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Gapless local multiple sequence alignment is a problem of, given a set of strings, selecting a
fixed length substring from each string so that the total similarity among selecting strings is
maximized. It is useful for finding characteristic string patterns (i.e., motifs) from DNA or
amino acid sequences that have similar biological functions. For this problem, several heuristic
algorithms have been developed using such techniques as expectation maximization and Gibbs
sampling. Exact algorithms based on branch-and-bound techniques have also been developed.
However, no polynomial time algorithm to compute an optimal solution was known. In this
short article, we prove that the problem is NP-hard under both information theoretic entropy
scoring scheme and SP (sum-of-pairs) scoring scheme.

1 Introduction

Finding “motifs” from DNA or amino acid sequences with similar biological functions is one
of well-studied computational problems in molecular biology, where a motif is a characteristic
string pattern. Gapless local multiple alignment is one of useful tools for finding motifs. Gapless
local multiple sequence alignment is a computational problem of, given a set of strings, selecting
a fixed length substring from each string so that the total similarity among selecting strings
is maximized. For this problem, several heuristic algorithms have been developed using such
techniques as beam search [8], expectation maximization [5], and Gibbs sampling [6]. But, these
algorithms may miss optimal solutions. In order to find optimal solutions, a branch and bound
algorithm and an exact algorithm have been developed [3, 4]. However, in the worst case, they
use exponential time. Thus, it is natural to ask whether or not gapless local multiple alignment
is NP-hard.

In this short article, we prove that this problem is NP-hard under both information theoretic
entropy scoring scheme and SP (sum-of-pairs) scoring scheme, where both scoring schemes are
widely used in molecular biology.



2 Hardness Result under Entropy Scoring Scheme

In this section, we prove that gapless local multiple alignment is NP-hard under information
theoretic entropy scoring scheme. First we define the problem formally [4]. For simplicity, we
consider strings over an alphabet & = {0,1}. We are given a set of strings {51, S2,..., Sn} over
{0,1}, and a length W of the window. From each S;, we extract a substring of length W. Let
N (resp. Nj1) be the number of 0’s (resp. 1’s) in the substring extracted from S;. Then, the
total score (i.e., entropy) is given by
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Then, the problem is to extract substrings which minimize the total score (i.e., maximize
SV (Nsglog Nig + Nijylog Nj1)).

Here we briefly give an example of the problem. Let N = 5 and W =4, and S} = 01011101,
S = 1110101, S3 = 011110110, S4 = 00011100, S5 = 110011. Then, the following is an optimal
alignment:

WWWW
01011101
1110101
011110110
00011100
110011

where WWWW denotes the window (i.e., substrings just below WWWW are selected).

Theorem 1. Gapless local multiple alignment is NP-hard under information theoretic entropy
scoring scheme.
(Proof) In order to show NP-hardness, we use a polynomial time reduction from MIN 2SAT,
which is known to be NP-complete [1]. MIN 2SAT is, given a set of clauses {c1,...,cm} over a
set of variables {z1,...,z,} where each clause consists of two literals (i.e., each clause has one
of the following form: z; V «;, z; V ~zj, —z; V —z;), to find a truth assignment such that the
number of satisfied clauses is minimized.

From an instance of MIN 2SAT, we construct 2n — 3 strings each of which has the following
form

S; = A.B;.A.D; A

where z.y denotes a concatenation of z and y, and A, B;, D; are substrings defined below. We
let the window size be W = |A| + | B;| + |A| (|B:| = |Di| = m).

A is constructed so that A must be aligned with A (otherwise the score would not become
the minimum). For example, A can be the following form:

(n) 0000 (n—1) 0000 (n—2) 0000 ... 0000 (2) 0000 (1) 0000

where each (i) denote a binary string representing the number ¢ {(using logn bits) and 0000
denotes the string with logn 0’s.

Let B; = b;1big...bim. Fori=1,...,n, we define b;; as follows: b;; = 1 if z; appears in
¢j, otherwise b;j = 0. Fori=n+1,...,2n — 3, we define b; ; =1 for all 5.

Let D; = d;1dio...dimm. For i =1,...,n, we define d; ; as follows: d;; = 1 if ~z; appears
in c;, otherwise d; ; = 0. For i =n+1,...,2n ~ 3, we define d; ; = 1 for all j.

