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To design optimal mechanical structures, design sensitivity analysis technique using higher order
derivatives is important. However, usual techniques for computing the derivatives,for example
numerical differential method , are very hard to apply to real scale structures. To overcome the
problem, we study a new approach for the higher order sensitivity analysis of the finite element
method using an automatic differentiation method.

This paper reports some experiments on the design sensitivity analysis of mechanical structures
using higher order partial derivatives.
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1 Introduction

The importance of the sensitivity analysis using the finite element method (FEM) has been
recognized to get higher precision and higher functionalities of mechanical structures in the
structural design optimization(Haftka et al 1986a; Brebbia et al 1989; Eschenauer et al 1990). For
example, to evaluate dynamical characteristics of structures, we use the modal analysis
techniques(Ozaki 1988). The optimal mechanical design has been studied by the sensitivity analysis
using the method. The traditional sensitivity analysis methods are such methods as a direct
differential method, adjoint variable method, and numerical differential method(Adelman et al 1986;
Haftka et al 1989). Those techniques for the sensitivity analysis(Haftka et al 1989; Kleiber and
Hisada 1993) require numerically computed partial derivatives of the objective
functions(Vanderplaats 1984). Jacobian or Hessian matrices are used to compute optimal values by
Newton- or quasi-Newton algorithms(Evtushenko 1985; Ratschek et al 1988). However, there are
several problems for the computation: (1) truncation and rounding errors become large when
numerically executing the sensitivity analyses, (2) much computation time is required to compute
higher order derivatives to get optimal solutions, and (3) it is difficult to develop programs for
computing higher order derivatives of a function with very many variables(e.g., Vanhonacker 1980;
Belle 1982; Haug et al 1982; Jawed et al 1984; Haftka et al 1986b; Wanxie et al 1986; Dailey 1989).

To solve the problem, we study a new approach for higher order sensitivity analysis of FEM
using an automatic differentiation method(Ozaki 1991; 1992; 1993,0zaki and Kimura 1994). Our
using tool: DAFOR for automatic differentiation method is a pre-processor for usual Fortran
compilers(Berz 1989; 1990a). Users of the tool first input their Fortran function programs to
compute the values of the functions with very many variables for the FEM structural analysis by an
automatic differentiation technique. Next, the tool analyzes the input program and inserts statements
to compute higher order partial derivatives of the function. Then, the tool automatically generates a
special Fortran program with sensitivity analysis capability. The method of the code generation to
compute partial derivatives concerning many variables is attained by the automatic differentiation
technique developed by Iri (1984),Roll (1986),Berz (1989; 1990b),Iri and Kubota (1991), and
Griewank et al (1991). The unique the feature of automatic differentiation method is that the
technique can compute higher order partial derivatives with very high accuracy(Berz 1989). The
generated program is free from both truncate and rounding errors(Iri and Kubota 1991; Griewank et
al 1991). Therefore, the using the tool, the users can easily carry out sensitivity analysis for
optimizing structural design problems.

This paper describes the principles of the automatic differentiation method and reports the
computational results of the FEM codes generated by the method applied to a plane truss structure.
Dixon et al (1988) theoretically discuss the importance of automatic differentiation techniques for
finite element optimization, however, they do not show numerical results of the method. On the other
hand, in this paper, we emphasize the theory as well as the experimental results. The results indicate
that the technique and the use of sensitivity analysis by FEM generated using an automatic
differentiation method are very effective in the sense that (1) unlike usual sensitivity analyses for
FEM methods (e.g., Fox et al 1968; Wu and Arora 1986; Haftka et al 1989; Jao and Arora 1992;
Kleiber 1993), the generated program can simultaneously compute the values of partial derivatives of
a given function with very high accuracy, and that (2) the values of higher partial derivatives
computed by the generated program and the one computed by usual re-analysis by the FEM coincide
each other.

This paper organized as follows: In section 2, the basic principles of the automatic differentiation



method is introduced. In section 3, we have carried out some experiments to apply the
automatic differentiation technique to sensitivity analysis. In section 4 , we give some concluding
remarks.

2 Basic Principles of Automatic Differentiation

In this section, we will provide the mathematical background of the theory of automatic
differentiation method. Automatic Differentiation method are, in general, based on the direct
application of the chain rule for computing partial derivatives of a composit function of given
function with many variables. In the following, we will describe the outline of the mathematical
theory based on Berz(1989; 1990a). We will also provide the mathematical background of the
theory of automatic differentiation required for the promised study of non-linearities. It is an
application of the relatively new field of Nonstandard Analysis, which allows the introduction of
arbitrarily small quantities, infinitesimals, in a rigorous theory of analysis.

