HHEET AL HERE 6 -2
(1996. 3. 5)

Applying the Semi-Markov Memory and
Cache Coherence Interference Model to

an Updating Based Cache Coherence Protocol

Kazuki JOE and Akira FUKUDA

Graduate School of Information Science
Nara Institute of Science and Technology

Abstract

In this paper, we propose the the method to apply the Semi-markov Memory and Cache coherence
Interference (SMCI) model, which we had proposed for parallel computers with an invalidating based
cache coherence protocol, to parallel computers with an updating based protocol. The proposed
model, SMCI/Dragon, can be used for performance prediction of cache coherent parallel computers
with the Dragon protocol as well as the original SMCI model. Conventional analytic models by
a stochastic process for parallel computers have an unavoidable disadvantage of explosions of the
number of states as the system size is enlarged even if they are for simple parallel computers without
cache coherence mechanisms. The number of states required by constructing the SMCI model,
however, does not depend on the system size but only on the kind of cache coherence protocol. The
number of states for the Dragon protocol is only 20 as is described in this paper.

0 —2

SMCI ®EFIWVD7 v 75— Bxvy g -
de—L X - 7Ok a)ADER

W MK BH R

2% B RL EHON K F B A R S 7
ZEEABTHLT8916—5

Abstract

BRTIE, B ADOREL TS, 1\ F—Ya VEBIFyy o Je—L VA -7t al
ZERE L 2= B FIEHEA IS 2 8847 €7V, Semi-markov Memory and Cache coherence Interference
(SMCI) ®FNVD, Tov77F— B*ry o ae—L YR - 70 aV~ADFHIZOWTHET 5,
AW TIRE T 5 SMCI/Dragon €7)Vid, JO SMCI EF VERE, RFEWRT7 v 77— MRI7O OV
T& 5 Dragon *iRM L-HFIEEBOMETNEITR 5. HEABE LR LI NE COBTET IV
T, WFIY AT AORBREALIE Y RBMOBBHBL L W) BT A7 VB S o 72, SMCL £F
VTR, B Y 27 A OFMEICERRICEE 2. AR THET S Dragon 710 b I V33T 5 REEK
120TH5%,

1 Introduction

Various technologies have been investigated for im-
proving parallel computer architectures, such as cache
coherence protocols (1], processor clustering schemes [5]
or scalable shared memory mechanisms [7].

It is quite useful to predict the performance of such
large scaled and complicated parallel computer architec-
tures in advance of their detail designs. One of such
methodologies is simulation. However, simulating large
scaled parallel computers leads to another problem of
the computational cost. For example, we can not ex-
ecute any simulation program on a typical workstation
which simulates a paralle] computer with 1,024 proces-
sors.

Analytic modeling is widely known as a valid and inex-
pensive methodology for the evaluation of parallel com-
puter systems. The problem is that most of previous
works on analytic modeling, which were mostly by us-
ing of a markov chain [2] or queueing theory [6], do not
support parallel computers with cache memory.

Using stochastic models, some work focused on cache
coherence mechanisms [8] ‘but did not support network
contention nor memory interference which takes place in
parallel computers.

We, therefore, have proposed the Semi-markov Mem-
ory and Cache coherence Interference (SMCI) model [3],
which can analyze the Synapse [cha,che coherence proto-
col mechanism as well as network contention and mem-
ory interference both for data and cache management
requests of shared memory parallel computers. ’Ishe ad-
vantage of the SMCI model is its small number of states.
When the SMCI model is applied to the parallel com-
puter with thousands of processors which supports the
Synapse cache coherence protocol, the number of states
is only 19. Because of this small number of states, the
SMCI model can succeed to predict the performance of
a given parallel computer architecture within 300 micro
seconds on a typical workstation.

The SMCI model had two major problems of its ap-
plication to 1) larger and, therefore, more complicated
parallel computer architectures and to 2) other cache co-
herence protocols.

On concerning the former, we have already proposed
the Hierarchical SMCI model [4], which can be used for
a scalable shared memory parallel computer. The target
architecture is based on a processor clustering structure
with hierarchical memory system connected by a hierar-
chical network: The processor cluster consists of several
processors, their own private caches and local memory
connected by a bus network. It also has a gateway mod-

ule to communicate with other processor clusters. The -

gateway module contains of global cache and part of dis-
tributed global memory. Each processor cluster is con-
nected by a global network via its gateway module. The
SMCI model was extended to be applied to this large and
complicated architecture. We introduced. the hierarchy
into the model in order to be adapted to the hierarchical
system, and constructed the Hierarchical SMCI model
which consists of two SMCI models, one for representing
the processor and the other for representing the proces-
sor cluster.

