BEEF L MERR 22— 3
(1998. 11. 286)

Improvmg Performance of Parallel Database Systems by
Reorganizing Database On-Line

Jiahong Wang, Masatoshi' Miyazaki
‘Faculty of Software and Information Science
‘ Iwate Prefectural University

Abstract

The performance of parallel database systems may be restricted due to data skew. Redis-
tributing data is an effective approach to coping with data skew. However, during most typical
types of redistribution in a typical parallel database system, the area being redistributed is
unavailable (off line). Considering that a highly available (24-hour) system calls for the ability
to redistribute data on line, in this paper, we address a pra.ctlcal subject: lmptovmg system
performance by reorganizing database on-line. :

Index Terms: Data redistribution, data skew, parallel databases two-phase locking. .

1 . Introduction

In recent years, the transaction processing rates that need to be supported have been growmg
beyond those that can be supported by the conventional (mainframe) database system. Some
applications thereby become infeasible with the conventional database system because the response
time is poor. Especially, with the exponential growth in the use of such application types as online
transaction processing, online analytical processing, decision support, data warehousing, and data
mining, it is often required for a database system to provide very high transaction throughput with
rapid response times, uninterrupted operations with outstanding system reliability, a way to grow
incrementally, the ability to process very large databases, and the analysis of massive amounts of
information. These requirements cannot be satisfied with the conventional system, and call for the
use of parallel database systems.

A well-known architecture for parallel database processing is the shared-nothing architecture
(Fig. “1). Examples of related commercial products are IBM DB2 Parallel Edition [3], :Sybase
MPP [5], and Tandem NonStop SQL [7]. In a shared-nothing system, there are multiple processors
connected by an interconnection network. Each processor accesses its private memory. Data can
be partitioned or divided into several smaller so-called partitions. Partitions are distributed across
disk drives attached directly to each processor. Retrieval and update requests are decomposed
automatically into sub-requests and executed in parallel among the applicable nodes. That is, each
processor actually controls its own data paxtltxon and works independently on its assigned piece of
the sub-request.

Shared-nothing systems have great potentlal to serve the ever-increasing demands for high
performance data processing. This potential, however, may not ‘be reached if the data is not spread
evenly over the nodes of the system, i.e. if data skew occurs. For example, node 3 in Fig. 1 becomes
the ‘bottleneck of the system. At the initial placement time, data can be easily spread over the
nodes of the system evenly. For a created online database, however, as a result of the insert, delete,
and update activity, some partitions grow and others shrink.. As a result, data skew occurs. In
fact, there is no one data distribution scheme that is optimal for the lifetime of a database system.
In order to'sustain the performance of the system, data has to be frequently moved across nodes to
keep data distributed evenly. In addxtlon, when a new node is added to the system, we have also
to redistribute the data. : : : Co



Data redistribution, however, typically requires taking a database off line, which can be unac-
ceptable for a highly available system (a system to be fully available 24-hours-per-day, 7-days-per-
week). This paper addresses a very practical subject, i.e., redistributing data on line (concurrently
with users’ reading and writing of data in the database). An approach for online data redistribution
is proposed, and its performance is studied. ' ‘

2 Related Work

One straightforward approach to coping with data skew is perhaps to re-balance the data when
bulk loading new data into the database, or by bulk moving some data out of the database first,
and then, bulk loading them back again, as Sybase MPP does [5]. This approach, however, is
basically an off-line approach, and requires system managers to determine how to balance the data
and perform the actual operation.

Another approach is to lock the data (a database table) to be redistributed in exclusive mode,
invalidate all transactions that involve the data, and then, perform data redistribution, as IBM
DB2 Parallel Edition does {3). This approach, however, is extremely expensive since users cannot
perform any operations, e.g., update and query, on the data being redistributed for a long time.

Different from the above two approaches, Tandem NonStop SQL redistributes data on line by
moving a partition of data from one disk to another [7]. The index modification, however, is not
considered, and no performance results are provided.