2.1 Principle of First Order Partial Derivatives Using an Automatic
Differentiation

Consider the vector space R? of ordered pairs (2.4), 3, € R in which an addition and a
scalar multiplication are defined in the usual way:

(ay,a) +(by,b) = (a, + by,a, + b,) N
t-(ag,a)=(t-a,t-a) )]

for ay,4 ,by,b; € R Besides the above addition and scalar multiplication a multiplication
between vectors is introduced in the following way :

(ao'al)'(bO’bl)':(ao'bo’ao'b1+a1'bo) (3)

for ay,@ , by,by €R | With this definition of a vector multiplication the set of ordered pairs
becomes an algebra, denoted by ;0.
Note that the multiplication is the same one would obtain by multiplying (@, + @, - X) and
(by + b, x) and keeping terms linear in x.
Similarly, as in the case of complex numbers, one can identify (4,,0)as the real numberes 4 .
Although as a complex number, (0,1) is aroot of -1, here it has another interesting property :

(0,1)-(0,1) = (0,0), 4



which follows directly from equation(3). So (0,1) is a root of 0. Such a property suggests
thinking of @ =(0,1) as something infinitely small ; so small in fact that its square vanishes.
Consequently, we call d=(0,1) the differential unit. The first component of the pair (a5,@) is
called the real part, and the second component is called the differential part.

It is easy to verify that (1,0) is a neutral element of multiplication, because according to

equation(3)
(1,0)- (a5, 2,) = (a5,2,) - (1,0) = (@, ;) )

It turns out that (o) has a multiplicative inverse if and only if 4 is nonzero;so 1D is not
afileld. Incase % #0 the inverse is
1
=)

(@) =(—,—F
0

)

It is easy to check that in fact (a,,4,)™" - (a5,4,) = (1,0). The space 1Dyis a subspace of the field
R® introduced in Nonstandard Analysis. Besides the usual real number, R* contains a variety
of infinitely small and infinitely large quantities. The outstanding result of the theory of
Nonstandard Analysis is that differentiation becomes an algebraic problem : a function f is
differentiable if and only if for any arbitrary small quantity 0, the real part of the quotient,

flx+6)- f(x)

5 Q)
is independent of the choice of the specific 8. Thus, given any differentiable function f,
we can compute its derivatives just by evaluating the formula for a special choice of 6. We
choose § =d =(0,1) and thus obtain
+d) -
ro=o{ LA,
F@=9[fx+d) - f(0)]=[f(x+d)], ®)

where R denote the real part, and ¥ denotes the differential part. In the last step use has
been made of the fact that f(X) has no differential part. Hence differential algebras are useful to
coniputc derivatives directly, without requiring an analytic formula for the derivatives and without
the inaccuracies of numerical techniques.



2.2 Principle of Higher Order Partial Derivatives Using an Automatic
Differentiation

We define N(n,v)  to be the number of monomials in v variables through order n.

(n+v)!

We will show that N(n,v) = =C(n+wv) |

where C(i,j) is the familiar bionomial coefficient. First note that the number of monomials with
exact order n equals N(7,v—1) because each monomial of exact order n can be written as a
monomial with one variable less times the last variable to such a power that the total power equals
n. Thus we have N(n,v)=N(n-1v)+N(n,v-1) : the number of monomials in v variables
through order n equals the number of relation is satisfied by C(n+v,v). Since also,
obviously, C(1+11)=2=~N(L1), the formula follows by induction.

Now assume that all these N monomials are arranged in a certain manner order by order. For
each monomial M, we call I, the position of M according to the ordering. Conversely, with M,
we denote the Ith monomial of the ordering. Finally, for an I with M, =x}-----x”, we
define Fy =gkl

We now define, in addition, a scalar multiplication and a vector multiplication on R" in the
following way :

(a....ay)+(by,....,by) = (a, + by,...,ay, + by) 9
t-(a,...ay)=(t-ay,....t-ay) (10)
(s ay) (ByyeeesBy) = (ClyennnCy) 11

where the coefficients ¢ are defined as follows :

a,-b,
W h 2 FE a2

i
OSSN

To help clarify these definitions, let us look at the case of two variables and second oeder. In
this case, we have n=2 and v=2. There N =C(2+2,2)=6 monomials in two variables,
namely,

Lx,y,xx,xy,yy. (13)

As an example, using the ordering in equation (13), we have L,=5and M;=y. Usingthe
ordering in equation (13), we obtain for ¢, through c, in equation (12) :



a=a-b

¢ =a-b+a,b

G =a-by+a, b

¢, =2-(a,-b;J2+a,-b,+a,-b[2)

cs=a-b+a,-by+a,-b,+a;-b

¢ =2-(a-bs/2+ay-by+as-b/2). (14)

On ,.D, we introduce a third operation 0;
0:(ay,....ay) =(Cy--rsCy) (15)
with

¢ =

0 if M, has order n
(16)

al(Ml-x,) otherwise

So J, moves the derivatives arround in the vector. Suppose a vector contains the derivatives
of the function f ; then applying O, to in one obtains the derivatives of

Ix. through one order less.

