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Abstract

Generally, there are periodic interrupt services in the real-time embedded systems even when the system is in the
idle state, such as periodic clock tick interrupts. To obtain the minimal idle power, power management therefore
should consider the effect of periodic interrupt services. In this paper, we deal with this problem under different
conditions. In the case that the periodic interrupt cannot be disabled, we first model its power consumption and then
propose static and dynamic approaches to select the optimal frequency for minimal power consumption. On the other
hand, if the periodic interrupt can be disabled, we propose an approach to delay the interrupt service until the next
task is released so that the processor can stay in low power mode for longer time. The proposed approaches are
implemented on a real-time OS and its effectiveness has been validated by theoretical calculations and actually

measurements on an embedded processor.

1. Introduction

Energy consumption has become one of the major
concerns in today’s embedded system design especially for
battery-powered devices. For the sake of dependability, in
real-time systems the utilization of processor is less than
100% even when all tasks run at WCET (worse case
execution time). Moreover, workload of each task may vary
from time to time, which results in the less average execution
time than the WCET. All these factors lead to the system idle
state at which there is no tasks needed to be scheduled. It
should be noted that even in the idle state, most real-time OS
maintains a periodic clock interrupt to synchronize the system
and trace the clock events. For example the uc/OS-II, eCOS,
and Linux need a 10ms clock interrupt to generate the system
clock. Besides the period clock tick, some interrupt-driven
embedded systems such as data acquisition systems also need
periodic interrupts to activate the CPU from low power mode
for data processing, To reduce the power of the idle state, a
common approach is to transfer the processor into a low
power mode which consumes less power than the normal
mode. Generally, a processor can provide multiple low power
modes to deal with different system states. To take
advantages of these power control mechanisms, dynamic
power management (DPM) tries to assign the optimal low
power mode according to the predicted duration of the system
idle state. As for examples, Figure 1 shows the power mode
transition graph for two typical embedded processors in
high-end and low-end applications, respectively.

While the SA-1100 with integrated 32-bit RISC core
targets for high performance low power application, the
M16C with integrated 16-bit core, on-chip ROM and RAM
aims at low-end and low power application. The SA-1100
processor provides three operation modes with different
power consumption levels, ie., Run, Idle, and Sleep modes.
‘While the Run mode is the normal operating mode with full
functionalities and high power consumption, the Idle and
Sleep modes are low power mode with stopped CPU clock.

Idle mode stops the CPU core clock but enables all
peripherals clock thus on- or off-chip interrupt service
requests can quickly reactivate the CPU. In contrast, Sleep
mode stops both CPU and peripherals clock thus only
hardware reset or special event can wakeup the CPU, which
requires long transition time whenever entering or exiting the
sleep mode. Similarly, the M16C also provides three power
modes which have similar functionalities to that of the
SA-1100 but with different names. For example, the wait
mode is similar to idle mode, and has disabled CPU clock and
enabled peripheral clocks. The stop mode stops both the CPU
and peripherals clocks, which is similar to the sleep mode of
SA-1100. However, it should be noted that the time and
power overhead of M16C for power mode transition is much
less than that of SA-1100. This small transition overhead of
M16C is benefited from its simple and single-chip
architecture. Actually, only one instruction is needed to
transfer the processor into idle mode.

Poormal =7 - 30 mW

Prun = 400 mW (1.25MHz ~ 20MHz)

o Pwait=3.6-39mW
Pslcep=0.16 mW Pidle =50 mW (1.25MHz - 20MHz)

(a) sA-1100

Pstop =0.03 mW
(b)Mi1s6C
Fig. 1. Power mode transition for (a) Intel’s
StrongARM SA-1100 processor [1] (b) Renesas’s
M16C processor.

Although the Sleep mode has the lowest power
consumption, it is not suitable for the application considered
in this paper. The reasons are that (1) the transition time
overhead for returning to run mode is too large to be used in
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the application with short period of interrupt services; (2) the
normal interrupt service requests related to on-chip clock
cannot work properly in the Sleep mode. Therefore, the
feasible low power mode that can be used in the application
with periodic interrupt services is the idle mode.

