BEETF ML RIERE 22—15

(1998. 11.

A Combined Data and Program Partitioning Algorithm

for Distributed Memory Multiprocessors

Tsuneo Nakanishi * Kazuki Joe t
Constantine D. Polychronopoulos ¥ Akira Fukuda *

narafrase@is.aist-nara.ac.jp

* Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayamacho, Ikoma, Nara 630-0101, JAPAN
' Wakayama University, Wakayama, J APAN
1 University of Illinois at Urbana-Champaign, IL, U.S.A.

- Abstract

In this paper we propose an algorithm to perform data partitioning and program
partitioning simultaneously on the Data Partitioning Graph, an intermediate repre-
sentation for parallelizing compilers. Conventional and, therefore, conservative par-
allelizing compilers usually activate program partitioning. prior to data partitioniﬁg.
However, on distributed memory multiprocessors, since commupication costs change

depending on a data partitioning and distribution decision; it is quite diﬂicul_t to-
partition a program effectively with consideration of data partitioning. The proposed .

27)

algorithm resolves this confliction by handling these inseparable partitioning problems
simultaneously with a branch-and-bound based scheme. : ‘ -

1 Introduction

Introduction of distributed memory ‘multiproces-
sors, which promise high performance computation
because of their scalability, increases the complex-
ity of manual parallel programming tremendously.
The most serious problem will be how to partition
and distribute data of the program to distributed
memory modules not t6 raise expensive interproces-
sor communications frequently. Many researchers
have been exploring methods to reduce interpro-
cessor communication overheads automatically by

parallelizing compilers[5, 6, 7).

Parallelizing compilers partition a given program
to tasks executed.concurrently on target machines.

. This compilation process is often referred to as pro- .

gram partitioning, or paertitioning simply. -Syntac-
,tical objects of the source language such as state-
ments, basic blocks, loops, or procedures; organize
tasks themselves in. general. However, since ex-
cessive partitioning fails in frequent expensive in-
terprocessor communications and insufficient par-
titioning exploits poor parallelism[4], it is often re-

—87—

quired to optimize program pértitioning by fusing
or splitting tasks after initial program partitioning.

- Moreover, parallelizing compilers for distributed

memory multiprocessors must optimize date par-
titioning of the program, namely partition and dis-
tribute array variables in an optimal form, unless
partitioning or distribution of the array variables
are specified at. programmers’ responsibility with

. some means such as source.language properties[9],

compiler directives, and so on. .. :

We cannot either find an optimal program parti-
tioning without communication costs between tasks

fixed after data partitioning or optimize data par-
' titioning without dny program partitioning deci-

sions. Sequential optimization of these partition-
ing follows conflicted program and data partition-
ing. Therefore, program partitioning and data par-

‘titioning should be optimized simultaneously in a

’uﬂiﬁed_’manner. -) o ‘ »

SQ far- ;,parallelilz)i»ng! cgmpilvqr;s ,héxve often em-
ployed the dependence graph for parallelization and
code optimization as a simple and convenient inter-
mediate representation. However, the dependence

graph is not powerful enough for distributed mem-
ory multiprocessors, since the dependence graph is
lack of explicit information on data locations and
accesses which is essential to optimize data parti-
tioning. SR ‘ :

In this paper we define the Data Partitioning
Graph (DPG), an extension of the dependence
graph with explicit data location and access infor-

mation, as a common intermediate representation -

of a given program for data partitioning and trans-
ferring optimization techniques. Furthermore, we
propose the CDP2Algorithm to optimize program
partitioning and data partitioning simultaneously
with the DPG. ’

2 Data Partitioning Graph'

We mentioned the dependence graph has constitu-
tional problems as an intermediate representation
for parallelizing compilers whose targets are dis-
tributed memory multiprocessors, namely the de-
pendence graph lack explicit data location and ac-
cess information, in Chapter 1. We define the Data
Partitioning Graph, or the DPG, as an intermedi-
ate representation which reveals variables and ac-
cesses to them in its structure.

Figure 1 shows an example of the DPG. The
DPG has two kinds of nodes: C-nodes shown as
circular nodes and D-nodes shown as square nodes.

