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A Neural network model for solving an assortment problem found in the iron and steel indstry is discussed in
this paper. The problem arises in the yard where steel plate is cut into rectangular pieces. The ncural network
model can be categorized as a Hopfield model, but the model is expanded to handleinequality constraints. The
performance of the neural network was evaluated by comparison with an existing expert system. The results

showed that the neural network has the potential to identify in a short time near-optimal solutions to the
assortment problem.



1 Introduction

In Kawasaki Steel Corporation, neural networks have
been studied and evaluated since 1988. Neural networks
have mainly been applied to character recognition prob-
lems. On the other hand, few systems use neural net-
works, although much atiention has been paid to recur-
rent neural networks which can solve combinatorial opti-
mization problems. Scheduling and planning tasks in a
steclworks involve many kinds of combinatorial optimiza-
tion problems. Some have been solved by the technology
of operations research, and others by expert systems. As
disadvantages of these methods, it takes considerable time
to calculate theoretical optima using the methods pro-
vided by operations research, while the optimality of solu-
tions by expert systems is questionable because heuristic
search based on the knowledge of experts is used.

Recurrent neural networks may be able to overcome
the difficulties of both operations research and expert sys-
tems, because they have the ability to identify approxi-
mate optima quickly. However, one problem with recur-
rent neural networks is that they tend to be “caught”
by local optima, and it is difficult to set the parameters.
Therefore, efforts were made here to elucidate network ca-
pabilities and limitations and to understand the related
issues by applying a recurrent neural network to a prac-
tical assortment problem. This paper presents the con-
clusions reached based on the results of experiments, and
evaluates the potential of neural networks for practical
use.

2 Neural Networks for
Solving Combinatorial

Optimization Problems

The neural network model [1] proposed by Hopfield
is the most popular of the feedback neural networks. In
the Hopfield model, the behavior of a neuron is defined
by the following differential equation:
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where —%i is a passive decay term, wi; is the strength of
the interconnection between neuron ¢ and neuron j, z; is
the output of the activation function for neuron ¢ shown
below, u; is the input of the activation function for neuron
1, and v; is the external input to neuron i. The activation
function is typically a smooth sigmoid function:

z; = o (u) = % {1 + tanh (;‘u—;-)} (2.2)

The activation function ¢(u;) meets the Cohen-Grossberg
requirements for stability. Thus, if the external inputs
are maintained at a constant value, a network of neurons
modeled by equation (2.1) will eventually equilibrate, re-
gardless of the starting state.

Hopfield discovered a Lyapunov function for a network
of n neurons characterized by equation (2.1), which can
be expressed as:

n n n e
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‘ (2.3)
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This is the expression which Hopfield refers to as the “en-
ergy function” of the nctwork. The term “energy func-
tion” stems from an analogy between the behavior of a
neural network and that of certain physical systems. Just
as a physical system may evolve toward an equilibrium
state, a network of neurons will always evolve toward the
minimum value of the energy function. The stable states
of a network of neurons therefore correspond to the local
minima of the energy function.

Hopfield and Tank had a key insight when they rec-
ognized that it is possible to use the energy function to
perform computations. Because a network of neurons will
seek to minimize the energy function, one may design a
neural network for function minimization by associating
variables in an optimization problem with neurons. Ac-
tually, “design” means the task of selecting appropriate
values for the connection strength w;; and the external
inputs v; so that the desired network behavior can re-
sult. Hopfield and Tank illustrated the use of the energy
function to configure networks for several optimization
applications including the traveling salesman problem.

