I E T & HERR 20— 5

(1998. 7. 24)

Specification and Verification of Memory Consistency Models for
Shared-Memory Multiprocessor Systems

SHIRO TAKATA,"1? KENJI TAGUCHI,™® KAZUKI JOE™"
and AKIRA FUKUDA ©

In this paper we formally specify memory consistency models for shared-memory multipro-
cessor systems, focusing on causal memory consistency model, by use of a formal specification
technique proposed by Taguchi and Araki. The formal specification technique includes a
language, which is based on the combination of the Z notation and CCS (Calculus of Commu-
nicating Systems), and the state-based CCS semantics, which integrates Z and CCS semantics.
Then, we verify that the specified causal memory meets the causal memory consistency con-
dition using the extended state-based CCS semantics.

1. Introduction

In this paper we propose a formal method
to specify and verify memory consistency mod-
els for shared-memory multiprocessor systems us-
ing a formal specification technique proposed by
Taguchi and Araki). The formal specification
technique is based on a language that has combi-
nation characteristics of the Z notation and CCS
(Calculus of Communicating Systems)?).

The Z notation is a model-based specification
language based on set theory and first-order pred-
icate logic. It has rich data structures and facili-
ties to define various operations. Thus it is suited
for modeling states and operations. But the Z
notation does not have enough facilities to spec-
ify concurrency aspects. CCS is a process algebra
that is suitable vehicle for modeling mathematical
structure of concurrency aspects. However CCS
has no explicit modeling facilities for states and
operations. Therefore, the combination of the Z
notation and CCS, which complements each other,
would result in a versatile specification languagel),
Taguchi and Araki also proposed the state-based
CCS semantics that integrates Z and CCS seman-
tics in order to verify given systems?).

Memory consistency models for shared-memory
multiprocessor systems define the behavior of
" memory with respect to read and write operations.
In this paper, we focus on causal memory consis-
tency model proposed by Hutto®. Causal mem-
ory is an implementation of the memory mech-
anism which satisfies the causal memory consis-
tency condition: any read operation to shared-
memory obtains the value which is consistent with
other causally related read and write operations.
A formal definition, implementation and verifica-
tion of the causal memory have already been pre-
sented by Ahamad and Hutto?. Regardless of
their results, they are inefficient for us to formalize
every memory consistency model since they just
use algebra.
 In this paper, we give more formal and therefore
sufficient specification’ of the process components
_ (states and operations in Z) and the concurrency

aspects of the causal memory by the combination
use of Z and CCS. We also specify the causal mem-

{1 Nara Institute of Science and Technology
t2 Keihanna Interaction Plaza Inc. .

t3 Kyushu University

t4 Wakayama University

ory consistency model and verify that the specifi-
cation of causal memory meets the causal memory
consistency condition using the state-based CCS
semantics and its extension to a sequence of ac-
tions in finite length.

This paper is structured as follows. In section
2, weak vector clocks®)®) based on the causally-
precedes relation defined by Lamport”) is de-
scribed. In section 3, the state-based CCS seman-
tics and its extension are explained. In section
4, definition of causal memory consistency model
using the extended state-based CCS is given. In
section 5, a description of causal memory is de-
scribed by using the combination of Z and CCS.
Verification of causal memory is presented in sec-
tion 6. Finally, we conclude and indicate our fu-
ture works in section 7. ‘

2. Weak Vector Clocks

Vector clocks®) are used in distributed systems
to determine whether a pair of events e;, e; has
causal relation denoted by e; — e¢; where — 1s the

causally-precedes relation defined by Lamport™,
Using the vector clocks, a timestamp is recorded
when any event is detected, and the causal rela-
tionship of pairs of events is determined by com-
paring the timestamps. The timestamp is an n-
tuple of integers, where n is the number of pro-
cesses. Given two events e;, e; and their associ-
ated vector timestamps i(e;), ¢(e;), the following
relation holds: :

t(es) < t(es) def

(VEk:1...net(es)lk] < t(es)lk])
) A@BL:1. . net(e)[l] < t(es)[])
tes) < tes) = ((es) < tes)) V (¢(es) = t(e3)
tle) S t(es) e — ey ‘ '
With the traditional vector clocks, the local
counter #[i] of a process P; increases whenever
the P; executes each event. In contrast, with weak
vector clocks®, t;[i] increases only when P; exe-
cutes an event that potentially leads to change the
system property which is expressed by some state
variables. i
In either case, P; sends a message that con-
tains P;’s state change information with its vec-
tor timestamp #; to all other processes whenever
its vector clock changes. When such a message
is received, P; updates its vector timestamp ¢; as
follows:
VEk:1...net5{k] = max(t[k], t:]k])