The C-nodes represent tasks. There are two
kinds of dependence edges, that is, the conirol
dependence edge and the data dependence edge,
between C-nodes. A control' dependence edge
or a data dependence edge represents a control
dependence[2] or a data dependence from the task
corresponding to the source of the edge to the task
corresponding to the sink of the edge.

The D-nodes represent sets of scalar variables
and array variable elements. Note that we will refer
1o a scalar variable or an array variable element as
variable simply in the rest of this paper. We parti-
tion the set of all the variables into classes accord-
ing to their access patterns and generate a D-node
for each class of variables, namely a set of variables
whose access patterns are same. The access pattern
is a property of the variable indicates which tasks
read the variable at what frequency and which tasks
write the variable at what frequency. If the task of
a C-node may read a variable in the class of a D-
node, we set a read access edge from the D-node to
the Ciriode. Similarly, if the task of a C-node may

write a variable in the class of a D-node, we set a
write access edge from the C-node to the D-node.
We often refer to read access edges or write access
edges as data access edges without distinction.

In this paper we denote the DPG by a tuple
({cv,DV},{DDE,CDE, RAE, WAE}), where
CV, DV, CDE, DDE, RAE, and WAE are a
set of C-nodes, a set of D-nodes, a set of control
dependence edges, a set of data dependence edges,
a set of read access edges, and a set of write access
edges respectively for formal description.

—s Control/Data Dependence Edge
——» Read/Write Access Edge

Figure 1: Data Partitioning Graph (DPG)

3 Data-Program Partitioning

3.1 Assumptions

In this paper we assume that parallel programs are
executed on a distributed memory multiprocessor
which satisfies the following requirements: i) Pro-

‘cessors are provided as many as the executing par-

allel program requires; ii) Each processor owns its
local memory module to be accessible with no la-
tency; iii) Each processor can access remote mem-
ory modules with some latency to be independent
of the locations of the remote memory modules.
Also we assume that all tasks are assigned
to processors by an appropriate: static scheduling
algorithm[1] and each processor executes its as-
signed: tasks in the following manner: i) Choose
a task being ready to run; ii) Read values of vari-
ables on remote memory modules required for the

task execution into copies of the variables on the
local memory module; iii) Execute the task non-
preemptively; iv) Write values of the copied vari-
ables back to their original on remote memory mod-
ules; v) Go to Step i). In:this execution model vari-
ables on remote memory modules are accessed col-
lectively before and after each task execution, while
variables on the local memory module are accessed
at any time.

For portion of the program to be partitioned op-
timally we set the following assumptions: i) The de-
pendence graph of the portion is acyclic; ii) There is
no control dependence between tasks. The second
assumption states there is no branch in the portion
and all the task of the portion are executed.

3.2 Data-Program Partitioning

We achieve optimization of both program parti-
tioning and data partitioning simultaneously, or
data-program partitioning, by fusing C-nodes and
D-nodes of the DPG. The data-program partition-

ing problem is formalized as a problem of group-

ing C-nodes and D-nodes of the DPG. The tasks
of C-nodes in each group are fused, moreover, the
variables of D-nodes in each group are located at
the local memory module’ of the processor which
executes the task constructed by fusing the tasks
of the C-nodes in the same group. Therefore, data
access edges whose sources and sinks are in differ-
ent groups represent accesses to remote memory
modules.

Data-program partitioning on the DPG repro-
duces a new dependence graph from the original
DPG. At first C-nodes and D-nodes in the same
group are fuseéd. Self-loop data dependence edges
are removed and parallel data dependence edges are
bundled. The DPG has execution times of tasks as
the costs of their corresponding C-nodes. Besides
each data access edge has time of the interprocessor
communication required for the corresponding data
access as its cost. Data access edges are removed
but their costs are used to compute edge costs of the
new dependence graph with considering whether
the data access edges represent accesses to remote
memory .modules or the local memory modulé In
this way costs of nodes and edges of the new depen-
dence graph are computed. It is known that the
cost of the critical path of the dependence graph,
whose nodes and edges have execution times of the
corresponding tasks and times required for the cor-

responding communications, gives minimum paral-
lel execution time in the field of scheduling. Thus
the critical path cost of the dependence graph de-
rived from the DPG by the CDP2Algorithm gives
minimum parallel execution time. under the pro-

_gram and data partitioning decision defined by the

grouping of C-nodes and D-nodes. We can formu-
late the data-program partitioning problem as a
problem of finding the optimal grouping of C-nods
and D-nodes of the DPG, namely the grouping such
that minimizes the critical path cost of the result-
ing dependence graph.