3 A Neural Network for
Solving an Assortment
Problem

3.1 An Assortment Problem in the

Steel Industry

The problem described in this section is a kind of as-
sortment problem, which arises in steelworks when large
steel plates are cut into smaller pieces as required by prod-
uct orders. It may be described as follows:

In this assortment problem, the following three
items are given; a set of actual product orders,
each of which specifies width and length; a steel
plate, whose width and length aze also specified;
and the number of instructions. Each order can
be divided into scveral lengthwise pieces and is
thus “placed” on the plate. In practice, the plate
is first divided into the several pieces in the length
direction and each piece is then cut into smaller
segments to fill actual orders. Instructions spec-
ify the length and combination of order widths.
Naturally, orders must be arranged on the steel
plate without overlap. The goal of the problemis
to specify the contents of every instruction. The
key consideration may be summarized as follows:

¢ The arca of segments which are not covered
by orders must be minimized.

¢ Orders must be finished
(The maximum length of any order must
be no longer than the ordered length plus
a specified allowance.)

o The number of instructions must be mini-
mized.

Table 1 shows an example of a set of orders.

Figure 1 shows two examples of order placement on a
plate 990mm wide, using two and three instructions re-
spectively. In placement 1, three instructions are used
to finish four orders. The 16800m of ORDER 01 and
5040m of ORDER. 02 are placed in the leftmost instruc-
tion, whose length is 1680m. Hence, the necessary length



Table 1: Example of a set of orders
[ Order Number | Width[mm] [ Length[m] | Allowance[m] |

ORDER 01 50 16115 848
ORDER 02 160 5036 265
ORDER 03 200 6043 318
ORDER 04 220 3809 289

for ORDER 01 is secured in this area by merging ten rect-
angles, each of which has a length of 1680m. Placement 2
is better than placement 1 because fewer instructions are
required for placement 2, and the area of segments un-

covered in placement 2 is smaller than that in placement
1.

Coversd Area

T vrcovered Area

to the limitation of facilities. This constraint is
expressed as follows:

J

Zx;jgc

i=t

(3.2)

where C is that intcger.
[F3): Maximizing the arca of segments covering orders

One of the objective functions of this problem is
to maximize the area of segments covering orders.
This objective function is expressed as follows:

1
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i=1

J
minimize Y Uj X Se(Vj — (3.3)
j=1

where V; is the length of order j, I is the number
of instructions, y; is the length of instruction 1,
and S, is the function shown below:

(z>0)

zZ
se(z)={ o (Z<o0)

[F'4): Minimizing the area of segments uncovered by orders

Instruction 1 Vinstruction 2

1680m

Instruction 3
952m 1510m
PLACEMENT 1.

Instruction 1
1300m

Instruction 2
2509m
PLACEMENT 2.

Figure 1: Examples of order placements

The problem may be formulated as: limiting the total
width of orders, limiting the number of points to be cut,
maximizing the area of segments covered by orders(maxim-
izing yield), and minimizing the area of segments uncov-
ered by orders(minimizing waste). Reducing the num-
ber of instructions is one consideration which the authors
deemed important, but it must enlarge the size of the
neural network to formulate this requirement as an objec-
tive function. The number of instructions exists whithin
narrow bounds in practical use. Therefore the authers
created some partial problems which had fixed the num-
ber of instructions for one problem. After we solved some
partial problems, the best solution was chosen.

The problem is formulated as follows.

[F1}: Limiting the summation of widths of orders

The summation of widths of orders in instruction
i must not be greater than the plate width. This
constraint is expressed as follows:

J
EU,' X x5 < W
j=1

where J is the number of orders, U; is the width
of an order 7, W is the width of the plate, and
Xij is the number of rectangles in instruction &
whose widths are equal to Uj;.

(3.1)

[F2]: Limiting the number of points to be cut

The number of rectangles in instruction & must
be equal to or less than some positive integer due

Another objective function is to minimize the
area of segments uncovered by orders. Uncovered
segments are categorized into two types, uncov-
ered segments in the width direction, and un-
covered segments in the length direction. If the
summation of the widths of orders in instruction
1 is less than the width of the plate, an uncov-
ered segment of the first type results. If the sum-
mation of the length of the rectangles for order
7 is greater than the length of order j, one or
more uncovered segments of the second type are
produced. Hence, this objective is expressed as
follows:

J
ZU:E X Xij)+

=1

minimize

I
Z Vi X Se(W -
i=1

J I
ZUjXSe Z viX xi5— (V5 4+ T5)
i=1 i=1
(3.4)
where T is the allowance of the length of the
order 7.

