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Abstract.  We propose an extension of an entropy-based heuristic of Quin-
1an[Q93] for constructing a decision tree from a large database with many numeric
attributes. Quinlan pointed out that his original method (as well as other exist-
ing methods) may be inefficient if any numeric attributes are strongly correlated.
Our approach offers one solution to this problem. For each pair of numeric at-
tributes with strong correlation, we compute a two-dimensional association rule
with respect to these attributes and the objective attribute of the decision tree.
In particular, we consider a family R of grid-regions in the plane associated with
the pair of attributes. For R € R, the data can be split into two classes: data
inside R and data outside R. We compute the region R, € R that minimizes
the entropy of the splitting, and add the splitting associated with Ry (for each
pair of strongly correlated attributes) to the set of candidate tests in Quinlan’s
entropy-based heuristic.

We give efficient algorithms for cases in which R is (1) 2-monotone connected
regions, (2) based-monotone regions, (3) rectangles, and (4) rectilinear convex
regions. The algorithm for the first case has been implemented as a subsystem
of SONAR(System for Optimized Numeric Association Rules) developed by the
authors. Tests show that our approach can create small-sized decision trees.
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1 Introduction
Decision Trees

Constructing an cfficient decision tree is a very im-
portant problem in databasc mining [AGL*92, ALS93,
BFOS84, MAR96, Q93]. For cxample, an cfficient
computer-based diagnostic medical system can be con-
structed if a small decision trec can be automatically
generated for cach medical problem from a databasc of
health-check records for a large number of paticents.

Let us consider the attributes of tuples in a databasc.
An attributc is called Boolean if its range is {0,1},
catcgorical if its range is a discrete sct {1, .., k} for some
natural number &, and numeric if its range is the set of
rcal numbers.

Each data tuple ¢ has m + 1 attributes A;, for i =
0.1,...m. We trcat onc Boolcan attribute (say, Ao)
as special, denote it by W, and call it the objective
attribute. The other attributes arc called conditional
attributes.

The decision tree problem is as follows: A set U
of tuples is called “positive” (resp. negative) if for a
tuple ¢, the probability that #{W] is 1 (resp. 0) is at
lcast #; (resp. 63) in U, for given thresholds 6, and
f2. We would like to classify the sct of tuples into
positive subscts and ncgative subscts by using tests
with conditional attributes. For a Boolcan (conditional)
attribute, a test is in the form of “4{4;] = 1?”. For a
categorical attribute, a traditional test is “¢[A4;] = 1?7,
For a numeric attribute, a traditional test is “t[4,] <
Z? for a given valuc Z.

Let us consider a rooted binary tree, cach of whose
internal nodes is associated with a test that has
attributes. We associate with cach lcaf node the subsct
(called leaf-cluster) of tuples satistfying all tests on the
path from the root to the leaf. If cvery leaf-cluster is
cither positive or negative, the tree is called a decision
trece. .

For cxample, assume that we have a databasc of
health-check records for a large number of paticnts
with geriatric discases. Consider a sct of health-check
items; say, systolic blood pressure, urinc sugar (8),
and cholesterol level (C). We would like to decide
whether a patient nceds a detailed health check for a
geriatric discasc (say, apoplexy). Suppose that blood-
pressurc is a numeric attribute, and that urine sugar
and cholesterol level arc Boolean (+ or —) attributes in
the health check database. Figure 1 shows an cxamples
of decision trees corresponding to the table below:

Blood-pressure Cholesterol + Cholesterol—
Sugar+ | Sugar— | Sugar+ | Sugar—

abovelll Q (i.e. geriatric-disease positive)
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Figurc 1: Decision trec

Unfortunately, the problem of constructing a mini-
mum decision tree is known to be NP-hard [HR76, 7],
if onc want to minimize the total sum of the lengths of
oxterior paths. It is also belicved that it is NP-hard if
the minimized objective is the “size” (number of nodes)
of the tree.

Despite the NP-hardness of the problem. many
practical solutions [BFOS84, 86, QR89, Q93] have
been proposed in the literature. Among them, Quinlan’s
C4.5 program [Q93] applies an cntropy heuristic, which
greedily constructs a decision tree in a top-down,
breadth-first manner according to the “cntropy of
splitting.” At cach internal node, the heuristic examines
all the candidate tests, and chooscs the onc for which
the associated splitting of the sct of tuples attains the
minimum cntropy valuc.