In addition to DPM, another effective technique for power
saving is dynamic voltage/frequency scaling (DVFS), because
the power consumption of CMOS circuits is proportional to
its clock frequency and its voltage square. The DVFS tries to
change the clock frequency and its corresponding supply
voltage dynamically to the lowest possible level while
meeting the task’s deadline constraint. Commonly, the
voltage and frequency scaling are accomplished by
controlling a DC-DC converter and PLL (phase lock loop),
respectively. While many high-end processors have equipped
with the DVFS capabilities, few low-end processors can
dynamically change their supply voltages such as the M16C.
In contrast, most low-end processors can also change its clock
frequency by setting the divider registers. As a result, the time
overhead for frequency change is much less for a simple
processor using divider register than a complex processor
using PLL. For example, while M16C requires negligible
time for frequency change, Intel’s PXA255 processor (an
upgraded product of SA-1100 series) requires about 500us [7].
For simplicity, we refer to DVFS in the following whenever
voltage and frequency or only frequency is changed during
execution.

The motivation of this research is originated from the fact
that the power consumed in idle mode is not fixed but
dependent on the selected clock frequency before entering the
idle mode [7]. Generally, the higher frequency, the more
power is consumed in idle mode. For example, the PXA225
processor consumes 45mW-121mW power in idle mode
which corresponds to 100MHz - 400MHz frequency,
respectively [7]. The reason is that although the disabled CPU
cannot consume dynamic power in idle mode, the enabled
peripherals still consume power which is directly dependent
on the selected clock frequency [8]. To reduce the power of
idle mode we therefore expect to lower the frequency.
However the lowered frequency will lead to longer execution
time for interrupt service routine (ISR), which may result in
higher power consumption in execution state. Accordingly,
we need to determine the optimal frequency for the idle state
with period interrupt services to save power. In this paper, we
propose corresponding approaches for idle state power
management under different conditions. In the case that the
periodic interrupt cannot be disabled, static and dynamic
approaches are proposed to select the optimal frequency for
power savings. In contrast, if the periodic interrupt can be
disabled such as the clock tick interrupt, a configurable clock
tick is proposed to save power in idle state.

The rest of the paper is organized as follows. Section 2
gives related work. Section 3 presents the power model and
the proposed approaches. In Section 4, experimental results
are described. Finally, Section 5 summarizes the paper.

2. Related work

Recently, there have been a large number of publications

using DPM or DVFS for power savings. Most DPM
literatures focus on the design of power management policies
based on predictive schemes and stochastic optimum control
schemes [1][4]. To the best of our knowledge, no paper
considers the low power mode with varied power
consumption which is dependent on the selected clock
frequency. They generally assume fixed power consumption
for each low power mode. The different policies are to decide
when and which low power mode the devices should transfer
into. Actually, an on-chip timer interrupt is commonly
employed in embedded systems to reactivate the CPU from
low power mode. In this case, the on-chip clock cannot be
disabled. Moreover, the returning time from low power mode
with all clock disabled will be longer than that of low power
mode with enabled peripheral clock.

While DPM aims to the long idle time, and save power by
entering low power mode; DVFS aims to short slack time
generated among the running of multiple tasks, and save
power by lowering the voltage and/or frequency. DVFS
algorithms generally assume periodic tasks with known
WCET and deadline. Although the objective of DVFS is to
prolong the task execution time to deadline by lowering the
CPU’s voltage and frequency, the slack time cannot be
reclaimed completely. This is because the generated slack
time can only be reclaimed when there is ready task that can
be scheduled. Moreover, the discrete frequency levels makes
DVFS cannot utilize the generated slack time completely. All
these factors result in idle time even in the DVFS enabled
systems. However, most DVFS literatures ignore the idle time
process by simply assuming zero power or fixed power
consumption for idle time [2][3]. As discussed in Section 1,
even in low power mode, the power consumption is neither
zero nor fixed value, moreover the required low power mode
transition time may be too long to be applicable for short
slack time.

Recently, a variable scheduling timeouts method is
proposed for power savings in Linux systems by eliminating
the useless tick interrupts during system idle time [9].
However a problem that has to be considered in real-time
systems is the system clock synchronization caused by the
stopping and restart of tick timer.

3. Power model and proposed approaches

For general low power embedded processors, we assume
the processor can provide multiple low power modes and
alterable voltage/frequency for power control. To simply the
calculation, we assume the time and power overhead for
power mode transition and voltage/frequency scaling are
fixed. As discussed earlier, for power management of idle
state with periodic interrupt services, only the low power
mode with enabled peripherals clock is considered. We
assume that an idle task is employed to implement the
proposed power management in RTOS. The idle task is
scheduled to run, when system enters the idle state in which
no tasks need to be scheduled in the ready queue.

We deal with the power saving problem of idle state in two
cases. While in case one the periodic interrupt cannot be
disabled such as the data acquisition system, in case two the



interrupt can be disabled for a specified period such as clock
tick interrupt.