Although in D;, d=(0,1) was an infinitely small quantity, here we have a whole
variety of infinitely small quantities with the property t hat high-enough powers of them vanish.
We give special names to the ones in components belonging to first - order mnomials, denoting
them by dM,. In the exampleof 20, we have dx=(0,1,0,0,0,0), and

dy =(0,0,1,0,0,0). It then follows from the theory of Nonstandard Analysis that instead of
equation (8) we obtain
& o f &f Ff

f(x+dx,y+dy)=(f.g,—a-y-,-é;y,%,‘—;y—;)(xv}’)- a7

In the general case of v variables and order n, after evaluating f in the differential algebra one

obtains
ai,+i,+.‘.+i,f
—_— =, A
Oxi Oxt - dxr | Mab) (18)
where I(xji.----x) is the index of the monomial (xf -----x), as defined in the beginning

of this section.



3 Sensitivity Analysis on Mechanical Structures using an
Automatic Differentiation Technique ‘

We have applied the automatic differentiation method to sensitivity analysis problems with the
FEM, which is the most popular in structural analyses. In the case studies described below,
automatic differentiation method is used to investigate the sensitivity of design variables of
mechanical structures. The automatic differentitation method can be applied to both linear and non-
linear equations(Berz 1989 ; Ozaki 1991), if the equations are n-th order differentiable. Moreover,
using the method, we can highly accurately compute higher order partial derivatives with many
variables.

In the case studies, we have applied the method to two-dimensional linear FEM problems of
structural analyses(Ozaki 1989).

3.1 Example : First - and Higher -Order Sensitivity Analysis

The code of sensitivity analysis of FEM using the automatic differentiation has been applied to a
plane truss structure. The model is a simple static model shown in Figure 1, by which we simulate a
train passing over an iron bridge. It consists of eight nodes and thirteen truss elements. The
boundary conditions are that the node 7 and 8 are fixed, and that the nodes 1, 2, and 3 respectively
have the loads 10,000kgf, 20,000kgf, and 10,000kgf.

10000 kgf

10000 kgf

20000 kgf

Fig.1. Analytical model for higher order sensitivity analysis

The experiment of the sensitivity analysis are to compute the values of first and hi gher order
partial derivatives and to predict the stress of each element against radius of each element. The object
to compute the values of higher order partial derivatives is to indicate effectiveness of Taylor series
expansion using coefficient of differential of higher order when the machine structures are large
changing design in order to optimize. In particular, the method is very effective when the connection
of nonlinearity is existed between object function and design variables. The relation of the stress of
each element against radius of each element is non-linear.

The experiment is the sensitivity analysis of the important stress for the fracture mechanics. The
sensitivity analysis as to the stress of each element against the radius of each element is executed. The
sensitivity as to the stress of each element against radius of the element 1 throu gh 13 is computered.
The highest sensitivity of element against radius of each element is the case of radius of element 2.
The values of first and higher order partial derivatives as to the stress of element 2 against radius of
the element 2 computered as is shown in Table 1.

~55—



Tablel. Compressive stress sensitivity of O Computational result by FEM

element 2 against radius of element 2 A: Value expected of first order

partial derivatives using
automatic differentiation

Stress sensitivity of clement 2

against radius of element 2

Compressive stress of element 2 (kgf / mm2)

(kgf / mm’) [J: Value expected of second order

Value of first 1.9099 *10° partial d‘criv.atives \fsipg

der derivatives automatic differentiation
order deriv: “,
Value of second 257296 *10° ) o: Value expected of third order

- X ] ; . N partial derivatives using

order dcnv:.mvcs . 0.0 === T 13 s 15 s automatic differentiation
Value of third 2.2918 *10 Relative increases of radius of element 2
order derivatives

Fig.2. Value expected from high order partial derivatives using
automatic differentiation and computational value by FEM

The objective of this analysis is in order to examine the effectiveness of higher order differential
coefficient against non-linearity. When we have changed the values of radius of the element 2 to 1
%, 5 %, 10 %, 20 %, 30 %, 40 % , and 50 % inceases, we have gotten the results shown in Figure 2
by computing the compressive stress of element 2 by the higher order partial derivatives obtained
using an automatic differentiation. The result of direct re-computation by FEM above the condition
is shown in Figure 2. The results of the compressive stress of element 2 predicted by the first order
sensitivity analysis using an automatic differentiation and the ones by the direct re-computation by
FEM do not concide with each other when the changes of design variables are large, on the other
hand the results of the compressive stress of element 2 predicted by the higher order sensitivity
analysis and the ones by the direct re-computation by FEM concide with each other even if the
changes are so large.

4 Concluding Remarks

Using an automatic differentiation technique, we have observed the following advantages in the
analyses.

(1) We can very easily and quickly execute sensitivity analysis of structural design problems.

(2) We can also predict the effects of changing design parameters with high accuracy.

The most remarkable feature of the automatic differentiation method is that the method can
simultaneously compute the values of higher order partial derivatives. This results in the
following effects in the sensitivity analyses. ,

(3) Our method becomes superior to the conventional ones using numerical differentiacion ,
because our method do not raise with rounding error and trancating error in numerical
computaitional process of sensitivity analysis.

(4) Our method is very effective when changing quantity of the design parameters become larger

the non-linerity.
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