3.2 A Neural Network Model for the
Assortment Problem

3.2.1 Assumptions and Notation

The formulas shown in Section 8.1 must be expressed
in terms of 0 — 1 variables to construct a neural network
model for the assortment problem which they define. The
following two notations are used for that purpose.

1. zijk to express the number of rectangles for order

7 in instruction ¢

When there are p rectangles for order j in instruc-
tion 1, zijx which is a 0 — 1 variable satisfies the
following equation:

Ny
Tijk =P

k=1



where Nj is the maximum number of rectangles for  3.2.4 A Neural Network for Handling

order j in instruction { calculated by the following Inequality Constraints
formula: . .
The assortment problem discussed here includes the
N; = |W/U;) inequality constraints represented by equations (3.1) and
(3.2). Therefore, the Hopfield neural network has to be
2. i to express the length of instruction ¢ expanded to handle them. The basic idea is explained

Because the length of an instruction is a continuous below usi{ls (3.1 as an example. . .
value, the length of instruction ¢ y; is expressed as Equation (3.1) is expressed as equation (3.5) in terms

follows: of 0 — 1 variables. Equation (3.5) is a kind of penalty
function which applies a large penalty value when (3.1)
vi = L x (zi1 + ziz -+ zint) is not satisfied, and is 0 otherwise. The procedure is de-
scribed below.
where z;x is a 0 — 1 variable, L is some constant 1. Calculate the output value of each neuron.
value, and H is a sufficiently large integer. 2. Decide by the outputs of all neurons whether each

inequality constraint is satisfied or not.
3.2.2 Constraints and Objective Functions

Expressed in Terms of 0-1 Variables (a) If the inequality constraint for instruction i is

not satisfied, the interconnective weights be-
[F1}: Constraint for limiting the summation of widths of orders tween neuron.;s “eNdetcrmlnCd by "h: quadratic
function (307 35,7 Uj x zijn — W)™
! 3.3 (b) If the inequali i i ion i1
quality constraint for instruction t is
minimize Ej = Z SA(Z ZUj x xijx = W) (3.5) satisfied, the interconnective weights between
i ik neurons are set to zero.

(z2>20) 3. Return to 1.

22
5‘(z)={ o (z<0) . . o .

When the inequality constraint is implemented in the
[F2}: Constraint for limiting the number of points to be cut neural network explained above, the convergence of the
network is the most difficult problem. To overcome this
1 J Ny difficulty, a special term is added to the energy function
minimize Ep = ZSA(Zme -C) (3.6) shown by equation (3.10). The new energy function is

K ik shown below:

[F3]: Objective function for maximizing the area of segments

covered by orders E=aEs+BEp ++Ec +6Ep, +cEp, +(Ep. (3.11)
J 1 N
minimize Bg = ZU,- x Sp(V; — ZZy; X xi5x) (3.7) AR 1
3 T Ep = Zzztiﬂ.(l —tejk)-i—zyi(l - ) (3.12)
ik B
_[Z (220
Sp(2) = { 0o (Z<o) where ( is a coefficient.

The coefficient ¢ is increased gradually during the it-

[F'44): Objective function for x’ninixn:uing the area of segments eration. As ( increases, the network approaches a stable
uncovered by orders in the width direction state and finally converges.