If cach test attribute is Boolcan or catcgorical,
Quinlan’s method works wcll, and SLIQ of Mchta ct
al. [MAR96] gives an cfficient scalable implementation,
which can handlc a databasc with 10 million tuples and
400 attributes. SLIQ uses the GINI function instead of
cntropy.

Handling Numeric Attributes

To handle a numeric attribute, onc approach is to make
it categorical, by subdividing the range of the attribute
into smaller intervals. Another approach is to consider
a test of the form t[4;] > Z or ¢{Ai] < Z, which is
called a “guillotine cut”, since it crcates a “guillotine-
cut subdivision” of the Cartesian space of ranges of
attributes. Quinlan’s C4.5 and SLIQ adopt the latter
approach.

However, Quinlan [Q93] himself pointed out that this
approach has a scrious problem if a pair of attributes arc
corrclated. For cxample, let us consider two numeric
attributes, “height (m)” and “wecight (kg)”. in the
health check database.  Obviously, these attributes
have a strong corrclation. Indeed, the region 0.85
22 * height? < weight < 1.15 * 22 * height? and its
complement provide a popular criterion for separating
healthy paticnts from paticnts who need dictary cures.
In the left chart of Figure 2, the gray region shows the
“healthy” region. However, if we construct a decision
tree for classifying paticnts by using guillotine cutting,



its subdivision is complicated, and hence, the size of the
tree becomes very large (see the right chart of Figure 2).

Thercfore, it is very important to proposc a better
scheme for handling numeric attributes with strong
corrclations in order to make an cfficient diagnostic
system based on decision tree.

Welght
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Helght Helght
Figure 2: Healthy region, and guillotine-cut subdivision
to scparate it from data

Main Results — Splittings with respect to
regions

In this paper, we proposc the following scheme, applying
the two-dimensional association rules (region rules) of
Fukuda ct al. [FMMT96b} and an image scgmentation
algorithm of Asano ct al. [ACKT96]. The scheme has
been implemented as a subsystem of SONAR (System
for Optimized Numeric Association Rules) developed by
the authors [FMMT96c].

Lct » be the number of tuples in the database. First,
for cach numeric attribute, we create an cqui-depth
bucketing so that tuples arc uniformly distributed into
N < /n ordered buckets according to the valucs of the
attribute.

Next, we find all pairs of strongly corrclated numeric
attributes. For cach such a pair A and A’, we create an
N XN pixcl grid G according to the Cartesian product of
the bucketing of cach numeric attribute. We consider a
family R of grid rcgions; in particular, we consider the
sct R(Admz) of all admissible (i.c. connceted and z-
monotonc) regions and R(Base) of all based-monotonce
(i.c. bounded by an z-monotonc grid curve) regions.
Here, a grid region is a union of pixcls of G, and it is
x-monotonc if its interscction with cach column of G is
cither empty or a vertical strip. A grid curve consists
of cdges of the pixel grid G, and is z-monotonc if its
intersection with cach vertical line is cither a point or an
interval. Figure 3 shows instances of a bascd monotone
region and an admissible region. A bascd-monotonc
region may be disconnected as shown in Figure 3, since
the bounding grid curve may contain scgments of the
upper or lower boundary of G. Note that a connccted
bascd-monotonc region is an admissible region. We also
deal with the family of rectangles and the family of
rectilincar convex polygonal regions.

Figurc 3: Bascd Monotonc Region (left) and Admissible
Region (right)

Regarding the pair of attributes as a two-dimensional
attribute, we compute the region Ryp in R that min-
imizes the cntropy function, and consider the decision
rule (¢[A], t[A']) € Ropt- We present algmithms to com-
pute Rope in worst-case times of O(niV) and O(n. ’V2)
for R(Base) and R{Admi), respectively. Morcover, in
practical instances, our algorithms run in O(N?) time
and O(NZlogn) time. Since N < 4/n, the time com-
plexities are O(n) and O(nlogn), respectively. For
rectangles and rectilincar convex polygonal regions, the
time complexity increases to O(nN?) in the worst case
and O(N®logn) in practice (because of space limitation,
we omit results for thesc regions in this version).