We must respect the convez constraint[4], which
was originally defined for program partitioning on
the dependence graph, on grouping C-nodes to
avoid dead locks. The convex constraint is rede-
fined for the DPG as a constraint on grouping C-
nodes of the DPG such that for any two different
C-nodes cv,, and cv, in each group all the nodes
in all the paths from cv, to cv, consisting of only
data dependence edges must be in the same group.
Data-program partitioning without the convex con-
straint produces a cyclic dependence graph which
causes a dead lock.

4 The CDP?Algorithm -

The CDP?Algorithm, which is extended from
Girkar’s program partitioning algorithm[3] on the
dependence graph, searches for the optimal group-
ing of nodes of the DPG by a bra.nch and-bound
based scheme.

Girkar’s partitioning algorithm performs group-
ing of nodes of the dependence graph to optimize

- program partitioning. For a grouping of the riodes

of the dependence graph, if nodes of each group
and edges between the riodes are organizing a con-
nected subgraph of the dependence graph, we refer
to the partitioning given by the grouping as con-
nected. Girkar proved the following theorem con-
cerning optimality and connectivity of partitioning
on the dependence graph in [3].

Theorem 1 There exists a connected partitioning.

‘a

- Girkar . classifies all the edges. of the dependence

graph into a class II or a class 7 to define a group-
ing of the nodes of the dependence graph gives a
connected partitioning in his algorithm. The sub-

graph consisting of nodes of the dependence graph

and edges in 7 contains connected components.
Girkar’s algorithm regards the nodes of each of the

connected components as to be in the same group

to define a grouping of the nodes of the dependence
graph gives a connected partitioning. The problem
is to find a classification of edges of the dependence
graph into II and 7 which minimizes the critical
path cost of the dependence graph produced by
grain packing defined by the classification. We ex-
tend his idea to the data-program partitioning on
the DPG.

4.1 Properties of the DPG

The CDPZ?Algorithm accepts the DPG of a given
program, performs grouping of C-nodes and D-
nodes of the DPG to decide which tasks are fused
and where variables are located, and produces a de-
pendence graph of the program optimized its par-
titioning and data partitioning based on the afore-
mentioned formalization in the previous chapter.

The CDP?Algorithm classifies all the data de-
pendence edges of a given DPG into a class II
and a class 7 in a similar way of Girkar’s pro-
gram partitioning algorithm. Simultaneously the
CDP? Algorithm classifies all the read access edges
of the DPG into a class IIg4x and a class TraE
and all the write access edges of the DPG into a
class w4z and a class Twap. A C-node and a D-
node which are the end points of each data access
edge in Trap and mwag are enclosed in the same
group. To the contrary, C-nodes and D- nodes cor-
responding to the end points of data access edges in
ligag or Il ag are in different groups. Thus data
accesses corresponding to the data access edges in
1 rap and Iy ,p raise interprocessor communi-
cations.
CDP?2Algorithm.

The CDPzAlgonthm must cla351fy data. access

edges not to conflict with the classification of the

data dependence edges. T'wo properties of the de-
scribed below are essential to guarantee conflictless
classification.

Firstly, for any data dependence edges there
exists a D-node which contain variables concern-
ing with the dependence of the edge. Fig-
ure 3 ‘explains that. We denote a set of D-
nodes which contain variables concernmg with
" the " dependence of dany -data dependenceé ‘edge

(cvascuy) by DV((cvu, evy)), DVo((cvy, cvy)), or-

“DV;((cvy, cvy)) in case (cvy,cv,) represents a flow

Figure 2 describes the basic idea of the:

and each of cv, and cv,.

24
(=8+16)

Figure 2: The Basic Idea of the CDP2Algorithm

dependence, an output dependence, or an anti-

" dependence respectively.