Two techniques for on-line index modification in shared nothing parallel databases are proposed
in [1]. These two techniques, however, do not address the issue of redistributing data in a partition
that satisfy some condition. For example, consider that hash partitioning strategy [3, 4, 6] is used
to assign each tuple of a database table to a physical partition according to a calculation based on
the partitioning key. If data skew occurs, we have to change the hash function to rebalance data.
The change of the hash function incurs that some tuples have to be moved from one partition to
others. In this case, it is not the partition but some tuples in it that need to be moved.’

We adopted a similar strategy to that presented in [7] and proposed in [1]. Compared with
[7], we focus on on-line index modification and its performance. Compared with {1}, we focus
on redistributing a batch of tuples in a partition of a database table that satisfy some condition.
Especially, the index reorganlza,tlon in' our approach takes the charactenstlcs of the data into
consideration.

3 System Model

Consider a shared—nothing parallel database system shown in Fig. 1. Users’ interaction with the

Interconnecnon Network |

Node1 Noded| P
I// r///» | A, ] @
P Pmccssor

Load
Imbalance

‘Figure 1: Shaxed-nothmg a.rchltecture and ‘data skew I

system is through a coordinator. The coordinator runs on the same node as the a.ppllcatlon does,
or in the case of a remote application, the node'to which that apphcatlon is connected. All nodes
can be used as a coordinator node. X : ‘ . : : -
The key to the performance of a sha.red—nothmg system is its data pa.rtltlomng Pa,rtltlomng
divides the data up physically among the nodes so that it can be accessed and managed separately,
minimizing contention. Tuples:in a table are assigred toa partition by key value, which can be
one or more columns in the table. A global catalog provides system-wide schema. information,



ensuring that each request is only sent to the partitions with data involved. Three commonly
used partitioning methods are as follow: hash partitioning that assigns each record to a physical
partition according to a random encoding of the partitioning key; range partitioning that allows
related tuples of information to be stored together in the same partition; and schema partitioning
that assigns all tuples of a table to a single partition.

At the coordinator node, an individual request for mformatlon (SQL query). is analyzed using
partitioning information from the global catalog. Parallel queries are generated and sent to each
node involved and executed there in parallel. o

When a node is over-loaded, tuples in a partition at that node (called source node) are required
to be moved to other nodes (called destination nodes), so as to balance the load of the nodes. The
data redistribution is performed by the cooperation of the tasks at both source node and destination
nodes (called source redistributor and destination redistributor respectively). Source redistributor
reads tuples from disks at source node, packages: the tuples, and send destination redistributor the
packets. The destination redistributor stores the received tuples into disks at- destination nodes
and reorganizes the indexes.

4 Data Redistribution

For the sake of simplicity, in the following description, we assume that the tuples that satisfy the
redistribution condition (e.g., redistributing the tuples with ages larger than 30) are required to be
moved from a source partition at the source node to a destination partition at only one destination
node. Note that the proposed approach can also handle the case of one source node and multiple
destination nodes. . : :

The proposed approach consists of two parts: the part for the source redistributor (the process
that performs the redistribution at source node) and the part for the destination.

Part 11: for the source node (during redistribution)

1. Record the current LSN (Log Sequence Number) for the log at source node, let it be LSN;.

2. Scan sequentially each file page of the source partition to unload the tuples that satisfy the re-
distribution condition. If a tuple is found in a page, the corresponding TTD (Tuple IDentlﬁer)
and the LSN in the tuple are obtained, and a tuple <TID, LSN, Flagindexi; Flagindex2,---> is
inserted into a so-called mask table, with all the Flagi,qexs being set to be true. Unloaded
tuples are appended with the corresponding TIDs and LSNs, and the resulting tuples are sent
to the destination node.

3. Scan sequentially the source node log since LSN; was recorded extract the log data that
concern the tuples that satisfy the redistribution condition, and send the destination node
these log data to bring the unloaded data at destination node up to date (i.e., to perform the’
first pass of compensation).

. Record again the current LSN for the log at source node, let it be LSN,.

. Block users’ new data requests that will update the source partition and make sure all out-
standing ones to be completed. Force the modified pages of the source partition in database
buffer into disks. Note that users continue to be able to read the source partition.

. Perform step 3 with the log data since LSN5 was récorded.