Now, we add these rules (for all pairs (A4, A’) of
corrclated attributes) to Quinlan’s original scheme, and
construct a decision trce by applying entropy-based
heuristic. As a special casc of region rules, we also
consider rules of the form (¢#[A] € I) for an interval I in
order to develop our system.

Since the regions scparated by guillotine cutting and
those scparated by line cutting arc very special cases
of connected bascd-monotone regions, our method can
find decisions that create splittings with smaller catropy
values at cach step of Quinlan’s heuristic.  Hence,
we can almost always crcate a smaller tree. In the
above cxample of Figure 2, the hcalth region itslef
is an admissible region, and hence we can create a
nice decision tree of height two (i.c. with the root
and two leaves). Onc defect of our approach is that
the decision rule (¢[A],#{A’]) € R is somctimes hard
to describe. Howcever, we can describe the rule by
combining a visualization system and an approximation
scheme, using interpolation functions.

We also discuss the gencralization of our method to
cascs in which the objective attribute is categorical.

2 Entropy-Based Data Segmentation
for Decision Trees

2.1 Entropy of a splitting

Assumc that a data sct S contains n tuples. To
formalize our dcfinition of cntropy of splitting, wc
consider a morce gencral case in which the objective
attribute W is a catcgorical attributc taking valucs
in {1,2,..,k}. Let p; be the rclative frequency with



which W takes the value 7 in the set 5. We also
define f(X) = f(w1,.ok) = Loy 2ilogwi/s(X)),
where s(X) = Eikﬂ z;. It is casy to scc that f(X) is
a convex function in the region X > 0 (ie. @; > 0 for
i=1,2,...k).

The cntropy valuc Ent(S) (with respect to the
objective attribute W) is defined as

1,
Ent(S) = - Z pjlogp; = -;l_‘f(plne'--.l’k"')-
=1,k

We now consider the cntropy function associated with
a splitting of the data. For cxample, supposc that the
objective attribute has three categorics, say Cy. Cs, and

's. and that cach category has 40, 30, and 30 data,
respectively.

Cp | Cy | Cs
100 || 40 | 30 | 30

The valuc of the cntropy of the whole data sct is

0 40 30 30 30 30 o
100 5700 100 5700 100 8100

Let us consider a splitting of the data sct into two
subscts, S; and Sy, with n; and nq data, respectively.
where n; + ng = n. The catropy of the splitting is
defined by

Ent(Sy; 55) = %Ent(sl) + %Ent(sz).

If we assumec that the splitting is as follows:

51 C'] Cy Cs Ss [ C’g Cs
60 |[ 40 | 10 | 10 40 ff 0 [ 20| 20

the cntropy index value of the datasct after the
segmentation is 0.80; Thercfore, the splitting decrcases
the entropy by 0.29.

However, the following another splitting decrcases the
entropy value only by 0.013:

S TC1C: ] Ch s, Tclc G
G0 [l 20 | 20 | 20 020101 10

2.2 Splittings with respect to regions

Given a numecric attribute A, Quinlan [Q93] and Mchta
ct al. [MAR98] considercd the following splitting (1),
which can be extended to (2):

1. Lot S(A> Z) = {t € S: t{A] > Z} and S(4 <
Zy={te S:t[{A] £ Z} for a rcal number Z.

2. For an interval I, let S(A e I)={t e S:t{A] e I}
and S(Ael)={te S:tA] ¢ I}.

&

We call the above two kinds of splitting “onc-
dimensional rules” for short. In this paper, wc
consider splittings wnith respect to grid regions, which
arc somctimes called region rules.

We specify a number N < /7, and construct an
(almost) cqui-depth ordered bucketing of tuples for cach
numeric attributc A. That is, we construct buckets
B{*,... B4 cach of which contains approximately n/N
tuples, satisfying t[A] < t'[A] for every t € Bt € B}
and ¢ < j. An cfficient randomized algorithm for
constructing such a bucketing can be found in Fukuda
ct al. [FMMT96a].

For a pair of numeric attributes A and A, we have
a pixcl grid G of size N x N gencerated as a Cartesian
product of bucketings, such that for an (i, 7)-th pixcl
q(3.4). ¢ € g(i.) if and only if ¢{A] € B and #{4'] €
B_;-‘". We denote the pixel containing £ as g(%).