1 J N;
minimize  Ep, = 3 v xSs(W-Y_ > Uixxu) 38) 4 Performance of the Neural
' P Network

[F43): Objective function for minimizing the arca of segments
uncovered by orders in the length direction

4.1 Purpose and Means of the

1 Experiment

J Ny
minimize EDE=ZU_;XSg ZZYﬁxx‘\i_(vi"’Tj)
7 e The purpose of this experiment was to evaluate the

(3.9) fundamental ability of the neural network discussed in the
previous section in practical use. Therefore, the results
3.2.3 Energy Function of the neural network were compared with those of an
expert system which is used practically. This expert sys-
The energy function is the sum of all the functions tem can solve the assortment problem by inference based
described above, multiplied by some coefficient, and is ©n rules provided by experts. Moreover, the solution by
expressed as follows: the expert system can be changed by a skilled operator
of his own accord. Therefore, the final solution by the
expert system is equal to the best solution of the system

E=0Es+pPBEp +vEc+ §Ep, +¢Ep,. (3.10) corrected heuristically by a skilled operator.



CASE1.

Table 2: Result of the experiment
Expert | Neural Number of
I I I System | Network l Neurons

A% 94.1 95.5

Case 1 {| B. 4 4 351
C. 3 3
A% 96.2 93.4

Case 2 . 5 5 294
C. 3 3
A % 91.3 97.1

Case 3 || B. 4 4 165
C. 3 2
A% 96.4 93.4

Case 4 || B. 10 10 420
C. 4 4
A % 93.3 95.7

Case 5 |[ B. 7 8 256
C. 3 4

4.2 Conditions of the Experiment

Five cases were chosen for the experiment, based on
practical data from the past. In other words, this neural
network was asked to solve a real problem of a certain
scale.

Several suitable numbers of instructions around the
number set by the expert system were used. The neural
network ran ten times for each case, and the best of the
ten solutions was selected.

When handling a case including many orders, the case
is divided into several subcases, each of which includes
fewer orders, because the neural network has difficulty
in rapidly searching for the optimal solution when the
number of orders is great.

4.3 Results of the Experiment

The results of the experiment are represented by the
following three indexes;

A. Yield rate : The yield rate is calculated by dividing
the area of covered segments by the area of the
steel plate. A high yield rate is desirable because it
means a small amount of scrap.

B. Number of finished orders: Indicates how many or-
ders are finished. It is desirable to finish as many
orders as possible among those given.

C. Number of instructions: Indicates how many in-
structions are needed to finish the orders given. A
small number is desirable for improving plant effi-
ciency.

The results of the experiment are shown in Table 2.
As an example, & comparison of the solutions for Case 1
is shown in Figure 2.

4.4 Evaluation of the Experiment

As a primary consideration, the number of orders fin-
ished with the neural network should always be at least
as great as the number of finished with the expert system.

1000mm

i T T
8435m 8928m 1648m

Yield Rate : 84.1 % Solution of Expert System

1000mm

T T
s000m 8500m T s000m

Yield Rate : 95.5 % Solution of Neural Network

Figure 2: Comparative example of solutions

After this requirement is met, it is desirable that the yield
rate be higher and/or the number of instructions be fewer.

In Case 1 and Case 3, the solutions of the neural net-
work were superior to the solutions of the expert system
in terms of the yield rate. Particularly, in Case 3, the solu-
tion of the neural network was excellent in terms of both
the yield rate and the number of instructions. In Case
5, the expert system finished seven orders, but the neu-
ral network finished eight orders. Moreover if the expert
system, had finished eight orders, the yield rate would
necessarily have been lower. Therefore, the solution pro-
vided by the neural network was not merely adequate,
but was actually superior to that of the expert system.

These results mean that the neural network has a
higher ability to solve this assortment problem than the
expert system in terms of finding approximate optima.

However, in Case 2 and Case 4, the solutions offered
by the expert system were superior to those of the neural
network as a result of the difficulty of setting appropri-
ate initial values of ncurons and parameter values of the
neural network. Hence, although the neural network has
the potential to provide better solutions than the expert
system, actual performance may differ.

