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Abstract  As a study on information physics this paper proposes signal conservation logic (SCL), which is a model
of logic for the physical world necessarily subject to the matter conservation law. In SCL, replication, negation,
and computational universality called elemental universality are all equivalent. It may mean that life under the
matter conservation law eventually acquires some kind of intelligence, because intelligence has a close relation to
computational universality. The matter conservation law confines the number of logical functions generated by
self-organization process, and so we may be able to get rid of the difficulty caused by combinatorial explosion in
the evolution of life. By applying SCL to the edge of chaos generated by cellular automata, it is proved that the
square-root law is exhibited by the domino cellular automaton constructed from the SCL domino gates. This result

may be regarded as a clue to the superexponential law proposed by the author.

1 Introduction

This paper investigates a certain mathematical model
of the evolution of life and intelligence on the basis of
Boolean logic and the matter conservation law. This
theory is related with the elemental universality, a kind
of computational universality proposed by the author {1],
and can be classified as the research of natural laws in
informatics [2]. The author calls such research informa-
tion physics [3].

The elemental universality intuitively tells that, if a
system based on discrete mechanism is nonlinear and
negative-controlled, it is endowed with elemental univer-
sality. We can agree that life is nonlinear and negative-
controlled, and that living organisms on the earth utilize
DNA as their hereditary mechanism, which is digital.
Thus we should think of life on the earth as having el-
emental universality. Another theoretical evidence that
life is digital has been given by the author as a mathe-
matical proof of the discreteness inherent to the edge of
chaos [4].

The edge of chaos has been investigated as one of
the central concepts in the science of complexity since
S. Wolfram [5] discovered the class 4 cellular automata.
Computational universality and discreteness at the edge
of chaos, conjectured by Wolfram, had been the most
attractive problems in this field until the author proved
them [2, 3, 4].

We have still another famous problem concerning the
edge of chaos. S. A. Kauffman [6, 7] proposed the square-
root law observed in random Boolean networks, which
is regarded as another type of the edge of chaos. The
author’s superezponential law {2, 3, 8] is also related to
this square-root law. However, Wolfram’s automata and
Kauffman’s law have not had clear mathematical con-
nections.
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The author deals with this problem on the basis of
signal conservation logic (SCL) to be proposed here, and
also proves that replication, negation, and elemental uni-
versality are all equivalent in SCL.

2 Definitions and Notations

We employ ordinary Boolean notations. Let F
{0,1}* — {0,1}" be a multiple-output logical ele-
ment that realizes logical functions. Let the inputs ol
F be X = (z1,z2, -,zn) and the outputs be Z
(21,22, +,2n). We denote z; = fi(z1,%2,-+,2Zn) (4
1,2,-++,m), or Z = F(X), in short.

The weight, w(V), of V € {0,1}" is the number of 1’s
in V. F belongs to signal conservation logic (SCL), if
for all inputs X its outputs Z = F(X) satisfy w(Z) =
w(X). The notation w(F') stands for w(Z), and we write
F € SCL or ‘F is SCL,’ where SCL is the set of all SCL
elements. We ordinarily assume that an SCL element
has delay of one unit time.

If only F' is onto and one-to-one, i.e., its inverse can be’
defined, we say that F' belongs to information conserva-
tion logic (ICL). The notation is F € ICL or ‘F is ICL,’
where ICL is the set of all ICL elements. Note that the
weight condition for w(X) and w(Z) is not imposed on
F.

The Fredkin gate [9], F: 21 = 1, 22 = z1%2 + T123,
23 = z123+T1T2, is both SCL and ICL. This gate can re-
alize AND, NOT, and FAN-OUT functions by applying
appropriate variables and appropriate constants to its
inputs: fa(x,y,0) = zy (AND), fs(z,1,0) = T (NOT),
and fi(z,1,0) = z and fi(z,1,0) = z (FAN-OUT). It
means that a computer can be constructed from Fredkin
gates.

Given a set, S, of logical elements, if a computer (or a
universal Turing machine) can be constructed from the
copies of the gates in S, we say that S is universal. The
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elemental universality defined by the author {1] permits
the free use of constants 0 and 1 and/or assignment of
initial values to logical elements. We understand that the
Fredkin gate (the set {Fredkin gate}, strictly) is univer-
sal in the sense of elemental universality. The elemental
universality tells that:

Theorem 1 A set of logical elements is universal in the
sense of elemental universality if end only if it is not
contained in L and P.

Here L is the set of all linear functions, which can be
written in the form y = oo ® 0121 @ -+ ® anz, for
some choice of binary constants a’s. The symbol & is
exclusive OR.

P is the set of all positive functions. Binary vector
(z1, " Zn) < (y1, -+, yn) if and only if z; < y; for all
i. Logical function f is called positive if f(z1, ---, 2n)
< f(y1> Ty yﬂ) whenever (1‘1, Y xn) < (yl’ T yﬂ)‘

3 Basic Properties of SCL/ICL

The number, N(n), of logical elements with n-inputs and
n-outputs under ordinary Boolean logic is calculated as
N{(n) = (227)" = 2"?". The following propositions are
easily proved.