Figure 1 illustrates a history of events in the

(0,0,0) (1,0,0)

Send: Receiver s il' 0)

P: > 1 O-
wi(x0) FF DR ppiy ni(xl)
(0,0,0) (0,1,0) (1,1,0)
_] O
2 Recei ! rx,0)
Sives Apply: 4
0,0,0) 0,1,0) (l.il-.o)
I)
Ps Receives | ri(x1) Receives © rg(xo,a)
y3 Applys

Fig. 1 A history of events in a causal memory system

causal memory system described in section 5
which adopts weak vector clocks. Note that #;{j]
is the number of write operations by P; because
t; is initialized to the 0 vector.

3. The State-Based CCS Semantics and
its Extension

In ?), Milner provides the operational semantics
of CCS in terms of the following labeled transition
system:

£, Act, {5 | a € Act})
which consists of the set £ of agent expressions
in ‘CCS, the set Act of actions, and the transition
relation 5 C £x & for each a € Act. For example,
a process £ which evolves another process E’ by
an action a is denoted by the following transition
relation:
3E

In the same way, Taguchi and Araki regard oper-
ation schemas in Z as transitions from old states
to new states so that they provide the operational
semantics of Z in terms of the following labeled

transition system?):

(St,0p,{>|a€ Otp})

which consists of the set St of states in Z, the
set Op of operation schemas, and the transition
relation = C St x St for each & € Op. For ex-
ample, a state s which evolves another state s’ by
an operation schema « is denoted by the following
transition relation:

s ,

In addition, Taguchi and Araki') combine the
Z notation with ECS to provide the operational
semantics of this combined language, named the
state-based CCS, in terms of the following labeled
transition system.

(€ x St,ActU Op,{> | @ € ActU Op})

There is a restriction Act N Op = @ which makes
distinction between actions in CCS and operation
schemas in Z. For example, a process a.F with the
state s which evolves another process F with the
state s’ by an operation schema a in Z is denoted
by the following transition relation:

B (a.B,3)S(E,s") S a.ESE AsSs'

provided that s,s’ |= [@], where © is the first-
order representation of an operation schema a.

InV, Taguchi and Araki also provide the follow-
ing transition rules.

Prefix operator (1)

———— (e €0 ,aa !
(@B, (B (@€ 0P

Prefix operator (2)

(a.E, "):’(E, s)
Prefix operator (3)

(o € Act)

w(z).E) Gl =
Prefix op(ec:'(:f:t);r z;; S

- ey ' (s' = s{c/z?})
{a(z?).E,3) >(E,s')

Recursion o
(E,s)—(F,s")

= P=E

(o =(F,) & = F)

Sum(Non-deterministic Choice)
(Eh")g’(Fr"l) (Eh"):’(Fv")

(Br+ B2, 8)>(F, ') (By + B2, 8)>(F,s')
Concurrent Composition (1)
(E,8)>(E',s") (F,8)>(F',)

(B | Fys)>(E'| F,s') (E|F,)>(E | F',s")
Concurrent Composition (2)

(B,) SUE',s") (F,s)S(F", o)

(E| F,8)(E"| F',s')
Restriction o
(E,8)5(F,s")

ey T
(E,s)—(F,s")
—_—— " (a € Act,a = f(B))
EL S @

Stirling®) defined a natural extension of a single
transition relation — to a sequence of actions in
finite length, or fraces oy ...a, to provide the fol-
lowing transition rules:

Let w be such a sequence with ¢ as an empty

trace. The notation E-F represents E may per-
form the trace w and become F.
ESE E'SF
ESE EXF
We propose the following natural extension of
transition relations and trace transition rules:
Let w be a sequence of actions including opera-
tion schemas ay ...ay.
(E,81)5(F,5.) & ESF A sysy,
provided that Vi : 1...nes;,s! |= [©;]], where s;
and s{ are regarded as old state and new state of a
operation schema a; as a transition, respectively,
; is the first-order representation of a;, and n 1s
the number of operation schemas in w.