3.1 Case one: the periodic interrupt cannot be
disabled

Before modeling the power consumption of idle state with
periodic interrupt services, we give the following notations.
®  M: selected system speed, i.e., /M full speed
® T, (us): period of interrupt service
® T, (us): execution time of interrupt service routine at
full speed
® 7, (us): execution time for low power mode setting in
idle task at full speed
T, (us): time overhead for power mode transition
1, (mA): average current during power mode transition
I, (mA): the run mode average current at 1/M full
speed
® ], (mA): the idle mode average current at 1/M full
speed
Considering the fact that different scale processors may
have different DVFS overhead as discussed in Section 1, we
propose static and dynamic methods for processors with large
or slight DVFS overhead, respectively.

Power consumglion

Periodic interrupt handler (run mode)

Power mode: (run m‘::::

RTOS state: Run state

R

Idie task: Sel the optimal speed g task: Enter idle mode again

and enter idle mode
Fig.2. Processing procedure for idle state power
management.

If the processor has large DVFS time overhead, a static
approach is adopted, ie., only once DVFS setting at the
beginning of idle state for any continuous idle time.
Specifically, the program in idle task takes corresponding
actions based on the current state of system, if it is the first
time to enter idle state, it first setups the optimal speed for
power savings and then enters low power mode. Otherwise, it
only setups and enters the low power mode and without any
speed change when the idle task is reactivated from low
power mode by interrupt. The above processing procedure for
idle power management is illustrated in Fig.2. Based on the
above notations and procedure, the average current of idle
state with periodic interrupt services can be represented by
the following equation:

[ G MGG ) M L T,
idle 7;
Therefore, if the period of interrupt and the execution time
for power mode setting are fixed and known, time and power
overhead for power mode transition, the average current with

different speed settings for run and idle mode can be obtained

from manual or measurement, the average current of idie state
will be a function of the selected speed M and the execution
time of interrupt service 7},

According to the above function, the power optimization
problem can be formulated as: for a specified processor and
application with known T}, T, T, I, I,,,, and I;,, finds the
optimal M such that the average idle current is minimal.
Because the relation between I, and M is linear, and the
selectable speeds are limited, we can calculate all curves of
Lae~T, with all possible speed selections, and then the one that
has the minimal average current will be the optimal speed
setting.

If the processor has slight DVFS time overhead, a dynamic
approach may save more power at the expense of two DVFS
settings for each interrupt. The processing procedure is that
the fastest speed is set at the beginning of each interrupt
service, and the slowest speed is set before entering the low
power mode each time. Its objective is to save more power by
keeping the processor in low power mode for longer time
with the minimal power consumption. Note that this approach
is not realistic for some complex processors with large DVFS
overhead. For example, Intel’s PXA225 requires 500us for
each DVFS scaling [7], thus it is not applicable for the
interrupt service with 1 ms period.

3.2 Case two: the periodic interrupt can be
disabled for a specified period

We assume periodic tasks with known WCET and deadline
in embedded systems, and we only discuss how to disable
clock tick interrupt by using a configurable clock tick in order
to save more power during idle state. Under the above
assumptions, whenever system detects the beginning of an
idle state, it also knows the nearest releasing time of a
periodic task. In this case, the duration of the idle state is
known, we therefore can disable the clock tick for this known
idle time and transfer the processor to low power mode to
save power for the idle time. Note that this approach is
different from general DPM in that while general DPM makes
decision for power mode transition based on the predicted
duration of idle time; this approach is with known duration of
idle time. Therefore the decision for power mode transition in
this approach is straightforward.

Timer setting procedure:
When entering the idle state
1. Set the count value of Timer2

Timer 1: Clock Tick Timer

¢ od o Tick as the known duration of
O“m“' > e »lnterrupt  idle state
Clock : Disabled 2. Disable Timer 1 interrupt
T . ) 3, Start Timer 2
Timer 1 overflow signal 4. Enter low power mode

When returning to normal

Wake up mode by Timer 2 interrupt
- > Interrupt 1. Update the sysiem tick by
Enabled adding the loss clack ticks

to current clock ticks
2. STOP Timer 2
3. Enable Timer 1 interrupt
Fig. 3. Configurable clock tick and timer setting
procedure.