Asfor the latter, we should demonstrate that the SMCI
model can be applied to other cache coherence protocols
than Synapse which is based on an invalidating policy
and a memory-to-cache transfer mechanism. For exam-
ple, we should indicate that the SMCI model can be also
constructed for the parallel computer with a cache co-

herence protocol which has an opposite characteristics
to the Synapse protocol.

Thus we propose, in this paper, the method for apply-
ing the SMCI model to parallel computers with a cache
coherence protocol of an updating policy and a cache-to-
cache transfer mechanism. Such a cache coherence pro-
tocol is known to be the Dragon protocol {1]. Although
the key concept of the SMCI/Dragon model is same to
that of the SMCI/Synapse model, they have slightly dif-
ferent state definitions with each other, and derivation

of internal variables such as various request rates is also

different.

2 Preliminary

2.1 Policy of Modeling

Using the same concept as the SMCI/Synapse model,
we first formulate the relation between the limiting prob-
abilities of states of a processor and processor request
rates. Givinginitial values to the processor request rates,
the limiting probabilities can be calculated. Based on
them, the processor request rates are updated. Repeat-
ing these calculations, we can find a convergent point for
a request rate which indicates the steady states of the
system.

2.2 Assumptions of the Model

The target parallel computer consists of several pro-
cessors, their own private caches and memory connected
by a smgle shared bus network. The cache coherence
mechanism with the Dragon protocol [1] is supported by
hardware.

To simplify the analytic model, the following assump-
tions are introduced:

1. The behavior of processors can be modeled as iden-
tical stochastic processes.

2. The duration of issueing and receiving requests
are independent, and expressed as geometrically
distributed discrete random variables with mean
Anor (issueing a request), Aoy (receiving requests)
and Aypd (receiving requests) respectively. Re-
quest service times are given determinately by a
hardware specification of the system.

3. The running program is in a steady state; the ini-
tial paging for loading or the initial poor cache
hit rate is not considered. But the replacement of
cache blocks is considered.

2.3 Semi-Markov Process
" In this paper, a Semi-Markov Process (SMP) is a dis-

crete stochastic process which consists of K states. In
state ¢, it sojourns for the period given by the time dis-
tribution function Fj;(t) and makes a transition to state
j with probability p;;. See [3] for more details.

2.4 Dragbn Protocol

Dragon (1] is a cache coherence protocol of which char-
acteristics is represented as a broadcast request of up-
dating other caches at a write operation.and as a cache-
to-cache transfer when a cache miss occurs with other

7 1: Summary of Dragon Protocol (CCW: Cache-to-Cache tran. of Word, MCB: Memory-to-Cache tran. of Block)

[I[cache [other caches | bus | memory | remark]
Write CE,DE —DEFE | not exist no use | no use no use of a bus
Hit CS —DS CS,D5 —=CS | CCW | no use broadcast of updating
DS —=DS CS —=C5 CCW | no use broadcast of updating
"~ Head —CE not exist MCB [Load read from memory
Miss —~C5 CE,CS —-CS | CCW [no use cache-to-cache transfer
—CS DE, DS =DS | CCW | no use cache-to-cache transfer
Write —DE not exist MCB Load Tead from memory then write to cache
Miss —DS CE,CS,=CS5 | CCW | no use cache-to-cache transfer then write to
DE,DS cache, broadcast of updating
" Replace || DE,DS — no change CMB | Store write back to memory
CE,CS — no change no use | no use the block is Hushed

cache’s having a copy of the block. In the Dragon pro-
tocol, a data block can be in one of four states : 1)
Clean-Exclusive (CE, only copy in caches, but not mod-
ified), 2) Clean-Shared (CS, not modified, possibly other
caches with a copy), 3) Dirty-Exclusive (DE, only copy
in caches and modified) and 4) Dirty-Shared (DS, mod-
ified, possibly other caches with a copy in CS). Table 1
summarizes the work of Dragon.