(a ¢ Ly € Act)

" Trace

E,s)5(E,s)
(Eisl)z'(Elr"{ (Elv":{)f"(Fa"rlx)

(

) a€ 0
By o) (T,) (e € 0r)

)

)

(B,) (E' s) (B, a)S(F,)

(Ey 3 _"(Fwsrlx>

(= € Act)

4. Definition of Causal Memory Consis-
tency Model :

~ This section explains the causal memory con-
sistency model proposed by Hutto and Ahamad
in¥® then defines the model in terms of the ex-
tended state-based CCS semantics.

4.1 Shared Memory Parallel Computer
Model

In?, Hutto and Ahamad define a shared mem-
ory parallel computer model as follows:

e It is a finite set P of processes {P1,...,Pn}
that interact by a series of read and write op-
erations via a shared memory that consists of
a finite set of locations.

o A write operation by a process P;, denoted by
w; (2, v) here, stores the value v in location z.

e A read operation, denoted by r;(z,v) here,
notifies P; that v is stored in location .

A local execution history L; of process P; is a
sequence of read and write operations. An execu-
tion history H = (Ly,Ls,...,Ls) is a collection
of local histories. Let A be a set of all operations
in H and AF_, be a set of all operations by P;
and all write operations in H. Two kinds of pro-
gram orders, serialization and “respect”are defined
as follows:

® 01703, if operation o; precedes oz in L;.

e 07 — 0y, if operation oy precedes o5 in H.

¢ S; for P; is a serialization of A, if 5; is a linear
sequence containing exactly the operations in
A such that each read operation from a lo-
cation returns the value written by the most
recent preceding write to the location. If a
read operation has no preceding write, an ini-
tial value L is assumed to be returned.

e Serialization S; of A respects order —, if, for
any operations o; and o3 in A, 03 — 03 implies
that o; precedes o3 in S;. .

Let w be a sequence A* of operations in H with
€ as an empty trace. Let per,'(a) be an opera-
tion that P; “perceives’the operation o. For ex-
ample, per;(ri(l:,z, v)), peri(r; (2, v)), pers(wi(z,v))
and per;(w;(z,v)) are r;(z,v) by P;, rj(z,v) by
P;, wi(z, v)’ by P; and Apply; such that P; applies
w; (e, v) to its local memory, respectively. (See an
operation schema Apply; that will be described in
section 5.)

Now we define the above definitions in terms of
the CCS semantics as follows respectively:

® 01,02 € Lj,Jw E A" ®
(01.E1,81) {03 Bz, 33)

e 01,00 €EH,Aweg A" »
éOhE],al)-ﬁb(oz.Ez, az)

o (Yo € AeIperio) € Si)

A .
Jyk:1...n,Vperi(rn(z,v1)) € Sie
(3 pers(ws(a,) € S,

we

periﬁw,- T3, Un
(pers uiley "3 -Ej,85)
per;(w i))w
LI pery(n(en 1)) By, 53))

v
(((3 pers(wi(a1, 7) € S,
pers(wi(z,w) gw e
(start.Eo, s0) > (pers(n (a1, v1)).Es, Sig)
V peri(w;(z1, tn P> v =1))
e YVo1,02 € A,Jwi,wy € A”e
(o;.El,s;)ﬂ(az.Ez,sz) =
(pers(01).Ef, 81) 3 (pers(02). B3, 93)

4.2 Definition of Causal Memory Consis-
tency Model
In?, Hutto and Ahamad define write-into order
and causality order for the definition of the causal
memory consistency model as follows: .
A write-into order — on H is any relation with

the following properties:

e if 0; — 0y, then z and v exist such that o; =
w(z,v) and 03 = r(z,v);

o for any operation o,, there is at most one o,
such that o7 — o03;

e if 0, = 7(z,v) for some z and there is no o;
such that oy = o0g, then v =1; that is, a read
with no write must read the initial value.

A causality order 0y ~ oz on H if and only if one
of the following cases holds:

* 0170 for some p; (o1 precedes o in L;);

o 07— 02(02 reads the value written by o;); or

o there is some other operation o’ such that
01~ 0 ~ 0y

(If the relation is cyclic, then it is not the causality
order.

A history H is causal if it has the causality order

such that: .
CM: for each process P;, there is a serialization §;
of AZ , that respects ~+.