©

Output Depend

(o).
o
e

Flow Dependence

Anti-Depend

Figure 3: Dependence Edges and D-nodes

Secondly, if any. data dependence edge (cvy, cvy)
is classified into II, there exists three legal cases
of classification of data access edges between dv €
DV;((cvu, cvy)) U D Vo((cvu, cvy)) U DV ((cvy, cv,,))
In case of (cuy,cvy) is
classified into , the legal clasmﬁcatlon is two cases.
Figure 4 enumerates these legal clasmﬁca,tmns _

Given a conflictless classification of data depen-
dence edges and data access edges we can define a
dependence graph as described in Section 3.2. ' We
have to recompute the costs of nodes and edges of
the dependence gra.ph to evaluate minimum paral-
lel execution time at program and data partitioning
given by the classification. The cast of 2 node of the
dependence graph 'is the total cost of C-nodes fuised
on-constructing the node: On the- other ‘hand the

cost of a 'data dependence edge (cvy,cv,) denoted

by wppe({cvu; cvy)) is given as follows based on the

—90—

Figure 4: Conflictless Classification

classification of data access edges. In the following
expression the cost of a read access edge (dv,cv)
and the cost of a write access edge (cv, dv) are de-
noted by wrap((cvy,dv)) and ww 4g((cv, dv)) re-
spectively.

wppE((cvu, cv,))

™

WWAE ((cvu ,dv))
dve{dv’ EDVy((CVu cw))l(cvmdv’)EHWAE}

M

. wRAE((dv, CUy))
dve{d‘v EDVj((C‘vu C”w))|(d"’v=‘”v)EHRAE}

ww 4k ((cvu, dv))
dve{dv' €DVo((eva,cvs))l(cvu,dv’)€y 4 5}

MM

’ ww 4E((cvs, dv))
dvE{dv! €DV, ((cvu,cvy))(cvy,dv’)elly 42}

M

wRA_E((dv, cvy,))
dv€{dv' €DVa((cvy.cvy))(dv cv4)ellgag}

-+ C : Z "~ wwAg((cvy, dv))

due{dv enva((cuu cvv))l(cvu.dv')el'lw,w}

Note that we assume zero latency for local memory
module accesses and the costs of the only data ac-
cess edges in Ilpa g and Iy 4 5 contribute the costs
of data dependence edges: The costs of data access
edges are assigned times required for interprocessor
communication of the corresponding data accesses
as described in Section 3.2.

4.2 The CDP%Algorithm

The CDP?Algorithm employs a branch-and-bound
scheme to find a classification of data dependence
edges and data access edges which minimizes the
critical path cost of the dependence graph given by
the classification. At each step the CDP?Algorithm
chooses a halfway classification, picks a data de-
pendence edge of unknown class, and derives two
cases of new halfway classification, namely cases
when the picked data dependence edge is classi-
fied into II and w. Moreover, for each cases the
CDP?Algorithm derives classifications of the re-
lated data access edges not to conflict with the cur-
rent halfway classification of data dependence edges
and data access edges based on the property shown
in Figure 4. Of course, since it requires exponential
computation time to examine all the possible clas-
sifications, the CDP2Algorithm produces derived
classifications only from prospective classifications
which will generate the optimal classification later
and suspends the other halfway classifications at
each step.

The CDP2Algorithm defines the halfway classi-
fication, or the incumbent of the solutlon as a sep-
tuplet:

(X PRAE; XRAE PW AB, XW AE: w).‘

Here p are a set of data dependence edges classi-
fied into 7 and are a set of data dependence: edges
which are classified into neither II nor 7 vet. praz,
XRAE, PwaE, and’ XWAE are similar sets but of
data access edges. w is a critical path cost of the
dependence graph under the program and data par-
titioning decision given by this current edge classi-
fication. Edges in x, Xraig, and xwap are dealt
as if they were not in'the DPG on computing the
critical path cost. The CDPzAlgonthm picks an
incumbent with minimum & on derivations of in:
cumbents. Since derived incumbents never have
less w than their orlgmal incumbent, the first found
incumbent such that there is no data, dependence
edge in x must be an edge classification which de-

fines optimal program and data partitioning.

We omit the detail flow of the CDP?Algorithm
sinice we' do not have enough space to describe it.