We consider a family R of grid regions of G. For
cach R € R, we consider a splitting S into S(R) =
{t € §:q(t) € R} and S(R) = {t € §: q(t) € R},
where R = G — R is the complement of R. Let Ropy
be the region of R that minimizes the cntropy of the
splitting. The region Rop: and the associated splitting
arc called the optimal region and the optimal splitting
(or region rule) with respect to R and the pair of
attributes (A4, A').

A grid region is called based-monotone, if it lics below
an z-monotonc curve. A grid region is called admissible
if it is a connccted region bounded by a pair of z-
monotonc grid curves. R(Base) and R(Admi) arc the
scts of all based-monotonc and admissible regions of G,
respectively.

In Scction 3, we present cfficient algorithms for
computing the optimal splitting with respect to certain
familics of regions, including R(Admi) and R(Basc),
when the objective attribute W is Boolean.

The construction of a decision tree is top-down, start-
ing from its root in breadth-first fashion. When a new
internal node is created, the algorithm first computes all
onc-dimcnsional rulcs for singular attributes, and region
rules for corrclated pairs of attributes, together with
rules associated with Boolean or categorical conditional
attributes. Then it chooses the rule that minimizes the
cntropy. The decision made at the node is associated
with the splitting.

2.3 Selecting correlated attributes

Even if A and A’ arc not strongly corrclated, the region
rule associated with the pair (A, A’) is better with re-
spect to the entropy valuc than one-dimensional rules on
A and A’. Howecver, it does not necessarily give a better
system for users, since a region rule is more complicated
than a onc-dimensional rule. Indeed, some technique
(for cxample, a visualization technique [FMMT36b]) is
necessary to cxplain a region rule.



Hence, it is desirable that a region rule should only he
considered for a pair of strongly corrclated conditional
attributes. We usc the entropy valuc again to decide
whether A and A’ arc strongly correlated. Let Ropt
be the region for a pair (A, A') minimizing cntropy
value Ent(S(Ropt); S(Ropt)) - Let I and I’ are intervals
minimizing the cntropy of the splitting that corresponds
to the rules A(X) € I and A'(X) € I', respectively.

We give a threshold o > 1 to decide A and A are
strongly corrclated if and only if

Ent(S) — Ent(S(Rop:)i S(Ropr)) S
Ent(S) — min{Ent(S(I); S(I)). Ent(S(I');S(I"))}

The valuc of & depends on the application.

3 Optimization of Splittings

3.1 Naive Hand-Probing Algorithm

From now on, we concentrate on the casc in which the
objective attribute W is Boolcan, although our scheme
can be extended to the casc in which W is categorical.
Thercfore, the entropy function is written as

Ent(S) = ~plogp — (1 - p)log (1 - p).

where p is the frequency with which the objective
attribute has the value 1 (i.c. “yes™) on the sct of tuples.

We consider the problem of computing Rgpe in scveral
familics of grid regions of G. Note that it is very
cxpensive to compute Rop by examining all clements of
R, since the set R(Basc), for cxample, has N different
regions.

Let »y and my be the numbers of tuples ¢t of S
satisfying t{W] = 0 and ¢[W] = 1, respcctively. For
a region R, let (R) and y(R) be the number of tuples
t located in the pixels in R that satisfy {{W] = 0 and
#{W] = 1, respectively.

Consider the planar point set P = {«(R) = (z(R). y(R)) :

R € R},.and its convex hull conu(P). Since #(R) and
y(R) arc nonncgative integers which arc at most n, P
contains O(n?) points, and conv(P) has at most 2n
points on it. We define

,f(;v'. y) +-f("‘l — X, Ny — y) .
P, :

E(:L :‘/) ==

using the function f dcfined in the previous sce-
tion for X = (a,y). Then, the cntropy func-
tion Ent(S(R); S(R)) of the splitting is E(«(R)) =
E(z(R). y(R))-

Lemma 3.1 (Rop) must be on conu(P).

Proof: Since f(.y) is convex, E(x, ) is also a concave
function. It is well known that thc minimum of a
concave function over P is taken at an cxtremal point
(that is, a vertex of conv(P)). §

Hence, naively, it suffices to compute all the vertices
of conv(P) and their associated partition curves. Our
problem now resemble to global optimization problems.
However, we know ncither the point set P nor the
constraint incqualitics defining the convex hull; hence
we cannot usc the lincar programming approach of
global optimization in a straightforward manner.