. Block all user access to both the source and the destination pa.rtxtlons, and make sure all

. outstanding ones to be completed.. This is done by requesting eXclusive locks on both of
these two partitions. When both of the X locks are granted, modify the higher level of meta
data (i.e., the partitioning method for the related table) to switch users’ future access to
redlstnbuted data to the destination node.

8. Resume users’ access to source partition.

O s

~N

Part 12: for the source node (after redistribution) . ~
for each data access request to the source partition do the followmg




if it is an access via-an index (assume it is index z) with a specified key
- then get the corresponding index page that contains the key
if the index page has been processed to reflect the reorga.mzatlou
- then perform the normal processing.
if the index page is modified,
. then erase the mark on the index page to tell that it should be re-processed.
else get TID of the tuple to be accessed '
if this TID is in mask table,
then reject the access request,
delete the corresponding item in the index page, and
set Flag, of the tuple in mask table to false.
if all the Flagi,dexs of the tuple become false, = -
then the tuple can be deleted.
delete all such index items in the index page
that have TIDs belonging to the mask table.
put a mark on the index page telling that it has been processed.
else use the mask table to examine every data access request and
to reject the request to the data with TID being in the mask table.

Note that'in order to shorten the time of data redistribution, we resume users’ access to source
partition as soon as data has been copied to the destination node completely, and leave the copied
data and the corresponding indexes unprocessed. The copied data and the corresponding indexes
will be deleted on-line later (more research is needed to examine the various issues involved). It is
thereby possible that transactions will access the index entries corresponding to the copied data,
and the copied data themselves. There are two methods that can be considered to cope with this
problem. The one is to lock all the copied data exclusively before resuming users’ access to source
partition. The other is as stated above in Part12 of the source redistributor. That is, in order to
prevent the transactions from accessing the copied data, an in-memory mask table is maintained
regarding the validity and avallablhty of the copied data. A transaction that needs data from the
mask table can abandon its attempts to read/modify the data. Compared with the second method,
the first one is straightforward and can be easily implemented. It is illustrated (see section 5) that,
however, the second one can provide far higher transaction throughput.

Part 21: for the destma.tnon node (durmg redistribution)

Without losing generality, it is assumed that there exists only one mdex (named index 1) for the
database table to be redistributed. Set. variable j to 1, and initialize a buffer named Buf; and disk
file File; and File;;). For each inbound message do the following:

Concurrent task one: '
1. Extract the key, TID, and LSN parts in each tuple in the message, construct the mapping

“record < TIDp, TID, LSN, key> and append it to Buf;. See the next step about TIDp.

2. Write all the tuples in the messa.ge into the correspondmg database ta,ble While writing
the tuples, get the current TID (na.med TIDp), and complete the ma.ppmg table with
TIDps.

3. If Buf; becomes full, write it into Flleu, increase j, a,nd mltlahze new disk file File;;.

Concurrent task two: : -
1. Use mapping records in Buf, to reorgamze the index.

2. Move the processed mapping records into File;.

Part 22: for the destination node (after redistribution)



.o Read all the File;s in parallel, and
e Reorganize the index in a normal bulk method [1 7]

Note that the copy of data at the destination node is not available for transactions until after
completion of the Pare 21. It is possible that transactions at the destination node will access the
index entries correspondmg to the copied data and the copied data themselves. As in the case of
source redistributor, here an in-memory mask table is also needed. A transaction that needs data
from the mask table can abandon its attempts to read/modlfy the data.

In concurrent task two, the mapping records can be used to reorganize the index in three ways.
The first is a so-called FIFO way, where mapping records are used by the order with which they
enter the mapping table. FIFO has been proved to be ineffective [1]. The second is a so-called
bulk way [1], where Buf; is first sorted and then inserted into the index. The third is what we are
considering. We think that in most of cases, key values of a table generally obey some distribution,
and have a mean. By simulation we found that if we sort Buf; and pick up first the mapping records
with keys approximating to the mean, the amount of data wrote into Filej; will be decreased largely,
and accordingly, the time cost of Part 21 can be shorted greatly.

