potential to further reduce code size, there are
disadvantages, chiefly when it comes to performance.
While we, at the time of writing, have not yet
performed any experimental performance evaluation of
split echo instructions, it is easy to see that there are
significant performance concerns. For each
two-instruction sequence in the original program
replaced by a split echo instruction, three instructions
will have to be executed while running the transformed
program; the split echo instruction and the two
instructions it references. Furthermore, since the
instructions referenced by the split echo instruction
may be located quite far from the split echo instruction
in program memory, there is likely to be an increased
number of cache misses, and thus more execution time
will be spent waiting for memory access.

A solution to these concerns is the use of profiling to
leave the most frequently executed parts of the
program uncompressed. A well known rule of thumb is
the 80-20 rule, which states that for a typical program,
80% of the execution time is spent running 20% of the
code. By doing runtime analysis on the program being
compressed to identify these most frequently executed
program regions, and only compressing the
infrequently executed code, it is possible to achieve
80% of the maximum possible compression while only
suffering 20% of the performance reduction.

4. Implementation of the echo

instruction mechanism

We have implemented a method that searches a
program for instructions that can be replaced with echo
instructions, by using fingerprints to quickly identify
potential matches.

In order to demonstrate efficiency of echo
instructions, we designed a processor that supports
echo instructions. As the first prototype
implementation, a mechanism for a simple echo
instruction that is similar to Fraser’s [1] is selected. It
executes compressed bytecode programs directly. As
a basis of implementation, a simple MIPS R3000 32bit
instruction set architecture is selected. In this section,
first we introduce the detail of processor that we used
and after that we introduce how we implemented the
mechanism.

— 106 —

4.1 Basic processor model

The processor used is a basic in-order issue, scalar
processor which implements the MIPS R3000 32bit
instruction architecture.

The processor implements the standard five-stage
integer pipeline which consists of IF (Instruction
Fetch), ID (Instruction Decode), EX (EXecute), Mem
(MEMory access) and WB (Write Back) stages. The
instruction fetch stage is responsible for fetching
instructions from memory where the program counter
is pointing. In the instruction decode stage the
instructions are decoded, and respective values are
fetched from the register file and provided to the
execution stage. The MIPS architecture also
implements the effective address calculation for branch
instructions at this stage. Execution stage is where
ALU operations are executed and Memory stage is
where memory is accessed. The write back stage is
used by Load and other ALU operations that the results
should be written in the register file.

4.2 Sequential echo instruction
mechanism

The method we selected in this paper is using a
counter which indicates the echoed region to be
executed. It is a simple and straightforward approach
which involves few modifications in the processor
architecture.

The implementation method is similar to the
implementation of the branch instruction in the MIPS
architecture. Like a branch instruction, the target
address for echo instruction is calculated in the ID
stage where the echo instruction is decoded. As can be
seen in Figure 4, the ID stage forwards the target
address to the IF stage for the necessary modification
of the program counter. The calculation of the target
address in the ID stage does not incur additional
hardware penalties, since the same resources for the
branch target address can be used. The only additional
resource at this point is an extra path to transfer the
echo counter value to the IF stage. Echo counter
value signifies how many instructions we will execute
in the echo region. The size of this value depends on
the specific implementation, but in our approach, we
used a 5-bit value for the counter which requires 5-bit
width forwarding path.

The IF stage requires more intense modification than
the ID stage. After the ID stage gets the echo
instruction, it sends the target address through the
branch address path, and also sends value that will be
used for the counter. The activation of the echo
counter path from the ID stage triggers the echo

support

instruction execution in the IF stage. At that time, the
program counter is saved into a special purpose
register, and the forwarded target address is stored in
the program counter as seen in Figure 4. From now
on, the execution proceeds normally, decrementing the
echo counter by one in every clock. When the counter
becomes zero, the execution of the echo region is
finished, so the program counter saved into the special
purpose register is restored, and the instruction after
the echo instruction starts to be fetched. Since the
control instructions including branches and subroutine
calls are prohibited in the echo region, the echo
instruction can be executed with such a simple
mechanism.