Let conu™(P) (resp. conv~(P)) be the upper (resp.
lower) chain of conv(P); Here, we consider the leftmost
(resp. rightmost) vertex of conz(P) belongs to the
upper (resp. lower) chain.

Our algorithm is bascd on the usc of what is known in
computational gcometry as “hand probing” to compute
the vertices of a convex polygon [DEY86). Hand probing
is based on the touching oracle:

“ Given a slope 8, compute the tangent line with
slopc 6 to the upper (resp. lower) chain of the
convex polygon together with the tangent point -
v¥(6) (resp. v (0)). If the slope coincides with
the slope of an edge of the polygon, the left vertex
of the edge is reported as the tangent point.”

Lemma 3.2 If a touching oracle is given in O(T) time,
all vertices of conv(P) can be computed in O(nT) time.

Proof: We consider an interval I = [I(Ieft), I(right)]
of the upper chain of conv(P) between two vertices
I(left) and I(right) (scc Figurc 4). We start with 6 =
oc, find the leftmost vertex pp and the rightmost vertex
p1 of conv(P), and sct I(left) = po and I(right) =
p1- Let 6(I) be the slope of the line through points
I(left) and I(right). We perform the touching oracle
and find I(mid) = vt(8;). If I(mid) = I(left), we
report that I corresponds to an cdge of conv(P), and
hence no other vertex cxists there.  Otherwise, we
divide I into [I(left), I(mid)] and [I(mid), I(right)],
and process cach sub-interval recursively. We find cither
a new vertex or a new cdge by cxccuting the touching
oracle in the algorithm. Hence, the time complexity is
(‘(|P|T), where |P| < n is the number of vertices of P.

Lemma 3.3 For a given #, the touching oracle to
conu(P) can be computed in O(N?) for R(Admi). If
preprocessing takes O(N?) time, it can be computed in
O(N) time for R(Base).

Proof: Scc [FMMT96d, FMMT96a, ACKT96]. I

Combining Lemmas 3.1, 3.2, and 3.3, we have the
following thcorem:

Theorem 3.1 R,y can be computed in O(nN?) time
for R(Admi), O(nN) time for R(Basc).

In the next section, we further improve the practical
time complexity by a factor of O(n/logn).



I(right)

Figurc 4: Hand Probe

3.2 Guided Branch-and-Bound Search
The hand-probing algorithm computes all vertices on
the convex hull. However, we only nced to compute
the vertex corresponding to R,p:. Hence, we can im-
prove the performance by pruning unnccessary vertices
cfficiently. While running the hand-probing algorithm,
we maintain the current minimum FEp,;, of the entropy
valucs corresponding to the vertices cxamined so far.
Supposc we have donc hand probing with respect
to 6, and #,., and next consider the interval I =
[vH(6:).vH(8,)] = [I(Ieft). I(right)] of conu*(P). Let
Q) = (2guy.Youy) (scc Figure 4) be the point of
intersection of the tangent lines whose slopes arc #; and
8r. We compute the value E(Q(I)) = E{zg. ¥oiun)-
If the two tangent lines arc parallel, we set E(Q(1)) =
—0c.

Lemma 3.4 For any point Q' = (.z:’.,yy’) inside the
triangle I(left)I(right)Q(I),

E(@',y') > min{E(Q(I)), Emin}.
Proof: Immecdiate from the concavity of E(z,y). I

This lemma gives a lower bound for the valucs of E at
the vertices between I(left) and I(right) in conv™(P).
Hence, we have the following:

Corollary 3.1 If E(Q(I)) > Emin, no vertez in the
interval I of conv™(P) corresponds to a region whosc
associated entropy is less than E;y,.

On the basis of Corollary 3.1, we can find the
optimal region R,y cffectively by running the hand-
probing algorithm together with the branch-and-bound
strategy guided by the valucs E(Q(Z)). Indeed, the
algorithm cxamines the subinterval with the minimum
valuc of E(Q(I)) first. Morcover, during the process,
subintervals satisfying E(Q(I)) > Emin arc pruned
away.