3 2: State definitions in the SMCI/Dragon model

COM | COMputation
Rh Read hit
WrE | Write hit on a clean/dirty Exclusive block
WhHS | Write hit on a clean/dirty Shared block
WEB | Broadcast of upd. caused by a Write hit
WhB | Waiting state for WhB
Rm Read from memory
Rm Waiting state for Rm
"ERc Read from another cache
Re Waiting state Rc
Wm ‘Write to memory
Wm Waiting state Wm
We "Write to a block loaded from another cache
We Waiting state We
WecB | Broadcast of updating caused by We
WcB | Waiting state WcB
Rep Replacement caused by Rm, Rc, Wm, Wc¢
Rep Waiting state Rep
Flu Flush caused by Rm, Rc, Wm and Wc¢
cT TLoading a block to a network caused by

a request of Cache-to-cache Transfer
Upd Updating a block caused by a broadcast

request of updating

2.5 Definitions of Various Request Rates

In a parallel computer, requests from a processor are
determined at run time. They consist of original requests
from a given program and re-issued requests from pro-
cessor waiting states because of network contention. The
former might be bound for cache or memory. If they are
accepted at private cache, the requests do not affect the
network. Furthermore, there is a request for replacement

of a cache entry which affects the network performance
but is not a normal data request.

To construct the SMCI/Synapse model, we have pro-
posed new definitions for various request rates [3] to for-
mulate the above phenomena. In this paper, we pro-
pose similar kinds of request rates for construction of the
SMCI/Dragon model: a) Normal request rate @, is
the rate that a processor issues a request just after its
computation state, b) Memory request rate pmem is
the rate that a processor issues a request to memory ei-
ther from cache miss, replacement or waiting states, c)
Cache-to-cache communication request rate ..
is the rate that a processor issues a cache-to-cache com-
munication request either from cache miss/hit or waiting
states and d) Network request rate @ne: is the rate
that a processor issues a request to the network and is
expressed as the sum of Ymem and ..

3 The SMCI Model

3.1 Definition of States

To construct the SMCI/Dragon model, we first define
each state of a processor. Table 2 shows state definitions
of a processor to its cache, memory and network based
on the Dragon protocol. As shown in the table, it re-
quires only 20 states to represent the possible behavior
of a processor in the Dragon protocol. Table 3 indicates
several sets of the states, which are used for derivation
of internal variables of the model.

3.2 State Transitions

Figure 1 shows transitions between the defined states.
A state transition occurs when any kinds of request is
issued, completed or arrived. In this figure, h represents
the cache hit rate for private blocks, H represents the
cache hit rate for shared blocks, 7 represents the read re-
quest rate to read/write requests, ¢ represents the prob-
ability that no other caches have a copy of the requested
block, w represents the probability that the request is not
accepted, u represents the probability that the processor
generates a reference to a shared block and m represents
the probability that the replacing block has been already
modified. There are three kinds of state transition from
COM; 1) caused by issueing data requests such as read
or write, 2) caused by a cache-to-cache transfering re-
quest and 3) caused by a broadcast request of updating.
y represents the rate of 1) to all transitions and z repre-
sents the rate of 2) to the sum of 2) and 3).

While ¢ is derived from input parameters, w, y and
z are derived from the limiting probability and various
request rates. All other variables are given as input pa-
rameters.

The COM state changes in two cases; 1) the proces-
sor issues a data request and 2) the processor responds
to a request from another processor. In the latter case,
the processor’s behavior is to load a cache block to a
network responding to a cache-to-cache transfer request
from another processor (CT) or to update a cache block
responding to a broadcast request from another proces-
sor (Upd). From these states, they change to COM di-
rectly. In the former case, it changes to Rh, Rm, Rc,
Rm, Re, WhE, WhS, Wm, Wc¢, Wm or We, depend-
ing on whether the request is read or write, whether
a cache hit occurs, whether the requested block is in
the dirty/clean exclusive or shared when a write hit oc-
curs, whether the request requires a memory access or a
cache-to-cache transfer, or whether the network is busy
respectively. Rh and WhE change only to COM. Re-
mark that in Rc and We, the requested data block is
transfered from another cache which has a copy of the
block. Wc changes to WcB or WceB to issue a broadcast
request of updating. Similarly WhS changes to WhB or
WHhB for broadcasting. A state of cache miss (Rm, Re,
Wm or WcB) requires replacement of a cache block by
assumption. The replaced cache block must be written
back to memory (Rep or Rep) or simply discarded (Flu).

Rep, change to WhB, Rm, Rc, Wm, Wc¢, WcB and
Rep respectively or change to themselves depending on
network traffic.