Now we define write-into order on H in terms of
the CCS semantics. :
i,j:1...n,Yrizy,v1) € Ao
((Fwi(zm, 1) € 4,w € A”0

(\1;’:'(31» n). By, 85) 2 (ri(2s, v1). By, 1))

(((3 w:i(zlv Um) € 4, wi(zl’ Un) ¢ we

(start.Eq, 30;'—'*(13(:1, v1). By, s1))

V wi(z,m) ¢ A = n=1)))
By iteration of applying trace transition rule:
301,0',026 A,wy,ws €A%e)
(01.B1,81)3 (0" . B, s") (o' .E', ") *3(02. B2, 83)

. (01.E,31)WI—“;:(02.E2,32) .
Then,, if there are a trace w; corresponding to
and a trace wy correspondmg to o' ~ 0q,2

01~ 0
trace wywy corresponding to 01 ~ o' ~» 0z always
exists. ‘

Since the causally-precedes relation — which
the extended state-based CCS semantics uses is
a partial order, — on traces with vector clocks is
acyclic.

ow we can define the causal memory consis-
tency condition in terms of the CCS semantics as
follows:

A history H is causal &

j:l...n,Vi:l...ne

((Vo € A%, » peri(a) € Siof ALL,)

A ;

(¥ 71(21, v1) € Siof ALyuo®
((@peri(w;(as, m)) € Siof ALy,

peri(w;j(1, on)} ¢ wo

(pers(ws(zs, v1)). B, 33)

De!-'i(wj_(_’:l-"l))“’ (ri(e1,). B, 81))

V (((3 peri(ws(as, v) € Syof Alyu,
peri(wi(z,) ¢ we

(start.Eo, so)—=(rs(z1, v1).Bs, 81))
/:/ pers(ws(z, v)) & Siof AL, = n=1))))

((Yo1,02 € Ly of A, e w1, ,wa € A0

(01.EB1, $1)3(02.B,82)) =

A (pers(01).Ei, 1) =3 (pers(02). B3, 52))

(Y ri(z1,v1) € Siof AL, @Jwi,wy € A% @

(ws (21, 91). B, 85) 3 (323, v2). By 83)) =
(pers(ws(z1, 1)) B, 35) 3 (rs(as,). Bi, 1)))

5. A Description of Causal Memoryb

In this section, using the combination of Z and
CCS, a formal specification of causal memory,
which was proposed by Ahamad et al?, is de-
scribed.

First, the states and operation schemas of each
process are specified in Z. Weak vector clocks are
adopted here as logical time of distributed systems
like Marzullo and Neiger did®). Second, the con-
ccuérsency aspects of causal memory are specified in

5.1 Specifying the component of each
process in Z

Each process P; has a schema s; of the state
in Z. Each schema s; consists of seven local data
structures; a process identity number i, a local
memory M; of the abstract shared causal memory
M, a vector timestamp #; which is used for up-
dating the local timestamp, two message queues
OutQueue; and InQueue;, a local execution his-
tory L; of A which is a set of read and write op-
erations, and a serialization S; of AZ , whichisa
set of all operations by P; and all write operations
in H. OutQueue; is a first-in-first-out queue and
contains information about write operations to lo-
cal memory that have not been communicated to
other processes yet. InQueue; is ordered by vec-
tor timestamps and contains information about re-
mote write operations to its remote memory that
have not been written to local memory yet.

The schema s; of P;’s state is described using Z
as follows:

M, A, Val]

write_tuple == N; X M x Val x seqN
- NumberOfProcesses : N;
MazOutQuene, MazInQuene : Ny
MazSerial, MazLocalHis : N;
priority_queue.: (seq write_tuple) X write_tuple
-+ seq write_tuple

— 8
1: Ny

M;i: M (Valu {1})
t;:seq N

OutQueue; : seq write_tuple
InQueue; : seq write_tuple
L;:seq A

Si:seq A

F#t. = NumberOfProcesses

#0utQueuve; < MazOutQueue
#InQuere; < MazInQuene
#L; < MazLocalHis
#5; < MazSerial

P; has an initialization operation schema InitP;
and five basic operation schemas; Read;, Write;,
Send;, Re?,aive,-, and Apply;.
Inat i

B
pns? i Ny

i’ = pn;?