Then, we can consider the following correspondence:



e 7, =1 <= A.B;- Ais selected from S; as a substring of length W,
e 1; =0 < A-D; Ais selected from S; as a substring of length W,
Based on this, we have the following correspondence:
(i) ¢; is not satisfied <= N;g=nand N;; =n -3,
(ii) ¢; is satisfied <= (Njo=n—1and Nj; =n—2) or (Njo=n-2and Nj; =n—1),

where we only consider columns corresponding to B;’s and Dy’s. It is easy to see that the score
for case (i) is lower than the score for case (ii).

Therefore, the total score is minimized if and only if the number of satisfied clauses is mini-
mized. Since the above construction can be done in polynomial time, the theorem holds. O

Here we give an example of a construction.
MIN 2SAT: {51V ~zq, 32 V 23,021 V Z4}.

Constructed strings: S; = A.100.4.001.4, S5 = A.000.4.110.4, S3 = A.010.4.000.4, Sy =
A.001.A.000.4, S5 = A.111.A.111.A.

Then, the followings are optimal alignments:

WWWWWWW WWWWWWW WWWWWWW
A.100.4.001.4 4.100.A.001.4 A.100.4.001.4

A.000.A.110.4 A.000.4.110.4A A.000.A.110.A
A.010.A.000.4 A.010.4.000.A A.010.4.000.4
4.001.A4.000.4 A.001.A.000.4 A.001.4.000.A
A.111.A.111.4 A111.A.111.A A.111.A.111.4

Note that an alignment in the left part corresponds to a case of z; = 0,29 = 1,23 = 0,24 = 0,
¢1 = 0,c0 = 0,¢c3 = 1, an alignment in the middle part corresponds to a case of z; = 0,29 =
Lizz = 0,24 =1, 1 = 0,c2 = 0,c3 = 1, and an alignment in the right part corresponds to a
caseof £y = l,29 =1,23 = 0,24 =0,¢; = 1,¢c9 = 0,¢c3 = 0.

3 Hardness Result under Sum-of-Pairs Scoring Scheme

In this section, we briefly show an NP-hardness result for SP (sum-of-pairs) scoring scheme. In
SP scheme, we are given a function s(z,y) from ¥ x ¥ to a set of reals, where s(z,y) = s(y, z).
Let s}s?...s)" be the substring selected from S;. Then, the total score is defined by

w
Z Zs(sf,s?).

k=1i<j

Note that, in this case, the problem is defined as a maximization problem and thus the score
should be maximized.

Theorem 2. Gapless local multiple alignment is NP-hard under SP (sum-of-pairs) scoring
scheme.

(Proof) We use a reduction from MAXIMUM INDEPENDENT SET as in [7]. MAXIMUM
INDEPENDENT SET is, given an undirected graph (V, E) and an integer K, decide whether
or not there exists U C V such that |U| > K and (Vu,v € U)({u,v} ¢ E).



From an instance of MAXIMUM INDEPENDENT SET ({V| = n,|E| = m), we construct
the following set of sequences over £ = {—,a,,0,1}: (i) for each 7 = 1,..., K, we construct
A; = (—)?" a (=)* where (—)?" means 2n ‘—’s; (ii) for each v; € V, we construct a string V; as
below:

vi vjl vj2 vj3
! b |

V_i: bbbbbbbbbbbbb 1111011111111 bbbbbbbbbbbbb 1101110111101 bbbbbbbbbbbbb
length n length n length n length n length n

where vj,, -+, v;, are adjacent nodes of v;.

We define score function by s(a, 1) = s(1,a) = 1, s(a, —) = s(—,a) = 1, otherwise s(z,y) = 0.
We define W = 3n.

Then, the score of an alignment is at least Kn + K(K — 1) if and only if there exists an
independent set of size K. |

4 Concluding Remarks

We proved that gapless local multiple alignment is NP-hard under both information theoretic
entropy scoring scheme and SP (sum-of-pairs) scoring scheme. This result gives a justification
for using heuristic algorithms that were previously developed. From a theoretical viewpoint,
development of an approximation algorithm with guaranteed approximation ratio (especially,
under information theoretic entropy scoring scheme) is important future work.
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