Proposition 1 Let Ns(n) be the number of possible
SCL elements with n-inputs and n-ouiputs. Then

Ns(n) =[] C(m )7,
i=0
where C(n, 1) is the number of combinations of i from n
objects.

(1)

Proposition 2 Let Nr(n) be the number of possible ICL
elements with n-inputs and n-outputs. Then

Ni(n) = 2"1. )

Proposition 3 Let Nsi(n) be the number of logical ele-
ments in both SCL and ICL with n-inputs and n-outputs.
Then

Nsi(n) =[] C(n, 0 (3)

Let us consider SCL elex;ae(;xts that can realize FAN-
OUT. Here we call a FAN-OUT function ‘signal replica-
tion function,’ or in short ‘replication.’

Lemma 1 In SCL the realization of replication is equiv-
alent to the realization of negation.

Lemma 2 If an SCL element F' realizes FAN-OUT, it
is universal in the sense of elemental universality.

Theorem 2 Replication, negation, and elemental uni-
versality are egquivalent in SCL.

Lemma, 2 and Theorem 2 indicate that replication pro-
cess under the matter conservation law is the ‘mother’
of computational universality in the sense of elemental
universality. Then self-replicating organisms may be re-
garded as endowed with potential computational univer-
sality. Nonlinearity and nonmonotonicity of life and the
self-replicating capability under the matter conservation
law indicate the same digital mechanism that can acquire
the capability of the universal computer.

Almost all SCL elements for large n are universal, and,
in addition, the Fredkin gate is not an exceptional uni-
versal gate under the matter conservation and reversible
condition.

CARRY SUM CARRY

b

Z-1 Zo 21

Figure 1: The domino gate.

4 Edge of Chaos by SCL

Wolfram [5] classified cellular automata into four classes.
The author [4] proved the discreteness associated with
the class 4 by distinguishing the class 3 from the other
classes. The definition of divergence [4] tells that the
width of nonzero signals and the number of nonzero sig-
nals must be both unbounded in the chaotic phase, which
means that SCL cannot exhibit the class 3 phenomena
under this definition if the number of cells is unbounded.
(If the number of cells is finite X as in cyclically con-
nected automata, the class 3 with periods of O(2%) can
be exhibited.)

We introduce a symmetry condition to SCL elements,
which we call symmetric SCL elements or, shortly, SSCL
elements.

The variable names are changed from z1,z2, -, %,
t0 Zem, *,%0, ", Zm and in similar manner for z;’s,
where n = 2m + 1. We assume that z_; = z; for : =
1,---,m, although z_; and z; are independent.

We can easily prove that n must be odd for SSCL
elements. It is because of the signal conservation con-
dition. The function 20 = fo(Z—m,* *,Tm) is uniquely
determined as fo = Z-m @ +++ ® Tm. The number of
SSCL elements for 2m + 1 variables is as follows:
Proposition 4 Let Nss{2m+1) be the number of SSCL
elements with (2m + 1)-inputs and (2m + 1)-outputs.
Then

Nss(2m +1)
= [, C(m,i)CCm+1.2)+C@m+1,2i+1)
i=0 ! *

4)
Let us consider the only one SSCL element with three
variables. It is expressed as

Z=z_1Qz D21,

(5)

Zo1 =21 =T-1T0 + ToZ1 +T1T—1. (6)
This element is also symmetric with respect to all in-
put variables, but is realized under a very simple con-
straint such that z_1 = z. (The number of SSCL el-
ements symmetric with respect to all input variables is

7, Clm, )%

Note that this element happens to be a one-digit full
adder, with zo as SUM and z-: and z1 as CARRY, as
depicted in Fig. 1. The author calls this element the
domino gate due to the analysis below.

We construct a one-dimensional cellular automaton
from domino gates with a unit delay. We call this au-
tomaton the domino automaton. The number of cells,
i.e., domino gates, is unbounded in both directions. At
time ¢, the inputs and outputs of cell F; are expressed

(t ¢ ¢ ¢ D ¢
as :z:j’g and z](.’,.). Then 93§,)—1 = z]('—)x,p :cgc)) = z;’g, and



a) Outputs 2p’s
P 0

(b) Outputs z_1’s and z1’s

Figure 2: Edge of chaos by the domino automaton.

:l:;f) = 21(21 _1, and from these values z< 1

lated.

s are calcu-

At time —1, values to the cells in a finite interval are
applied such that m( 0 Y = 0and x( 11) and :z;( Y are ran-
dom numbers 0 or 1 with equal probablllty 1 / 2. Let the
left and right ends of the cells with nonzero input signals

" be Fi, and Fg, respectively, where R = L + N — 1. Note
that the weight w(X) for each gate in this interval is 1
on an average. Other cells (j < L or R < j) are all fed
by 0’s. If N is sufficiently large, the initial values of F}
(j=L,L+1,---,R) at time 0 are (0,0,0) with proba-
bility 1/4, (0,1,0) with 1/2, and (1,0, 1) with 1/4. The
values at time —1 do not have meaning other than that
the initial values for F;’s at time 0 have this distribution.