In Fig.1, a1l = y(h(1 — u) + Hu)r gives the proba-
bility that COM changes to Rh. The derivation is as
follows. When a request occurs in COM, it must be a
data request (with the rate y) or caused by a request (of
cache-to-cache transfer or broadcast of updating) from
another processor (with the rate 1 — y). If it is a data
request, it must be a read request (with probability r)
or a write request (with probability 1 — r). If it is read
one, the request can be satisfied at the cache. When the
request is bound for a private block (with the probability
1 — u), the private block cache hit rate is h. Otherwise
it is bound for a shared block (with the probability u)
and the shared block cache hit rate is H. Thus we ob-
tain al = y(h(1 — u) + Hu)r. We do not explain other
elements of the state transition probabilities because of
lack of space.

3.3 Construction of an SMP

We have discussed definitions of processor’s states and
transition probabilities between the defined states. Let
us investigate distributions of sojourn times for each

. state. States of a processor can be classified into three
groups with regard to distributions of their sojourn times:
1) a computation state, 2) request service states for cache
or memory and 3) waiting states. As described in Sect.2.2,
we assume that the sojourn time for computation is geo-
metrically distributed. Strictly speaking, each transition
from COM has its own distribution of the sojourn time
according to the next state (Rh, Rm, Rm, Rc, Rc, WhE,
WhS, Wm, Wm, We, We, CT, Upd). 1t is, however,
extremely difficult to obtain such distribution functions.
Therefore we assume three kinds of geometrically dis-

1 alzy(W(1-upH ujr , ad=y(b(1-u}+H u}1-1) , adey((1-RX I I-Hyud)r(i-w) ,

1 ad=y((1-b(1-u}+{1-H)ulrw , aS=y(1-Hur(1-tX1-w) , ab=y{1-H)ol1-w,

| aT=y((1-h)(1-u){1-H)u)(1-0)(1-w) , 8= y(1-b1-u}+{1-Hut){1-n)w ,

1 a8=y(I-Hpu(i-X(1-0)(1-w) , a10=y(i-Kpu(l-r){1-Ow ,al1=t, a2 14 1-w) ,
!lalHl-l)v,:lH-w 15w alb=l~m, al7=m(1-w} , ald=mw ,al8=yz, adl=y(1-2)

1: State transition graph of an SMP based on the

Dragon protocol . . .
tributed functions for the sojourn times of computation;

1)parameter An,, for transitions caused by issueing data
requests, 2) parameter Agr for a transition caused by
a cache-to-cache transfering request and 3) parameter
Avupd for a transition caused by a broadcast request of up-
dating. The sojourn times for the request service states
are determinately given by the below function F;;().

1
Fiy(t) = { 0 otherwise

For example, the access times for a cache read, a mem-
ory read and a broadcast request are 1, 16 and 4 cycles
respectively. These values are determined by a specifica-
tion of the target architecture. Furthermore, we assume
that the sojourn time for waiting states is geometrically
distributed with parameter Wt as given latter.

The stochastic process X = {X,}32, defined by the
above state space and transition probabilities represents
the behavior of a processor. It is trivial that X is a
markov chain because of assumptions in Sect.2.2. The
sojourn times of each state of X are given by the above
time distributions. Considering each sojourn time as
random variable sequences T' = {T,}52,, the stochas-
tic process (X,T) = {X,,Tn}52, constructs an SMP.

It is obvious from Fig.1 that the EMC X of the SMP
(X, T) is ergodic. Thus we can obtain the limiting prob-
ability of the SMP. As described in Sect.2.1, we start
from appropriate initial request rates, obtain the limit-
ing probabilities, update the request rates, obtain the
new limiting probabilities and repeat these calculations
until the request rates are saturated. Thus we obtain
the steady states of the system.

3.4 Limiting Probabilities and Request
Rates

To calculate various request rates and limiting proba-
bilities, several appropriate input parameters are needed.
They are the number of processors N, private block
cache hit rate h, shared block access rateu, read re-
quest rate N, the number of shared blocks in a given
program E and the probability that the replacing block
has been already modified m, which are the same ones

if t > State i Serv. Time (i € Qcache U Qnet)

as in Archibald’s simulation. Also each sojourn time for
COM (\nor) and request service states (mi, 7 € Qeache U
Qnet) is given as input parameters. Remark that Anor
is the distribution parameter of transitions from COM
caused by issueing data requests.

The aim of this subsection is to derive internal vari-
ables by input parameters. The internal variables are
summarized in Table 4.