Timer 2: Wake up Timer



When the clock tick interrupt is disabled during idle state, a
problem to be considered is how to trace the original clock
tick to keep system time synchronization. To this end, another
timer, as shown in Fig.3, can be used to count the lost ticks
during idle time when the tick interrupt is disabled. Because
the original tick timer is never stopped and restarted except
disabling its interrupt request, the system time
synchronization can be realized easily. However, this
approach is hardware-dependent since a connection wire
between the output of timer 1 and the input of timer 2 is
required as shown in Fig.3. The count value of timer 2 for
generating the wakeup interrupt prior to the release of next
task should be set to the known duration of idle state. The
detailed timer setting procedure is listed in Fig.3.

4. Evaluation and experimental results

4.1 Experiment
environment

setup and measurement

To validate and evaluate the proposed approach, we select
the Renesas’M16C embedded processor to implement the
approach. Although the processor cannot change its supply
voltage, it provides three power modes and can quickly
change its clock frequencies by setting the divider registers.
‘We measure the processor current by inserting a digital tester
between the power supply and the power pin of the processor.
An oscilloscope is utilized to observe the voltage waveform
of the shunt resistant which is inserted between the power
supply and the power pin of the processor. The time and
power overhead for power mode transition can be estimated
from the captured voltage waveform. Note that the above
experiments are performed separately so that the current
measurements are carried out with removed shunt resistant.
The employed experiment environment is shown in Fig.4, and
the measured power results and estimated power mode
transition overhead have been given in Fig.1.

Our approach has been implemented on a RTOS called
TOPPERS/JSP kernel [5] which is an open source RTOS in
consistent with the uITRON [6] standard. The TOPPERS
RTOS targets for real-time applications with limited resource
requirement. A configurable clock tick is implemented on OS
with default 1 ms interrupt period. The normal execution time
of the timer handler for system time updating is about 12 us at
20MHz.

Fig. 4. Experimental board and measurement
environment.

4.2 Evaluation of the proposed approach when
the periodic interrupts cannot be disabled

Table. 1 summaries the measured normal and wait mode
average current under different speed settings. Note that all
these measurements are performed by executing a busy loop
and the results for wait mode is measured with clock enable
but without any interrupt services.

Based on these measured parameters, and equation (1), we
can obtain the following current vs. time and speed curves in
Fig.5. From this figure, it is clear that the optimal speed
selection for minimal power consumption is determined by
the execution time of timer handler. As for the 12us interrupt
service in this experiment, the optimal speed is 10MHz (1/2
full speed). The calculated and measured results are denoted
in Table 2, respectively where the optimal measured result
with minimal power consumption is consistent with the
theoretical calculated results. We reduce the interrupt service
time to 7us, and measure the average current for different
speed settings again. As can be seen from Table 3, 5SMHz (1/4
full speed) can achieve the minimal power consumption,
which is also consistent with the calculated results.

Table 1. Measured normal and wait mode average
current under different speed settings.

Selectable Speeds | Measured current (mA)(voltage = 3V)
(1/M full speed) Normal mode: Wait mode:
Irm Iim
20MHz (1/1) 10.04 1.30
10MHz (1/2) 6.35 1.26
5MHz  (1/4) 4.35 1.24
2.5MHz_ (1/8) 3.24 1.23
1.25MHz (1/16) 2.45 1.22
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Fig. 5. Calculated results for 1ms interrupt period:
average current vs. execution time and speed selection.




Table 2. Comparison of measured and calculated
average current with Tp=1ms Th=12us.

Idle state average current (mA)
Selected Speed under periodic interrupt service
(1/M full speed) | (voltage=3V, period=1ms, Th=12us)

Measured current | Calculated current

20MHz (1/1) 1.47 1.472
10MHz (1/2) 1.45 1.451
SMHz  (1/4) 147 1.461
2.5MHz  (1/8) 1.50 1.498
1.25MHz (1/16) 1.57 1.534

Table 3. Comparison of measured and calculated
average current with Tp=1ms Th=7us.

Idle state average current (mA)
Selected Speed under periodic interrupt service
(1/M full speed) | (voltage = 3V, period = 1ms, Th = 7us)
Measured current | Calculated current
20MHz (1/1) 1.40 1.419
10MHz (1/2) 1.38 1.389
5MHz__ (1/4) 1.37 1385
2.5MHz (1/8) 1.38 1.401
1.25MHz (1/16) 1.42 1.416

We change the interrupt period to 10ms and perform the
above calculations and measurements again. The
corresponding results are given in Fig.6 and Table 4. As can
be seen, the optimal speed is 1.25MHz (1/16full speed) for
this long interrupt period. When we further prolong the
interrupt period to 100ms, as can be seen in Fig.7, the slowest
speed will achieve the minimal power consumption in spite of
the variation of execution time. The reason is that for longer
interrupt period, most of time the processor stays in low
power mode, thus, the average power is dominated by the
power of long idle state but not the power of short execution
state.