An example of the state transitions by the domino
automaton is shown in Fig. 2 as two figures for outputs
zp’s and z+1’s, respectively, where white stands for 0
and black for 1, and time proceeds downward with the
uppermost horizontal regions as the initial values at time
0. These patterns will be classified as the edge of chaos.

The pattern in Fig. 2(a) contains vertical white lines
against the black background. We can prove that the
number no(N) of white lines in equilibrium is O(vN)
on an average for this automaton.

Intuitively speaking, it is because the initial value as-
signment fluctuates with the order O(v/N). If the num-
ber of 1’s is fewer than that of 0’s, such fluctuation re-
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(b) Reflection by s3

Figure 3: Analyses of rhombic patterns.

sults in white lines in equilibrium. We shall give an
outline of the proof of this square-root law.

Let so = (0,0,0), s1 =,(0,1,0), s2 = (1,0,1), and
s3 = (1,1,1). These cover all the possible states of a
cell. State so is a quiescent state such that, if all Fj’s
are in sg, the automaton is in equilibrium. We can also
regard s; as another quiescent state, because, even if sq
and s; are randomly assigned to cells, the automaton is
still in equilibrium. That is, CARRY = 0 means the
quiescent states.

We mtroduce the total order so < 81 < s2 < s3.
The symbol F represents F;’s state at time t. The
weight w(F;) at time ¢ is denoted by w(F( ", or w(s;)
if F(‘) = w(s;).

The behavior of the domino automaton somewhat re-
sembles that of the sand pile collapsing model proposed
by Bak [11]. The signals in the domino automaton can
be regarded as sand particles sliding down the slopes of
sand piles.

Fig. 3 depicts the state transitions for ‘thombic’ pat-
terns typical in Fig. 2. Here 0, -, 2, and 3 represents s,
s1, $2, and s3, respectively.

In Fig. 3(a), an sz swrrounded by s:’s generates a
‘rhombus’. The effects caused by this s; are propagated
in both directions at a speed of a cell per time step;
delimited and reflected by so’s at both sides; collide at
a middle point to generate an so. The weight w(s;) is
delivered to two so’s at both ends, and an sp is gener-
ated within this interval. Fig. 3(b) depicts the signal
reflection caused by s3, whose analysis is also easy.

Such analyses tell that the excessive weights (> 1)
associated with cells are gradually delivered to so cells
step by step, and that equilibrium is eventually attained.
Since such process propagating cell by cell fairly resem-
bles the game ‘falling dominoes,” the name ‘domino’ is
attached to this automaton. Other state transition pat-
terns exhibited by the domino automaton have similar
characteristics and easily analyzed.

Proposition 5 The domino automaton reaches equilib-
rium in finite time steps.

Let E be the average number of excessive 0’s for
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Figure 4: Excessive weights result in few sq’s.

(a) zo’s (b) z—1’s and 2z1’s

w(L,R) — N < 0. We can approximately evaluate E
using Stirling’s formula.

N
E = 27V (N - k)C(2N, k)
k=0

= N/x. )

Therefore we obtain E = 1/N/x, which is O(vN). It
makes a good accordance with exhaustive enumeration.

Some of the excessive weights are transferred to cells
outside the interval between L and R. For sufficiently
large N, if w(L,R) — N is O(v/N) and negative, such
weights are negligibly small in comparison with N, be-
cause most of locally excessive weights are absorbed by
so’s in this interval. Hence the number of so’s between
L and R in equilibrium is still O(v/N).

If w(L,R) — N is positive and O(+/N), most of the
excessive weights are moved to cells outside this inter-
val. The number of so’s that can remain in this interval
after equilibrium is small, as in the case shown in Fig. 4.
The probabilities that w(L, R) — N is positive and nega-
tive are equal. Therefore, on an average, the number of
so’s that can remain in this interval of width N is still
O(/N).

Kauffman observed in his random Boolean network
experiments the fact that the distribution of state cy-
cle lengths is skewed rather than bell-shaped Gaussian.
Many random networks had very short state cycles. The
distribution of so’s caused by the domino automaton has
a property somewhat similar to his result, although the
distribution form may not be the same.

Theorem 3 There exist cellular automate that exhibit
the square-root property in equilibrium at the edge of
chaos.

5 Discussions

The computation of the numbers of various SCL ele-
ments tells that SCL may get rid of the difficulty caused
by combinatorial explosion in developing probabilistic
theory of evolution.

The square-root law discovered at the edge of chaos
may have some relation to the superexponential law pro-
posed by the author [2, 3, 8]. This superexponential law
has another predecessor, H. Hart [13], who made an in-
tensive investigation of the log-log law in technological
innovations in 1920’s — 1950’s. '

U. Frisch, et al. [10] and P. Bak, et al. [11] are exam-
ples of SCL.

The edge of chaos exhibited by the domino automa-
ton can be regarded as a kind of relaxation process [3, 8].
We shall refer to this type of process as the domino re--
lazation. Such slow relaxation may find some relation to
the 1/f power law [14]. Also see Lemma 4 by the author
[4] that proves a strict 1/f law by graph theory.
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