Size | Time | O V|| Size { Time | O \%

207 2.86 | 19| 304 || 1207 142 [ 26 | 5151
40? 11.8 | 19| 918 || 200% 422 | 27 | NA
602 29.5 | 22 | 1714 || 400% | 1633 | 25 | NA
807 | 62.5 |26 | 2675 |[ 600% | 4368 |29 | NA
100% | 86.4 | 23 | 3878 || 800% [ 8299 | 31 | NA

Table 1: Performance for Computing Optimal Admissi-
ble Regions

We maintain the list {E(Q(I)) : I € I}, using
a priority qucuc. Note that FE,,;, is monotonically
decreased, while Qppin is monotonically increased in
the algorithm. Most of subintervals arc cxpected to
be pruncd away during the cxccution, and the number
of touching oracles in the algorithm is cxpected to be
O(logn) in practical instances. We have implemented
the algorithm as a subsystem of SONAR, and confirmed
the expected performance by cxperiment (as described
in Scction 4).

Since the touching oracle nceds O(N?) time for
R({Admzi), the algorithm MAIN runs cxperimentally in
O(N?1logn) time, which is O(nlogn) because N < /n.

4 Experimental Results

This scction presents detailed performance and cffi-
ciency cvaluations of SONAR’s decision tree function.
All performance cxperiments were performed on IBM
RS/6000 530 workstation with 128MB of main mem-
ory, running under the AIX 3.2.5 opcrating system.

4.1 Computing the Optimal Admissible
Region

Table 1 shows performance of computing the region
R,pt minimizing the entropy in R(Admi). In this
experiments, we usc an artificial data distributed in an
N x N grid for 20 < N < 800. The size n of data
is larger than N? (indced, we set n &~ N* in order to
crcatc a large number of vertices on conu(P).) The
lincar performance of a touching oracle with respect to
O(N?%) can be found in [FMMT96b], thus omitted in
this paper.

The sccond column of Table 1 shows the CPU time
(sec), and the third and the fourth show the pair of
number. O of the touching oracles in the guided branch-
and-bound algorithm to find the optimal region and the
number V of vertices on conv(P), which is cqual to
the number of touching oracles done by the naive hand
probing algorithm. '

It is scen that the number of touching oracles
increascs very slowly, and the guided branch-and-bound
algorithm is much advantagecous. The table confirms
that the CPU time follows our O(N?logn) cstimation.




4.2 Tree Evaluations

Quality cvaluation of the decision trec using region rules
is presented in this subscction. We use a datasct in
the STATLOG benchmark [MST84]. Since conventional

methods cannot handle huge datasct cffectively, we

choose a rclatively small datasct called “diabetes,”
containing rccords of female paticnts (original owners:
National Institute of Diabetes and Digestive and Kidney
Discascs).

It contains 768 tuples, 8 numerical attributes, and
2 classes representing “positive” and “ncgative” results
for diabetes, respectively.

We constructed trees for the datasct by using con-
ventional binary splitting, as proposed in C4.5 [Q93].
and SONAR’s admissible region splitting with respect
to R(Admi), where ¥ is sct to be 16. If we decom-
posc trees repeatedly until all the data in lcaf nodes arce
completely classificd, conventional decision tree has 267
nodes and depth 16, whereas our SONAR decision tree
has 27 nodes and depth 6.

Figurc 5 and 6 show intermediate (as of depth 3) trees
in cach mecthod. Each node of the trees is labeled with
T (P N), where T is the number of tuples satisfying
the conditions from the root to the node, and P and ¥
respectively show the number of positive and negative
tuples. For cxample, the root nodes contains 768 tuples
in which 500 arc positive and 268 arc ncgative. At
this level, the splittings decrcase the entropy value by
0.198 and 0.433 for binary splitting and region splitting,
respectively.

For binary splitting, the decision test associated
with cach node is explicitly written below the node in
Figurc 3. In Figurc 6, the pair of numeric attributes for
the region splitting of cach node is presented, but the
region itsclf is not presented. We use a visualization
function to describe such a region. Figure 7 is a
graphical view of the region used in the root nodce of the
Figure 6. It usc two colors (red and bluc), and the red
(resp. blue) level indicate the number of positive (resp.
negative) patient in cach pixel. The data in the root
nodc arc partitioned based on whether the data is in
the admissible region R,y or not. In this cxample, Rope
(the near-triangle region ) corresponds to the cluster of
paticnts less likely to be positive for diabetes.