M =Xz: Mel

ti = An:1.. NumberOfProcesses o 0
OutQuene! =<>

InQueue] =<>

L =<>

i =<>

A read operation schema Read; is executed when-

ever a read operation to a location z? is invoked
by P;. Then, the value v! stored in M;(z?) is sent
to P;. A label r;(2?,v!) of the read operation is
added to a local execution history I; and a serial-
ization S;.
Read;
Asy
z?: M
v!: Value

v! = M;z?
i =1
M = M;
t; =1
OutQueuve; = OutQueune;
InQuene] = InQueue;
Li=L;" < ri(z?)0)) >
8 =57 < ri(z?,) >

A write operation schema Write; is executed
whenever a write operation of a value v? to a loca-
tion z? is invoked by P;. P; increases t[i], writes
v? to M;(z?), and appends the tuple (i,27,v?,1;)
to OutQueue;. This tuple is called a write_tuple
which is a message to other processes. A label
w;(2?,v?) of the write operation is appended to

i and S,'.
Write;
F—Aai
z?: M
v? : Value
T =1
M = M; @ {z? — 27}
tHi=ti+1

k:l.. #tilk#ietik=1tk

OutQueve; = OutQuenes”™ < (i,27,7,4) >
InQueuve = InQueue; .

Ly = Li”™ < wy(2?,97) >

Si=85"< wi(z?, U?) >

The information about local write operations in
OutQueue; must be notified to all other processes.
A send operation schema Send; sends a nonempty
prefix of OutQueue; to all other processes and re-
moves it from OutQueue;.

When a message is received by P;, a receive
operation schema Receive; is executed. Recetve;
appends the message to InQueue; which is a pri-
ority queue sorted by vector timestamps. The
InQueue; and an element with vector timestamps
are inputted to a function priority_queue. The
priority_queue attaches the element to InQueue;,
and returns the new InQueue;. Although it is not
hard to specify the function priority_gqueue in Z,
the specification is not presented here because of
lack of space.

— Send;
Asy
massage! : write_tuple

Outqueune; #<>
priatt

=1
M{=M
=1

massage! = head OutQueue;
OutQueue; = tail OutQueue;
InQueue] = InQueue; .
Li=L; .

Si=35;

— Receive;
Asi
massage? : write_tuple

i =i

M{ = M;

=t

OutQueue] = OutQueune;

InQueune; = priority_quene(InQueue;,

massage?)
Li=1L;
Si=25

Apply; compares the local timestamp ¢; with a
remote timestamp t; associated with the write op-
eration which was executed by the remote pro-
cess P;. A write operation can be applied to local
memory only if all components of # (other than
the jth) are fewer than or equal to those of #; and
if the jth component of #; 1s more than the jth
component of ¢; exactly by one. When a write op-
eration is applied, it 1s removed from InQueue;,
the corresponding component of the local vector
timestamp {;[7] 1s updated, and the new value
v; is written to M;(z;). This means that such a
write operation of wj(z;, v;) will be the most re-
cent preceding write operation of the write-into
order relation to the following read operation of
ri(z;, vj), wi(zj,v;) — ri(2j,v;) where the vector
timestamp of wj(z,-,v is less than or equal to
that of 7;(%;,7;). A [abel w; (=, v;) of the write
operation 18 appended to S;.

— Applys

Asy ‘
@, 24, v4y t5) : write_tuple

I:zQue'u,ei #F<>

T =1

(755,04, t5) = head InQueune;

E:l..#t|k#jet;k <tk

Atjj=t;j+1
M= M: ® {25 — v}
tj=tj

k:lo.#ti|k#jetik=1:k
OutQueue; = OutQueuve;
InQueue = tail InQueue;
Li=1L;

5{ = 8" < wi(zs,v5) >

5.2 - Specifying the concurrency aspect of
* causal memory in CCS

In this section, we specify the concurrency as-
pects of causal memory in CCS. :

We assume that causal memory has k processes.
Each of the processes is connected with all other
processes through input ports pipe, - - - pipex, and
output ports pipe; - - - piper. .-

Each process P; consists of six operation
schemas specified above in Z and four basic in-
put or output ports; id;, loc;, val;, and pipe;. An
input port id; is initially executed by each pro-
cess P; to obtain its process identity number. The
other ports loc;, val;, and pipe; are used for in-
put or output ports in the following abbreviated
actions: r;Fa:?,v!), w;(z?,v7?); and broadcest;(m!).