5 Performance Study

In this section we give the performance results of our simulation study of the proposed approach.
Considering that the proposed approach consists of two components (i.e., the source and the des-
tination redistributors), and speeding up any of them will speed up the whole redistribution work,
we studied the performance of each of them separately, so that the performance of the proposed
approach can be studied more accurately. This paper only reports the performance results of the
source redistributor. The performance study of destination redistributor is being done.

The simulation parameters are set as follows. There are four nodes and two relations in the
system. A relation consists of 4000 pages of data. Relation 1 is evenly-distributed over all the four
nodes (1000 pages per node). In the case of no data skew, relation 2 is also evenly-distributed over
all the four nodes. In the case of data-skew, 1500, 500, 1000, and 1000 pages are located at node
1, 2, 3, and 4 respectively.

Figure 2 shows transaction throughputs of the simulated system in the following three kinds of

120
110 -

100 . Data-Skew ——
No Data-Skew ——
90 Data-Skew -> No Data-Skew <

80

Throughput

70
60

50

a \\
T —

40

0 10 20 30 40 50 60 70 80 90 100
MutltiProgramming Level

Figure 2: Throughputs (1) in the case of data skew, (2) in the case of no data skew, (3) during and
after data redistribution. Data is redistributed at mpl of 5, and data skew is eliminated thereafter.

simulation environment respectively: (1) there exists data skew; (2) there does not exist data skew;
(3) data redistribution is performed to eliminate data skew. This figure tells that data redistribution
would degrade throughput. This is because during redistribution, resource contention for disks and
network communication is increased largely. After data redistribution, however, throughput is well
increased due to the eliminated data skew.

_17.__



As stated in section 4, in order to shorten the time of data redistribution, users’ access to source
partition is resumed as soon as data has been copied to the destination node, and leave the copied
data and the corresponding indexes undeleted. It is thereby possible that transactions will access
these data and index entries. There are two methods to ‘cope with this problem. The one is to
lock all the copied data exclusively before resuming users’ access to source partition. The other is
to use an in-memory mask table to prevent the tra.nsa,ctlons from accessing the copied data. From
figure 3 we see that the second method (see the results identified with “No Locking”) can provide
far higher transaction throughput than the first one (see the results identified with “Locking”) due
to the reduced data contention. We thereby adopted the second method in our approach.

80

70

60

'5 i
8 50
[=4 a
)
E 40 Data-Skew ——
Locking, MPL 5
No locking, MPL 5 =
30 « Lacking, MPL 10 =
: No locking; MPL 10 »
20 . Locking, MPL 40 =

No locking, MPL 40 -«

10 - - ~
0 5 10 .15 20 25 30 35 40 45
MultiProgramming Level )

Figure 3: Throughputs in the case of data skew, and throughputs during data redistribution in thé
case of (1) locking and (2) no locking. Data is redistributed at mpl of 5, 10 and 40 respectively.

6 Conclusion - :
The performance of parallel database systems may bé restricted due to the unbalanced data dis-
tribution among nodes. A method for coping with this problem is to redistribute data so as
to rebalance data load among nodes. In most of the current redistribution methods for parallel
database systems, however, the area being redistributed is unavailable (off line). In this paper, we
have presented an approach to solving the important problem of on-line data redistribution for par-
allel database systems. The alternative schemes that can be consxdered have also been examined,
and the performance has been studied by simulation.

This is an ongoing research project, and we are implementing the proposed approach on a
physical database system (the Berkeley DB Package, Version 2.4.14) to examine its alternatives
and the performance implication more deeply.

References

[1] K.J. Achyutuni, E. Omiecinski and S.B. Navathe, Two Techmques for On-Line Index Modifi-
cation in Shared Noth.\ng Parallel Databases in: proc. the 1996 SIGMOD Conf., (Montreal,
Canada, 1996) 125-136. .

[2] M. Stonebraker, The Case for Shared Nothmg, Database Eng Bull, 1 (1986) 4-9.

(3] DB2 Parallel Edition V1.2 Parallel Technology, IBM Corp., Apr. 1997. .

[4] Sybase:MPP for the IBM RISC System/ 6000 Scalable POWERparaJIeI

[7] 'J. Troisi, NonStop Availability and Da.taba.se Conﬁguratxon Operatlons, Tandem Systems Re-
Vzew, 10(3) 18-23, JuIy 1994