IF Stage —— ID Stage
Instruction
£ 1A
o W |if counter==
Echo Echo
Return |[[Counter
Target Address
Counter

Figure 4 : Implementation of the Counter based
Echa Instruction

5. Evaluation

5.1 Split echo evaluation

To evaluate the compression potential of the split
echo instruction, we modified the binary translator
used in our previous work to create split echo
instructions, and compressed a set of programs from
MediaBench. The results are seen in Table 1.

84.9%
64932 9502 85.4%
86836 12225 85.9%
74004 10970 85.2%

Table 1. Split echo compression results

Code size for these programs have been reduced by
14-15%. Furthermore, as Sequential/Bitmask echo and
Split echo have different granularity, is should be
possible to further reduce code size by combining the
different echo instructions, but at the time of writing
this has not yet been completed.
5.2 Hardware evaluation

To evaluate the hardware cost to implement the
mechanism, we synthesized it using Synopsys
Design Compiler with ASPLA 90nm process. 9ns is
used as a clock timing restriction.

— 107 —

Total cell arca size before implementing the
mechanism was 222159um’ and after the
implementation it is increased to 227455 um®. The
cell area is increased only 5296um’ after
implementation. Thus the implementation cost of echo
instruction was not expensive.

It also appears that the critical path is not stretched by
implementing the echo instruction mechanism.

6. Conclusion

For further compression of embedded system's binary,
we proposed a new type of echo instruction: split echo
instruction. It references exactly 2 instructions, each
instruction located in a different part of the program. A
compression ratio of roughly 85% was achieved using
this echo instruction. This is a good result, and further
compression should be possible by combining with
traditional echo instructions.

And as a tentative work to implement a processor that
supports various echo instruction, we implemented a
processor that supports sequential echo instruction that
executes instructions in a separate sequence of
program code. We implemented it by adding counter
value forwarding path from ID stage to IF stage and
simple control logics to the IF stage. We synthesized
the implementation and compared the number of gates
before and after the implementation. 3909um? cell area
is needed to implementation the mechanism. This
results shows the hardware cost to support simple echo
instruction is reasonable.

7. References

[1] C. Fraser. “An instruction for direct interpretation

of LZ77-compressed programs,” Microsoft Technical

Report MSRTR-2002 90.

fip:/Mtp.research. microsoft.com/pub/tr/tr-2002-90.pdf.

[2]J. Lau, S. Schoenmackers, T. Sherwood, B. Calder,
“Reducing code size with echo instructions,” CASES,
October 2003, 84-94

[3]1 J. Howard Johnson. Identifying redundancy in
source code using fingerprints. CASCON °93 |
171-183, 1993.

[4] D. C. Burger and T. M. Austin. The SimpleScalar
tool set, version 3.0. Technical Report CS-TR-97-1342,
University of Wisconsin, Madison, June 1997.

[6]Iver Stubdal, Hideharu Amano, “A Fingerprint
Based Method for Reducing Code Size on Architectures
Supporting Echo Instructions” , IE#MALEZSHFEE
4 0S Vol. 2006, ppl03-108, No.86, 20064F 7 B

[6] Brisk, P, Nahapetian, A, and Sarrafzadeh, M.
Instruction Selection for Compilers that Target
Architectures with Echo Instructions. Int. Workshop on
Software and Compilers for Embedded Systems
(SCOPES), 2004, 229-243.

[7] Youfeng Wu , Mauricio Bretemitz, Jr. , Herbert
Hum , Ramesh Pen, Jay Pickett, Enhanced code
density of embedded CISC processors with echo
technology, Proceedings of the 3rd IEEE/ACM/IFIP
international conference on Hardware/software
codesign and system synthesis, September 19-21, 2005,
Jersey City, NJ, USA, 160-165

(8] Lee, C., Potkonjak, M., Mangione-Smith, W. H.
MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems. Int. Symp.
Microarchitecture (MICRO-30), 1997, 330-335.

— 108 —