An action 7;(x7, v!) is an abbreviated action of
blocked sequential actions: First, an input port
loc; is executed whenever a location z? for a read
action is received through the input port loc;. Sec-
ond, a read operation schema Read; is executed by

P;. Finally, the value v! stored in M;(z?) is sent
to P; through an output port val;.

" An action w;(z?,v?) is also an abbreviated ac-
tion of blocked sequential actions: First, an input
port heap; is executed whenever a value v? to a
location z? for a write action is received through
the input port heap;. Second, a write operation
schema Write; is executed by P;.

We assume that these sequential actions in
r;(z?, v!) and w;(z?, v?) are blocked, which means
that other processes which run concurrently are
blocked during those executions. It is not hard
to specify that kind of blocked operations in CCS,
but makes the specification hard to be understood.
Hence we simply assume that these actions are
blocked here.

(27, v!) = loc;(z?). Read;.val;(v!)
w;(z?,v?) = heap;(27,v7). Write;

A broadcast action broadeast;(m!) is an abbre-
viation action that sends a message m! to all other
processes through all output ports pipe except
pipe; as follows:

broadcast;(m!) = Send;.
~ piper(m!).--- .pipe;_31(m!).
. pipeir1(m!). - - .pipex(m!)
We then specify the concurrency aspects of the
processes P; in CCS.
P; def ri(2?,9!).P; +
wi(z7,97).P; +
broadcast;(message!).P; +
pipe;(message?).Receive;. P; +
Apply;'.P.- .

Each process is connected with all other pro-
cesses through input ports pipe; - - - pipe; and out-
put ports pipe; - - - pipe, to communicate the infor-
mation about local writes to local memory. Then
we specify a causal memory CM in CCS as follows:

K = {pipe,--, piper}
CM = id(l).InitPl R .id(k).Inith. '
(Pr|-- | P\ K

6. Verification of Causal Memory

In this section we should describe the verifica-
tion that the specified causal memory described
in section 5 meets the causal memory consistency
condition described in section 4 using the extended
state-based CCS semantics. But we present only
the verification of the following theorem 3 here be-
cause of lack of space. In%, Ahamad and Hutto
prove the following Lemma 1,2 and Theorem 3.

Lemma 1: Let H be a history of the implemen-
tation, ts(o) be the timestamp of an operation o,
and o0, and o, be two operations such that 0; ~ 03.
Then ts(o01) < ts(oz). Furthermore, if 0 is a write
op(emtion by P;, ts{01)[i] < ts(oq)[i},s0 ts(01) <
ts{03).

Lemma 2: Let H be a history of the implementa-
tion and suppose that w;(z, v) is a write operation
of process P;. Then each process P; eventually ap-
plies w;(z,v) to its local memory.

Theorem 3: Let H be a history of the implemen-

tation. Then H is causal.

Proof : An inspection of operations Read;, Write;

7. Conclusion

In this paper we described causal memory us-

and Apply; shows that the serialization S; for P; ing the formal specification technique proposed
includes all writes in H (by Lemma 2) andlall rea.ci byg Taguchi and ?Ara,ki’). We pm_‘integ al:l ex-

operat‘mn in L;. Thus, " " tension of the state-based CCS semantics to a se-
Vi:l...n eVo € A7, e 3per;(0) € S; of AL, quence of actions with finite length in order to deal
An inspection of operation schemas Read;, Write; with a sequence of actions and operations. Us-
and Apply; shows that a local memory M; is up- ing this extended state-based CCS semantics, we
dated such that M/ = M; & {z? — »?} by P; and described causal memory consistency model and
the value »! such that v! = M;z? is reported to causal memory, then verified that causal memory
P;. Then each read operation schema. notifies the meets causal memory consistency model.
value that most recently write operation schema We have much future work remain to be done.
has written. Thus, the following transitions exist: First, we should adopt this technique to other
j:l...n,Vi:l...ne memory consistency models, especially release
(Vri(zm,) € S; of AR @ consistency models, and have to develop a new for-
((3 pers (w; (21, v3,)) € S; of Af,_ s mal technique for specifying lock and release op-

peri(wj (1, vm)) & we
(vers(w; (21, ve)). B}, 55)

erations. Second, we will be able to propose a new
memory consistency model and present a design of
new parallel computer architectures with the new

""‘("”Lf"”“))“’(,.l.(zh u).Bi, 5)) memory consistency model. Those models and ar-
v chitecture designs can be formally described and
(((3pers(w; (a1, vm)) € ;i of Afﬂ_ wr verified by our proposing formal techniques.

peri(wi (21, vm)) & we
(start. By, so)=>(per;(ri(z1, v1)).Es, 5:))
V peri(w; (zi, vm)) ¢ Si of AE,, = v = 1))))

Acnowledgements

We would like to thank Keijiro Araki at Kyushu

The state s/ has a maple #; ~ v; in the local University.