3 3: Sets of states of the SMCI/Dragon model

Q A set of all states

Qcache = Rh, WhE, WhS, CT, Upd, Fl‘IL}
m_req = Rm, Wm, Rep}

Q"u‘eq.w = le € Qm.req}
c_req = RC, Wc, WhB, WCB}

Qc..req_w = *ll'b € Qc_req}
net = m.req c_req

Q'net_w = {115 € ant}

% 4: Internal Variables used in the SMCI /Dragon Model

H shared block cache hif rate
¥ expected number of shared blocks in a cache

t probability that no other caches have a copy
of the requested block

w probability that the tequest to a network is
not accepted

y rate of transitions from COM caused by data
requests to all transitions from COM

z rate of transitions from COM caused
by cache-to-cache transfer requests to those
by all transitions except data requests

Wt average sojourn time of waiting states

Act distribution parameter of transitions Irom
COM caused by cache-to-cache trans. req.

Avupa | distribution parameter of transition from
COM caused by broadcast req. of upd.

Ornor normal request rate

Pmem | memory request rate

Pee cache-to-cache communication request rate

Dnet network request rate

L stationary distribution of the EMC
P;} | Timiting probability of the SMP

In [3{, we denoted that H was derived from [8]. Since
no analytical result of H for the Dragon protocol has
been obtained, we approximate H to that for the Write-
once, the Illinois and the Berkeley protocols (They have
the same value.) in (8] as below.

1 (N-1)(1-7)
YR ED)

where Is represents the access burst length[8].

% was given in (3] by using H and E.

The feature of the Dragon protocol is a cache-to-cache
transfer instead of a memory access in the case that a
cache miss occurs and other caches have a copy of the

(1)

block. To formulate this mechanism, we introduce the
probability ¢ that no other caches have a copy of the
requested (shared) block as below.

t= (1 - %)N_l (2)

The probability, w, that a processor falls into a wait-
ing state to issue a request to the network is derived in
the same way as in [3]. There are two cases for such
waiting states: one is the case the network is busy and
the other is the case the processor loses network con-
tention even if the network is not busy. In the former
case, the probability that another processor is access-
ing cache (cache-to-cache transfers or broadcasting) or
memory and will not leave the state in the next network

cycle is Pl-ﬂ% (¢ € Qcreqg U Qm_req). Therefore, the
probability Busy that the network is busy is given by

Busy = (Nl_ 1)ﬂ(l - pyN-2 (3)

where g = Eich_,,unm_”, P; 9‘7’:1 In the latter case,

the probability Win that the processor wins the network
contention is defined as

Win=(1-(1- N . 4
(1= (1= ne)™ (@)
Since the probability that a request is accepted at the
cycle when there are issued requests is the reciprocal of
the number of issued requests at the cycle.
Thus the probability w that a processor falls into a
waiting state can be expressed as

w = Busy + (1 — Busy)(1 — Win). (5)

The request rate ¢; can be obtained as below. By
definitions, the normal request rate @, is given by

1
Prnor = ')‘\‘_

nor

(6)

The memory request rate is equal to the sum of the
rate of leaving from the COM state to Qm_req and the
rate of leaving from @m_req_w. As described previously, a
waiting state is divided in two cases; network contention
and network busy . Let us refer to the former as the full
waiting state and the latter as the residual waiting state.
We assume that a processor issues a request per each
waiting and each cycle in the full and residual waiting
state respectively. Thus the probability, @ mem, is defined
by

Pmem = (1= B)(1 = u) + (1 = H)tw) por
+ m((1=A)(1 = w) + (1 = H)w) onor

F;
2 5

. 1
1€Qmoreq_w

M
2 A

1E€EQm_regow

Busy (1 — Busy)

Asis in the case of the memory request rate, the cache-
to-cache communication request rate is obtained from

Pec = (1 - H)(l - t)uﬂonor +u(1 - T)(l - t)‘P'nor (8)

Z %+(1—Busy) E P;.

1€Qcreqm 1€Qcreqmw

+ Busy

The network request rate is expressed as

(©)

The definition of Wt is the average time until the net-
work is free, thus Wt is given as below.