5 A Neural Network System
for Solving the Assortment
Problem

5.1 A Neural Network System for
the Assortment Problem

The ultimate aim is to develop a system for solving the
assortment problem using as the system core the neural
network discussed in the previous section. To make the
neural network system suitable for practical use, the main
issues are the following;

1. Number of irials

The point where the neural network con-
verges depends on the initial state of the
neural network, that is, on the initial val-
ues of the neurons. Hence, it is necessary to



run the neural network system more than
one time, using different sets of initial val-
ues. The number of trials is a crucial is-
sue from the viewpoint of both the time re-
quired for finding solutions and the quality
of solutions. In the system, the number is
set at twenty five based on experiments.

2. Number of neurons

The neural network is composed of two types
of neurons, one expressed by z;;; and the
other by y;. The number of z;;, neurons
is uniquely determined by the orders and
the characteristics of the steel plate, but the
number of y; neurons depends on the con-
stant L and integer H. When L is small,
H must be large. In this situation, y; is ex-
pressed accurately, but the system has dif-
ficulty in identifying the optimal solution.
In the system, H is sct at fifty, also based
on experiments, and L is computed from H
and the contents of orders.

3. Number of instructions

The authors found a decision table in which
the number of instructions corresponds to
the number of orders, based on experiments
with many cases. The number of instruc-
tions for all cases is set based on the decision
table.

5.2 Performance of the Neural
Network System

The performance of the neural network system was
compared to that of the expert system from the viewpoint
of the following four indicators:

A. Yield rate : A high yield rate is desirable.

B. Number of orders finished / number of orders given
: Indicates how many orders are finished using one
instruction. A high value is desirable.

C. Number of instructions / number of orders finished
: Indicates how many instructions are needed to
finish one order. A low value is desirable.

D. Time to find a solution :
system is approximate.

The value of the expert

The results of the experiments are summarized in Ta-
ble 3 for the four indicators (A~D) given above. All val-
ues are averages of several dozen cases.

Table 3: Results of Experiments

[ [ A [T B. TC 1 D. ]
Expert System 95.18 % | 0.70 | 0.71 10 min
Neural Network {| 96.89 % | 0.91 | 0.74 | 12.8 min

The following can be said regarding the performance
of the neural network system:

A. The yield rate is higher than that of the expert
system. The difference is around 1.7%, a figure
which is regarded as meaningful in Kawasaki Steel
Corporation.

B. The number of finished orders is greater than with
the expert system. These numbers show that the
neural network system finishes about nine orders
when ten orders should be finished, although the
expert system finishes about only seven orders. Hence,
the neural network system reduces the number of
small-volume orders and consequently improves plant
efficiency.

C. In terms of the number of instructions/order, the
results of the neural network system are slightly in-
ferior to those of the expert system. However, the
difference seems to present no problem for practi-
cal use, as the figure shown here indicates that the
number of instructions the neural network system
needs in order to finish a given number of orders is
not significantly different from that required by the
expert system.

D. The speed of the neural network system is adequate
for practical use.

As shown above, when ten orders are given, the yield
rate of the neural network system is higher than that of
the expert system, and the neural network system finishes
nine orders using six instructions, while the expert system
finishes seven orders using five instructions. If the expert
system finished the same number of orders as the neural
network system, either the yield rate would decrease or
the number of instructions would increase. Therefore, the
neural network system appears to be more useful than the
expert system and adequate for practical use. Moreover,
the yield rate should improve if the neural network system
is adopted.

6 Conclusion

- The capabilities of neural networks for a practical as-
sortment problem were clarified up. It can be concluded
that the neural network has the ability to find optimal so-
lutions with adequate speed. However, it is also true that
the neural network cannot always find the optimal solu-
tion in a short time. When the neural network is used
practically, its performance must be stable and it must
find useful solutions rather than merely restrict optima.
Therefore, several special methods were used to construct
the neural network model, and many difficulties in the im-
plementation of the neural network system were solved.
The results of experiments with the system show that the
neural network is useful in a practical assortment problem
in terms of both the optimality of solutions and the time
required for finding those solutions. Interconnective neu-
ral networks should therefore be useful in solving practical
problems.
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