Table 4. Comparison of measured and calculated
average current with Tp=10ms Th=12us.

1dle state average current (mA)
Selected Speed under periodic interrupt service
(1/M full speed) | (voltage=3V, period=10ms, Th=12us)
Measured current | Calculated current
20MHz  (1/1) 1.32 1.317
10MHz (1/2) 1.28 1.279
5MHz  (1/4) 1.25 1.262
2.5MHz (1/8) 1.24 1.256
1.25MHz (1/16) 1.24 1.251

H
E
3
§ 12 s 1/1 full speed 4
< : : : 1/2 full speed
1/4 full speed -
1/8 full speed
Gl L e

1 5 9 13 17 21 25 29 33 37 41 45 49
Execution time of interrupt service routine (us)

Fig. 6. Calculated results for 10ms interrupt period:
average current vs. execution time and speed selection.
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Fig. 7. Calculated results for 100ms interrupt period:

average current vs. execution time and speed selection.

Experiments are also performed to validate the proposed
dynamic approach especially for the M16C with negligible
DVEFS overhead. In these experiments, the varied speeds are
set at the beginning of ISR, and the slowest speed (1/16 full
speed) is set in the idle task before entering the Jow power
mode. The calculated results using equation (1) are depicted
in Fig.8 where the curves for static and dynamic approaches
are displayed, respectively. As can be seen, the fastest speed
setting for ISR plus the slowest speed setting for low power
mode outperforms other speed combinations in dynamic
approach, and all speed settings in static approach.
Meanwhile, the actually measured result for this case shows
average current 1.39 mA which is the minimal current
compared with the measured results for static approach in
Table 2. Therefore, for the processor with negligible DVFS
overhead, the dynamic approach can achieve more power
savings than the static approach.
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4.3 Evaluation of the proposed approach when
clock tick interrupts can be disabled

We evaluate the proposed configurable clock tick on the
TOPPERS/ISP kemel and M16C board. Pillai and Shin ‘s
“Cycle-conserving DVS for EDF scheduler’[2] is selected
and implemented on RTOS. The experiment test set is
presented in Table 5, and corresponding energy results in one
minute for different idle state processing schemes are
summarized in Table 6. As can be seen, while DVFS can
achieve significant power savings compared with full speed
running, the proposed configurable clock tick for idle state
power management can further reduce the energy by 23% in
average compared with normal DVFS without any idle state
process.

5. Conclusion

Even in a DVFS enabled embedded system, there must be
idle time. Moreover, a periodic interrupt services may be
required even in the system idle state. In this work we
presented different approaches for idle state power
management in the presence of periodic interrupt services. In
the case that the periodic interrupt cannot be disabled, we
model the power consumption and propose static and
dynamic methods to achieve minimal power consumption for
the processors with large or slight DVFS overhead,
respectively. In the case that the periodic interrupt can be
disabled such as the periodic clock tick interrupt, we proposed
a configurable clock tick to save power by keeping the
processor in low power mode for longer time. We implement
the proposed approaches on a RTOS and embedded
processor; the calculated and measured results validate the
effectiveness of the approaches.

Table 5. Experiment task set.

Task set | Period (ms) | WCET (ms) | Actual ET (ms)
Task 1 | 500-2000 130 28-130
Task 2 | 500-3000 245 38-245

Table 6. Evaluation of power savings for combined
DVFS and power management of idle state.

Dynamic EDF | P1: 500 P1: 500 P1: 1000 | P1: 2000

?X}:s ":“;11 P2: 500 P2: 900 P2: 1500 | P2: 3000
ifferent idle

state process (ms) (ms) (ms) (ms)

No DVFS TE: 1807 | TE: 1807 | TE: 1807 | TE: 1807

(full speed) NR: 1 NR: 1 NR: 1 NR: 1

DVFS TE: 1594 | TE: 1288 | TE: 897 | TE: 468

without NR: 0.88 | NR: 0.71 | NR: 0.50 [ NR:0.26

idle state

process

DVFS TE: 944 | TE:773 | TE:553 | TE:282

setting the NR:0.52 | NR: 0.43 | NR: 0.31 | NR: 0.16

lowest speed

and entering

wait mode

Note: P: period; TE: Total Energy (mJ); NR: Normalized
result
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