3 !
memory M;. The maple z; ~ v is not updated by

P; between the state sJ'- and the state s;, because
w; (%1, ¥m) ¢ w. Thus v = v (= M; 7).

Let 0; and o; be operations in AF, , such that
~+. By Lemma 1, 18301) =< 15{02). One of the
following case must holds. We assume that j # 1.
* 0170 by p;. An inspection of operation
schemas Read; and Write; shows that these
operations are concatenated to L; and §; in
the same oder in which these operation are
executed by P;. Then o; precedes o2 in S;.

¢ 03 =02 by p;. This means that o; and o are

both writes. By Lemma 1, ts(01) < #5(02). An
inspection of operation schema Receive; and
App’IIg,- shows that o, is applied by P; before
0y. Then o, precedes o; in S;.
¢ 01 — o0z by p;. This means that o is a
write operation and o; is a read operation. By
Lemma 1, #s(01) < ts(02). An inspection of
operation schema Receive;, A{ply,— and Read;
shows that oy is applied by P; before 0;. Then
03 precedes o2 in 5;.
e 01~ 0~ 0y
3 01, 011 02 € A,wl,W2 €A™
{01.B1,5)3(o" B, s") (o".E', 5"V 3 (0. B, 5b)
(01.E, 51)“*5%(03. 3, 57)
Thus, the following condition holds.
j:l...n,Vi:l...ne o
((VO],Osz Lj OfAf’_,w e Jwy,wy € A%e
(ol.El, 51)3(02'% Sz)) =
A {peri(01). B}, 51)3 (per;(02).E}, s5))
(Yri(z,v) € Siof AR, @ Jwi,wy € A% 0
(w; (21,). By, Sj)ﬂ<7'i(mlb”l)-Ez‘v si)) =
(per; (w; (21,). B, 5)3(ri (1, v1). B, 5}))))
Thus, the proof is complete.

References

1) Kenji Taguchi and Keijiro Araki. The State-
based CCS Semantics for Concurrent Z Specifica-
tion. In Proc. of the 1st Int’l Conf. of Formal Engt-
neering Methods, pages 283-292. IEEE, November
1997.

2) R.Milner. Commanication and Concurrency.
Prentice Hall, 1989.

3) Phillip W. Hutto and Mustaque Ahamad. Slow
memory: Weakening consistency to enhance con-
currency in distributed shared memories. In Proc.
of the 10th Int’l Conf. on Distributed Computing
Systems, pages 302-311, May 1990.

4) Mustaque Ahamad, Gil Neiger, Prince Kohli,
James E. Burns, and Phillip W. Hutto. Causal
memory: Definitions, implementation and pro-
gramming. Technical Report 93/55, College
of Computing, Georgia Institute of Tecnology,
September 1993.

5) Keith Marzullo and Laura Sabel. Using consis-
tent subcuts for detecting stable properties. - In
Proc. of the 5th Workshop on Distributed Algo-
rithms and Graphs, October 1991.

6) Keith Marzullo and Gil Neiger. Detection of
global state predicates. Technical Report 91/39,
College of Computing, Georgia Institute of Tec-
nology, 1991.

7) Leslie Lamport, Time, clocks, and the ordering of
events in a distributed system. Communications
of the ACM, 21(7):558-565, July 1978, -

8) Friedmann Mattern. ~Virtual time and global
states of distributed systems. In Michel Cosnard,
Patrice Quinton, Yves Robert, and Michel Raynal,
editors, Proc, of the 10th Int’l Workshop on Par-
allel and Distributed Algorithms, pages 215-226.
North-Holland, October 1988.

9) Colin Stirling. Modal and temporal logic for pro-
cesses. In Logic for Concurrency, number 1043 in
LNCS, pages 149-237. Springer-Verlag, 1996.