Prnet = Pmem + Pec

EiEQnu_w Pi77i
EiEQnu_w P;

The rate y of transitions from COM caused by data
requests to all transitions from COM is derived from the
cache-to-cache communication request ¢... As describe
above, .. consists of the cache-to-cache transfer request
rate (1 — H)(1 — t)u@nor, the updating broadcast request
rate u(1 — 7)(1 — t)¢nor and the request rate from their
waiting state. Thus the probability zcr that a processor
receives a cache-to-cache transfer request and the proba-
bility zupa that a processor receives a broadcast request
of updating are given by

Wt = (10)

N-1

zor = 1-— (1 _ a_(lvﬁ_E—)(l - H)(l - t)u({’nor> (11)
N-1
ZUpa = 1- (1 - a—(—%—@u(l -r)(1- t)%or) (12)

is the function* which predicts

respectively where a(?
caches with having a copy of the

the average number o
requested block.
Therefore y is expressed as below.

= Pnor
T1- (1 - ‘Pnor)(l - ZCT)(l — zUpd) (13)

Similarly, the rate z of transitions from COM caused
by cache-to-cache transfer requests to those by all tran-
sitions except data requests is obtained from

Y

(1= (1 = 2zer)(1 — zupa))’

The time distribution parameter Acr of transitions
from COM caused by cache-to-cache transfer requests
and Aypq of transitions by broadcast requests of updat-
ing are defined as reciprocals of zgr and zypa respec-
tively. '

Finally, the average sojourn time of COM can be ob-
tained as below.

z=

(14)

NcoM = Yhnor + (1 —y)zAor + (1 —y)(1 = 2)Aupa (15)

3.5 Initial Values for Calculations

To obtain the converged limiting probabilities of the
SMCIK/Dragon model, as described 1n subsection 2.1, we
start from appropriate initial values. An example of sets

of initial values are: pnor = T%;’ Pmem = (1 = B)@nor,

ee =0,y =10,z =00, w = 1 — (1 = pne)" and
Wt =1.

1This function is, clearly, affected by the number of shared
blocks and processors but is difficult to formulate since it should
be derived from a given parallel program model. In this paper, we
do not focus on the formulation but use an approximation.

4 Conclusion

In this paper we proposed the method to apply the
SMCI model to parallel computers with a cache coher-
ence protocol of an updating policy and a cache-to-cache

transfer mechanism, and obtained the SMCI/Dragon model.

To construct the SMCI/Dragon model, we re-defined
various processor request rates to suit the Dragon pro-
tocol and gave the state definitions which can allow the
same input parameters as used in Archibald’s simulation.
Thus the SMCI/Dragon model could treat the cache-
to-cache communication request as well as the normal
memory request with their waiting states, with consid-
ering the cache replacement.

The current problem of the SMCI/Dragon model is
that we adopted rough approximation for the average
number of caches with having a copy of the requested
blocks. It should depend on parallel program models.
rather than architecture models. Therefore, its better
approximation should be the future work.

SE R

[1] James Archibald and Jean-Loup Baer. Cache coher-
ence protocols: Evaluation using a multiprocessor
simulation model. ACM Trans. on Computer Sys-
tem, 4(4):273-298, 1986.

[2] Dileep P. Bhandarkar. Analysis of memory interfer-
ence in multiprocessors. IEEE Trans. on Computer,
C-24(9):897-908, 1975.

[3] K. Joe and A. Fukuda. Analytic modeling of cache
coherence based parallel computers. Technical Re-
port 95-MPS-3-3, IPSJ SIGMPS, 1995.

Kazuki Joe and Akira Fukuda. An analytic model
for a hierarchical parallel system. In International
Workshop on Massive Parallelism: Hardware, Soft-
ware and Applications, pages 287-304, 1994.

David J. Kuck, Edward S. Davidson, Duncan H.
Lawrie, and Ahmed H. Sameh. Parallel supercom-
puting today and the cedar approach. Science,
231(2):967-974, 1986.

4

[5

[6

John W. McCredie. Analytic models as aids in mul-
tiprocessor design. In Ann. Princeton Conference
on Information Science and System, pages 186-191,
1973.

[7] S. Mori, H. Saito, M. Goshima, M. Yanagihara,
T. Tanaka, K. Joe, D. Fraser, H. Nitta, and
S. Tomita. A distributed shared memory multipro-
cessor: Asura — memory and cache architectures—. In
Supercomputing 93, pages 740-749, 1993.

Jin-Chin Wang and Michel Dubois. ~ Performance
comparison of cache coherence protocols based on
the access burst model. Computer System Science
and Engeneering, 5(3):147-158, 1990.

8