Onc morc important obscrvation is that, attributcs
such as PedigrecFunc and BP(blood pressurc) only
appears in Figurc 7. For cxample, BP has strong
corrclation with Age, and is only found to be crucial
by using region rules. -

5 Generalizations

5.1 Categorical objective attribute

We can cxtend our scheme to a categorical objective
attribute W with % categorics {1,2, ...k}, where k is a
small integer. For a pair of numeric attributes 4 and

GiucoseConc<=127.0

Age<=28.0 Massindex<=29.9
v/ e v o
271 {248 23} ( 214(14371) I I 76 (52 24) l l 207 (57.150)
G\woacun«-'w Q omx-1570
Yes, Ye
tfﬂ S!WZ! ||zo!§z|!] ||73 (lO‘Gé" Il‘l (358)' 55!1715)"‘1514570 | Epzwl I

Figurc 3: Trce obtained by Binary Splitting
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(Pedsg]aoFunc GlucaseConc) (Pedl reeFunc Massindex)

Yes No Yes No
124 94 198 27 171 l 187 (135 52) I I 50 (259 0) l
(Age BP) (Age BP)  (SkinThickness GlucoseConc)

e G e

Figurc 6: Trec obtained by Admissible chior; Splitting

A’, and a family R of regions, we consider a splitting

of S into S(R) and S(R). as before. The region Rop is
the region that minimizes the entropy Ent(S(R); S(R)).
The only difference is that it is hard to compute Ropy is
harder than in the Boolcan objcctivc casc.

For a region R, we define «(R) = (al(R) <. 2k (R)),
where #;(R) is the number of tuples # in S(R) that
satisfy W(t) = i. Let P = {¢(R) : R € R}, and consider
its convex hull conv(P) in k-dimensional space.

Then, from Lemma 72, we can sce that :(Rgy) is on
eonv(P). Hence, it is cnough to cxamine the vertices of
conv(P). We concentrate on the upper part conyt (P)
of conv(P), consisting of faccts whosc outer normal
vector has a positive k-th coordinate, since the lower
part conz ™ (P) can be trcated analogously.

Consider a vector © = (#y,03,...,0;_1.1), and the
hyperplanc H(©) tangent to convt(P) defined by

Tp — 91;1:1 - 92.1?2 bl Rt Bk—li]:k—l =cC.

The k-dim touching oracle is to find the point of H(O)
tangent to convt(P). The touching point «(R(©))
corresponds to the region R(©) that maximizes

FQ(R) = 'I‘L(R) - 011‘1(1{) — . Gk_l;ztk_l(R).

Lemma 5.1 Given ©, R(®) can be computed in O(N?)
time for R(Admi); and in O(N) time with O(N?)
time preprocessing for R{Base). It can be compuied
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in O(N3) time for families of rectangles and rectilincar
CONVET TCGIons.

Naive hand probing requires O(|P|) touching oracles,
where |P| is the complexity (total number of faces of
all dimensions) of the polygon [DEY86], which is too
cxpensive, since the number of vertices can be O(nd1),
and |P| is only boundcd as O(n{4-D14/21), Howcver,
we cxpect that the number of touching oracles can be
reduced to O(log|P)) in practice if we usc branch-and-
bound.

6 Concluding Remarks

We have proposed an cntropy bascd greedy construction
of dccision trces by using region rules. We have
confirmed via cxperiment that the approach gencrates
a small deccision trec indeed.  Although cxtensive
cxperiments arc nccessary to cvaluate its cffectivencss
in practice, we belicve that there are many applications
in which our decision tree is uscful.

Compared to traditional methods, there is a tradec-off
between size of the trec and description of rules. This
tradc-off can be controlled by changing the bucket size
N and the paramecter valuc o introduced in Scction
2.3. It is important to devisc criteria for sclecting
suitable values of them in order to construct a practical
automatic decision system.

We can also approximate an z-monotonc curve
bounding an optimal rcgion by using a low-degrec
interpolation function. If the degree of the function is
given, we can compute such a function by using (for
cxample) method of least-squares. If the cntropy value

of the splitting associatcd with the approximate region
is not much different from that of the optimal region, we
can usc the approximate region to make the decision.
Finally, we can cxtend the two-dimensional region
rule to multidimensional region rules (sce [FMMT964]).
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