See [8] instead. The CDP?Algorithm itself is a well-

known branch-and-bound algorithm but we impose
a restriction on selection of data dependence edge
at each step to keep the coiivex constraint. The
CDP? Algorithm does ‘not “apply active bounding

but only suspends inexpectant incumbents since we
do not have confident ideas on effective bounding
schemes to the DPGs of real applications. -

Some data access edges may be left unclassified
and some D-nodes may not be fused after an appli-
cation of the CDP2Algorithm. Read access edges
from D-nodes whose variables are read by some
tasks but not written by any tasks are left unclas-
sified, since the variables never relate to any data
dependencies. Write access edges to D-nodes whose
variables are written by one task but not read by
any tasks are also left unclassified for the same rea-
son.. We should duplicate those variables pro re
nata and locate variables or distribute their copies
over local memory modules of the processors which
execute tasks referring the variables. This process
keeps data references of these data access edges
from raising interprocessor communications. The
variables of isolated D-nodes should be removed,
since they are redundant: variables to be read or
written by any tasks. .

5 Conclusion

In this paper we formalized the data-program parti-
tioning problem, a problem to partition a given pro-
gram and its data in an optimal form, as a problem
grouping nodes of the DPG which is an extension
of the dependence graph with explicit data location
and access information. The CDP?Algorithm de-
scribed in this paper is a branch-and-bound based
algorithm which solves the data-program partition-
ing problem. .

The current CDPzA]gonthm does not bound
hopeless incumbents -actively but only suspends
incumbents of unknown expectancy at each step.
Since computation time of a branch-and-bound al-
gorithm depends on how the algorithm bounds
hopeless incumbents effectively in earlier steps, it
will be our prior future work to find an effec-
tive bounding method for the CDP2Algorithm.
Although the current QDPZAlgonthm picks data
dependence edges in an arbitrary order, picking
data dependence edges in a sophisticated order
will contribute to, reduce computation time of
the CDP?Algorithm by suppressing the number of

branchings. It is also a future work to develop a
heuristics on the order of picking data dependence
edges to suppress the number of branchings. For
both future works we consider utilizing evaluation
measures used in list scheduling algorithms([1] such

as the critical path cost to the bottom of the depen-
dence graph, the number of children or descendants
of each node of the dependence graph, and so on.

References -

[1] H. Kasahara and S. Narita, “Practical Mul-
tiprocessor Scheduling Algorithms for Efficient
Parallel Processing,” IEEE Trans. on Comput-
ers, Vol.C-33, No.11, pp.1023-1029, Nov. 1984.

[2] J. Ferrante, K. J. Ottenstein, and J. D. Warren,
“The Program Dependence Graph and Its Use
in Optimization,” ACM Trans. on Programming
Languages and Systems, Vol.9, No.3, pp.319-
349, Jul. 1987.

[3] M. B. Girkar and C. D. Polychronopoulos,
“Partitioning Programs for Parallel Execution,”
Proc. of the 1988 Int. Conf. on Supercomputing,
pp.216-229, 1988.

(4] V. Sarkar, Partitioning and Schedulmg Pamllel
Programs for Multzprocessors, The MIT Press,
1989.

{5] J. Li and M. Chen, “Index Domain Alignment:
Minimizing Cost of Cross-Referencing between
Distributed Arrays,” Proc. Frontier '90: The
3rd Symp. on the Frontiers of Massively Parallel
Computation, pp.424-433, Oct. 1990.

[6] M. Gupta and P. Banerjee, “Demonstration
of Automatic Data Partitioning Techniques
for Parallelizing Compilers on Multicomputer,”
IEEE Trans. on Parallel and Distributed Sys-
tems, Vol.3, No.2, pp.179-193, Mar. 1992.

[7] P. Tu and D. Padua, “Automatic Array Pri-
vatization,” Proc. of the 6th Int. Workshop on
Languages and Compilers for Parallel Comput-
ing, pp.500-521, 1993.

[8] T. Nakanishi, K. Joe, H. Saito, A. Fukuda, and
K. Araki, “The CDPzAlgonthm A Combined
Data and Program Partitioning Algorithm on
the Data Partitioning Graph,” Proc. of the 1995

~ Int. Conf. on Parallel Processing, Vol.II, pp-177—
181, Aug. 1995.

[9] C: H. Koelbel, D. B. Loveman, R. 8. Schreiber,
‘G. L. Steele Jr., and M. E. Zosel, The High Per-
© ‘formance Fortmn Handbook, The MIT Press,
1994. ‘

